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Abstract: Polysubstance use (PSU) generally involves the simultaneous use of an opioid along with
a stimulant. In recent years, this problem has escalated into a nationwide epidemic. Understand-
ing the mechanisms and effects underlying the interaction between these drugs is essential for
the development of treatments for those suffering from addiction. Currently, the effect of PSU on
synapses—critical points of contact between neurons—remains poorly understood. Using an in vitro
model of primary neurons, we examined the combined effects of the psychostimulant metham-
phetamine (METH) and the prescription opioid oxycodone (oxy) on the synaptic proteome using
quantitative mass-spectrometry-based proteomics. A further ClueGO analysis and Ingenuity Path-
way Analysis (IPA) indicated the dysregulation of several molecular functions, biological processes,
and pathways associated with neural plasticity and structural development. We identified one key
synaptic protein, Striatin-1, which plays a vital role in many of these processes and functions, to
be downregulated following METH+oxy treatment. This downregulation of Striatin-1 was further
validated by Western blot. Overall, the present study indicates several damaging effects of the
combined use of METH and oxy on neural function and warrants further detailed investigation into
mechanisms contributing to synaptic dysfunction.

Keywords: striatin-1; polysubstance use; speedballing; methamphetamine; oxycodone

1. Introduction

Substance use disorder (SUD) is often a long-term chronic disease that significantly im-
pacts the central nervous system (CNS), and it is characterized by cognitive and behavioral
dysfunction [1]. While SUD as a whole has been an ongoing challenge for healthcare and
research, an issue further compounding prognosis in clinical practice is the large number
of individuals with SUD presenting a history of a complex pattern of polysubstance use
(PSU). Most notable is the simultaneous and combined use of a stimulant (cf. cocaine and
METH) along with a depressant (cf. alcohol and opioid), which is often fatal [2]. This
practice of combining a stimulant and an opioid is known as “speedballing” and is reported
to occur for various reasons. Often, individuals become inured to the effects of a drug
after prolonged use and will try combining an additional substance to experience their
initial level of drug-induced high. More specifically, one of the most prevalent motivators
for speedballing is the desire to offset the deleterious effects of individual drugs with a
psychoactive opposite. This attempt to curb negative side effects magnifies drug addiction
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tendencies and may result in neurological effects that are greater than the sum of each drug
individually [3]. Indeed, from 1999 to 2020, the number of overdose deaths caused by the
combination of psychostimulants, primarily METH, and opioids increased from 187 to
14,777 [2]. This alarming rise in the number of deaths highlights the significant impact that
speedballing can have on the brain and the need for a better understanding of the effects of
long-term PSU on the CNS.

The present study focuses on the impact of combinatorial exposure to metham-
phetamine (METH) and oxycodone (oxy) on primary neurons. METH, one of the most
potent psychostimulants, has widespread effects across the CNS, such as rapidly increasing
the levels of dopamine and the inducement of irreversible damage to synapses [4,5]. Users
ingest METH in shorter intervals or increased concentrations to reach the same high as they
build a tolerance to the effects [6]. The chronic use of METH has been known to precipitate
violent tendencies, psychosis, and depression [7]. Additionally, chronic METH users may
experience memory deficits and impaired cognitive function, prompting users to continue
abusing it with the purpose of feeling more alert [4].

Oxycodone, a semi-synthetic opioid, is widely prescribed for varying types of pain
and primarily binds to mu-opioid receptors [8]. In 2020, the opioid dispensing rate per
100 people was 43.3 [9]. This high opioid prescription rate indicates that oxy, one of
the most popular prescription opioids, is more accessible than illegal substances such as
METH. Notably, chronic oxy users are likely to experience brain fog, impaired memory,
and dizziness [10]. Furthermore, opioids can act as gateway drugs, meaning that patients
have an increased likelihood of abusing and becoming addicted to oxy and other drugs
after they have recovered from their physical injury [10]. Similar to METH, oxy abuse has
been associated with causing synaptic damage [11].

