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Abstract

Background: Genomic prediction (GP) is used in animal and plant breeding to help identify the best genotypes for
selection. One of the most important measures of the effectiveness and reliability of GP in plant breeding is predictive
accuracy. An accurate estimate of this measure is thus central to GP. Moreover, regression models are the models of
choice for analyzing field trial data in plant breeding. However, models that use the classical likelihood typically
perform poorly, often resulting in biased parameter estimates, when their underlying assumptions are violated. This
typically happens when data are contaminated with outliers. These biases often translate into inaccurate estimates of
heritability and predictive accuracy, compromising the performance of GP. Since phenotypic data are susceptible to
contamination, improving the methods for estimating heritability and predictive accuracy can enhance the
performance of GP. Robust statistical methods provide an intuitively appealing and a theoretically well justified
framework for overcoming some of the drawbacks of classical regression, most notably the departure from the
normality assumption. We compare the performance of robust and classical approaches to two recently published
methods for estimating heritability and predictive accuracy of GP using simulation of several plausible scenarios of
random and block data contamination with outliers and commercial maize and rye breeding datasets.

Results: The robust approach generally performed as good as or better than the classical approach in phenotypic
data analysis and in estimating the predictive accuracy of heritability and genomic prediction under both the random
and block contamination scenarios. Notably, it consistently outperformed the classical approach under the random
contamination scenario. Analyses of the empirical maize and rye datasets further reinforce the stability and reliability
of the robust approach in the presence of outliers or missing data.

Conclusions: The proposed robust approach enhances the predictive accuracy of heritability and genomic
prediction by minimizing the deleterious effects of outliers for a broad range of simulation scenarios and empirical
breeding datasets. Accordingly, plant breeders should seriously consider regularly using the robust alongside the
classical approach and increasing the number of replicates to three or more, to further enhance the accuracy of the
robust approach.
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Background
Genomic studies, whether from an association, prediction
or selection perspective, constitute a field of research with
increasing statistical methodological challenges given the
growing complexity (population structure, coancestry,
etc), dimension of datasets, measurement errors and atyp-
ical observations (outliers). Outliers often arise from atyp-
ical environments, years, field pests or other phenomena.
Here, regression models are the tool of choice whether
in studies involving human, animal or plant applications.
However, it is well known that the performance of these
models is poor when their underlying assumptions are
violated and their unknown parameters are estimated by
the classical likelihood [49]. For example, violation of the
normality assumption — depending on its severity — may
lead to both biased parameter estimates and coefficients
of determination [7] and strongly interfere with variable
selection [5]. In the case of the linear mixed model, such
violation can tamper with the estimation of variance com-
ponents [24], which itself can be very challenging even
when data are normally distributed but the sample size is
small. Violation of model assumptions due to contamina-
tion of data with outliers can have several other deleteri-
ous effects on regression models. In genomic association
studies, for example, departure from normality can induce
power loss in the detection of true associations and inflate
the number of detected spurious associations [22]. In
plant genomics such violations of model assumptions and
the associated biases often translate into inaccurate esti-
mates of heritability and predictive accuracy [10]. This can
have significant practical consenquences because predic-
tive accuracy is the single most important measure of the
performance of genomic prediction (GP). The reduction
of these adverse effects through the use of more robust
methods is thus of considerable practical importance [48].
Recently, [9] proposed a method for