Both drugs have been shown to bring about various adverse effects on health when
misused separately, but, currently, there is little research examining the effects of METH
and oxy when used in conjunction. Moreover, a current knowledge gap exists regarding
how METH and oxy in combination can induce alterations at the synapse, including the
lack of reliable markers. The application of high-throughput “omics” approaches has
helped researchers to understand the role of synaptic proteins in disease states, such as
drug addiction, as a proteomic analysis allows for the global view of drug-induced changes
within a specific proteome [12,13]. Using quantitative mass-spectrometry-based proteomics
on primary neurons exposed to METH and oxy, we identified a key synaptic protein,
Striatin-1, to be downregulated. We post-validated this finding and further affirmed the
role of Striatin-1 as a key player in the pathophysiological effects of speedballing on neurons
via a pathway analysis. Furthermore, the identification of critical molecular and functional
pathways predominantly associated with neural plasticity point to the damaging effects of
speedballing at the synapse. In summary, the findings from this study not only provide
insights into the effects of PSU in the brain but also identify potential targets for developing
therapeutic strategies to mitigate the adverse outcomes associated with PSUs.

2. Materials and Methods
2.1. Animals and Ethics Statement

All pregnant Sprague Dawley rats used in the experiment were purchased from
Charles River Laboratories Inc. (Wilmington, MA, USA), and they were housed under a
12 h light–dark cycle and fed ad libitum. All procedures and protocols were conducted in
accordance with the National Institutes of Health Guide for the Care and Use of Labora-
tory Animals and approved by the Institutional Animal Care and Use Committee of the
University of Nebraska Medical Center (IACUC protocol: 17-080 approved 1 June 2021).

2.2. Primary Rat Neuronal Cultures

Cortical neurons from embryonic day 18 (E18) Sprague Dawley rats were plated at a
density of 8.5 × 105 cells per well onto 6-well plates previously coated with poly-D-lysine.
The cells were cultured in Neurobasal media containing 0.5 mM L-glutamine and B27
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supplement (Life Technologies, Carlsbad, CA, USA) at 37 ◦C in a humidified atmosphere
of a 5% CO2 incubator. Every three days, a half exchange was performed on the medium.
After 14 days in vitro (DIV 14), the cells were treated with 100 mM METH and 100 mM
oxy for 24 h, following which the cells were collected in ice-cold PBS, and proteins were
isolated using an NPer kit (ThermoFisher, Waltham, MA, USA).

2.3. Mass Spectrometry Analysis and Protein Identification

Protein quantification was performed using a Pierce BCA protein assay (Thermo
Scientific, Rockford, IL, USA), and the procedure described in our earlier studies was
followed [4,14–18]. The mass spectrometry analysis was conducted using a UNMC Mass
Spectrometry Core (Omaha, NE, USA), and the protocol was based on the label-free quanti-
tative mass spectrometry protocol described in our recently published studies with minor
modifications [11,14,15]. Specifically, we used 50 µg of protein per sample (n = 3/group).

Protein identification also followed the procedure established in our lab’s previous
studies [11,14,15]. Briefly, the in-house mascot 2.6.2. (Matrix Science, Boston, MA, USA)
search engine was used to further explore the proteins from tandem mass spectrometry
data. The search targeted full tryptic peptides and allowed for two missed cleavage sites.
The carbamidomethylation of cysteine was set as a fixed modification. The acetylation
of protein N-terminus and oxidized methionine were included as variable modifications.
The highest allowed fragment mass error was 0.02 Da, and the precursor mass tolerance
threshold was set at 10 ppm. A false discovery rate (FDR) of ≤1% was used to calculate
the significance threshold of the ion score. A qualitative analysis was performed using
progenesis QI proteomics 4.1 (Nonlinear Dynamics, Milford, MA, USA).

2.4. Bioinformatics Analysis

Proteins were recognized as differentially expressed if the p-value of the t-test was
≤0.05 and the absolute fold change was ≥1.5. A gene ontology (GO) analysis of differen-
tially expressed proteins (DEPs) was conducted using the Cytoscape plug-in ClueGO [16].
Biological processes and molecular functions were included for the GO enrichment analysis.
A canonical pathway analysis was performed using Ingenuity Pathway Analysis (IPA)
software (Ingenuity® Systems, Redwood City, CA, USA, www.ingenuity.com, accessed
on 21 June 2022) by comparing the DEPs against known canonical pathways (signaling
and metabolic) within the IPA database. For further analysis, enriched pathways with a
Benjamini–Hochberg false discovery rate (FDR) p-value ≤ 0.05 were considered.

2.5. Western Blot

Western blotting was conducted as described in our previous studies [11,14,17–19].
Briefly, cell lysates from both the control and METH+oxy treatment were loaded onto
4–12% Bis-Tris wells (Invitrogen, Waltham, MA, USA) under reducing conditions. The
gels were then transferred to a nitrocellulose membrane using iBlot2 (Invitrogen, Waltham,
MA, USA) and immunodetection. Nonspecific antibody blocking was carried out using
Superblock (ThermoFisher, Waltham, MA, USA). Immunoblotting was performed with
primary antibodies overnight at 4 ◦C against STRN1 (1:1000, ProteinTech, Rosemont, IL,
USA. Cat No.: 21624-1-AP) and GAPDH (1:2500, Invitrogen, Waltham, MA, USA. Cat
No.: MA5-15738). This was followed by secondary antibodies (1:2500, HRP-conjugated
anti-rabbit IgG; Thermo Scientific, Waltham, MA, USA. Cat No.: G21234 and 1:5000,
HRP-conjugated anti-mouse IgG; Sigma-Aldrich, St. Louis, MO, USA. Cat No.: A9044).
Primary and secondary antibody dilutions were performed according to the manufacturer’s
suggestions. Blots were developed on the Azure CSeries Imager (Azure Biosystems, Dublin,
CA, USA) with SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific,
Waltham, MA, USA). Band intensities were measured by ImageJ using the Gel Analysis
function with the removal of background at the base of the peak intensity. After identifying
the band intensities on each antibody, an individual band from Striatin was normalized
in correspondence to the respective GAPDH. The average normalization value for each

www.ingenuity.com


Genes 2022, 13, 1816 4 of 11

treatment (control vs. experimental) was calculated, and the fold change was determined
by the ratio between the control and experimental groups.

2.6. Statistical Analysis

For the proteomic analysis, an unpaired t-test was performed post-normalization to de-
tect significantly differentially expressed proteins following METH+oxy exposure. Proteins
with ≥1 unique peptide and p-value < 0.05 were considered significant. Following Western
blots and normalization by GAPDH, outliers were discovered and removed utilizing the
ROUT method, with a maximum desired false discovery rate of 1%. The downregulation
of striatin was determined to be statistically significant via an unpaired t-test following
Welch’s correction, with p < 0.05. A statistical analysis was conducted using GraphPad
Prism version 8.3.0 (LA Jolla, CA, USA).

3. Results

To elucidate the effects of METH+oxy on the proteome, we analyzed DIV14 neu-
rons via high-throughput quantitative MS-based proteomics, which identified a total of
3125 proteins. The initial criterion of analysis included >1 unique peptide. However, in
order to expand the potential networks of connection, the criterion of analysis was adjusted
to≥1 unique peptide and p < 0.05. We identified 94 DEPs. Of these, 54 were downregulated,
and 25 were upregulated (Figure 1 and Table S1).
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Figure 1. Venn diagram representing the differentially expressed proteins between control and
METH+oxy groups.

We then utilized the ClueGO analysis to identify which key biological processes and
molecular functions were associated with these DEPs. Of the upregulated functions and
processes, the most abundant was S-nitrosoglutathione binding, which accounted for 37.5%
of the gene ontology (GO) terms. Furthermore, the remainder of the GO terms, such as
pyruvate kinase complex, early phagosome membrane, and MIT domain binding, equally
accounted for 12.5% of the GO terms (Figure 2A). For the downregulated functions and
processes, the one associated with the highest number of GO terms was the regulation of
ferrochelatase activity, which accounted for 23.08%. The next most abundant terms were
the regulation of phospholipase D activity and GMP reductase activity, each accounting
for 11.54%. The postsynaptic intermediate filament cytoskeleton and cytosolic dipeptidase
activity accounted for 7.69% each. Sulfur dioxygenase activity, fumarate hydratase activity,
and various others encompassed 3.85% of the terms each (Figure 2B).
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and biological processes.

Utilizing the Ingenuity Pathway Analysis (IPA), we then analyzed potentially affected
pathways involving the DEPs. Certain pathways, such as NRF2-mediated oxidative stress
response, IL-8 signaling, and xenobiotic metabolism signaling, were activated following
METH+oxy treatment. Others, such as the synaptogenesis signaling and Rho Family
GTPase signaling pathways, were deactivated (Figure 3). Overall, these results indicate a
disruption of neural function via the dysregulation of key pathways, biological processes,
and molecular functions.

Due to the large number of possible hits generated by the high-throughput proteomics,
further validation was necessary. Our analysis revealed a trend of the dysregulation of
processes, functions, and pathways involved in neural plasticity and structural develop-
ment. Moreover, ClueGO demonstrated the downregulation of proteins involved in the
postsynaptic intermediate filament cytoskeleton, and IPA revealed the downregulation
of the synaptogenesis signaling pathway. Therefore, we focused on validating the hits
involved in these functions and processes. Further investigation of IPA revealed that a
large number of DEPs within the synaptogenesis signaling pathway were explicitly asso-
ciated with neuritogenesis. Striatin-1, a protein identified in our proteomics screen, was
downregulated −7.7-fold post-METH+oxy treatment. Its expression was further validated
in the cell lysates using Western blot (Figure 4).
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4. Discussion

SUD is characterized by sensitivity to drug-associated cues and the motivation to
maintain drug consumption, and it has been shown to be a chronic and relapsing disease [1].
With ~35 million people globally and 19 million people in the United States diagnosed
with SUD, it is a significant public health issue, generating both social and economic
costs. While drug use is more often studied in isolation, several of these drug users often
simultaneously use multiple substances. This not only adds a layer of complexity to the
understanding of how PSU impacts pathological outcomes but also hinders treatment
options, increases drug relapse frequency, and raises mortality rates compared to the abuse
of a single substance [20–22]. Users with long-term dependency on psychostimulants, such
as cocaine and METH, have often been reported to exhibit a history of PSU [23]. Both
cocaine and amphetamine users have been reported to co-use heroin, cannabis, tobacco, and
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alcohol [24,25]. Within the current ongoing opioid epidemic, emerging lines of evidence
point to an escalated co-use of these two popular drug categories. Individuals diagnosed
with SUD have shown increased aggression and irritability due to synaptic plasticity and
impaired neurotransmitters caused by the chronic use of a single drug [26]. In the brain,
the ventral tegmental area (VTA), the nucleus accumbens (NAc), and the medial prefrontal
cortex (mPFC) are the regions that play an important role in reward processing and emotion
regulation [26–28]. Psychostimulants can produce alterations in neuronal morphology and
long-term disruptions to glutamate homeostasis, either over-stimulating or weakening
glutamatergic inputs to the VTA region [29–31]. Similar to psychostimulants, opiates
can strengthen glutamatergic inputs to the VTA dopaminergic neurons [32,33]. However,
unlike psychostimulants, opioids decrease dendritic branching and spine density in the
NAc regions [31,34,35]. Notably, electrical or chemical (i.e., glutamate analog) stimulation
can also induce defensive rage behavior in mammals [36,37]. In addition, both opioids
and psychostimulants have the ability to increase the dopamine level in the NAc [30,38].
Importantly, in animals, an increase in dopamine release in the NAc is associated with
increased aggression [39]. Moreover, substance use can also influence changes in synaptic
morphology, including dendritic spine branching and length [40,41], which all contribute
to alterations in synaptic activity. Hence, the ability to disrupt synaptic activity could
further alter neural circuitry and subsequently exacerbate violent behavior. While PSU
further aggravates violent behavioral outcomes, the changes at synapses, including the
lack of reliable synaptic markers contributing to such adverse outcomes, have not been
completely understood.

The current study reveals important insights into the impact of PSU through changes
in the synaptic proteome in an in vitro model of primary neurons. Our present study illus-
trated that the combined use of METH and oxy can cause DEPs involved in key neuronal
pathways. Using the ClueGO analysis, we found associations between DEPs and various
molecular functions and biological operations, including the regulation of ferrochelatase
activity, phospholipase D activity, and S-nitrosoglutathione binding. Moreover, the IPA
revealed significantly activated or deactivated pathways, such as cellular assembly and
maintenance, as well as nervous system functional development that is associated with the
DEPs in our METH+oxy group. Overall, these results provide foundational insight into the
impact of acute METH and oxy exposure on neural function.

Our pathway analysis indicated the dysregulation of genes involved in cellular as-
sembly, organization, function, and maintenance, specifically regarding cell adhesion,
microtubule dynamics, and cytoplasmic organization (Table S2). These characteristics
have been shown in previous investigations to play a large role in both the acquisition
of addiction, as well as the impairments caused by drugs of abuse. One such study
demonstrated a loss of stable microtubules in striatal dopaminergic neurons after METH
exposure, interfering with axonal transport and possibly leading to reversible deficits in
dopaminergic markers, such as tyrosine hydroxylase, dopamine transporter, dopamine,
and 3,4-dihydroxyphenylacetic acid (DOPAC) [42].

Furthermore, IPA revealed the dysregulation of 13 genes involved in neuritogenesis.
(Table S3). Addiction can be thought of as a kind of drug-induced neural plasticity, in which
the brain gradually learns to rely on a chemical, leading to behavioral abnormalities and an
impaired ability to regulate self-intake [28]. There are multiple mechanisms through which
this process occurs. One such process is the drug-induced dysregulation of neuritogene-
sis [43]. Neuritogenesis is a process in which a specific arrangement of F-actin assembly
creates a protrusion from the developing cell body, which then engages with microtubules
and other components. Finally, protein consolidation allows for the development of neu-
rites, such as axons and dendrites [44]. This process is crucial for the establishment of a
mature nervous system capable of complex communication [45]. In the damaged hippocam-
pus CA1 region, the promotion of neuritogenesis has been shown to rescue impairments in
long- and short-term memory, cognition, and spatial intelligence [46]. Both METH and oxy
have previously been shown to impair neural function. A study conducted by Martin et al.
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demonstrated that rats exposed to oxycodone exhibited impaired spatial intelligence dur-
ing Barnes maze testing: traveling more slowly, crossing less distance, and less frequently
finding the escape hole [47]. Moreover, exposure to oxycodone has been shown to diminish
behavioral flexibility and cognitive ability [48]. Similarly, previous studies have shown
that METH exposure can severely damage the neurons of the hippocampus, notably in
the CA1 region, contributing to the loss of memory and spatial learning ability [49]. More
generally, METH addiction has been linked to alterations in hippocampal morphology,
deficits in learning and memory related to the hippocampus, and smaller limbic-related
structures [50]. The results of our study present the dysregulation of neuritogenesis as a
possible explanation for the mechanisms in which METH and oxy cause these impairments.

Along these lines, our proteomics screen identified the synaptic protein Striatin-1 to
be downregulated following METH+oxy exposure. Previous studies have demonstrated
that hippocampal neurons, which have been shown to play a prominent role in addiction,
depend on Striatin-1 for neuritogenesis [51]. Striatin-1 is an intracellular caveolin and
calmodulin-binding scaffolding protein belonging to the WD-repeat family [52]. An earlier
study employing the anterograde tract-tracing labeling method demonstrated the subcellu-
lar localization of Striatin-1 to the dendritic spines containing the excitatory synapses in
the rat striatum [53]. The downregulation of Striatin-1, as observed in our current study,
potentially points to alterations in the dynamics of excitatory neurotransmission also asso-
ciated with drugs of abuse. Another study demonstrated that Striatin-1 binds to caveolin-1,
a scaffolding protein critical for regulating signaling and membrane trafficking [52]. Fur-
thermore, another study demonstrated that striatin, when co-localized with phoecin, is
implicated in vesicular trafficking machinery, specifically clathrin and dynamin-dependent
membrane dynamics, in cerebellar and hippocampal synapses [54]. Based on our findings,
we speculate that decreased Striatin-1 levels induced by the co-use of METH and oxy could
indicate alterations in synaptic signaling, including membrane trafficking at the synapse.
Further investigation into Striatin-1 and its associated interacting partners could further
help in understanding its role in regulating synaptic function during PSU.

In summary, the present study elucidates that the co-use of METH and oxy impacts key
molecular functions and biological processes within the CNS. The validation of the synaptic
protein Striatin-1, which is associated with regulating essential neurological functions and
processes, especially neural plasticity and synaptic structure, further contributes to its role
as a potential target for therapeutic treatment to rescue defects inflicted by PSU.
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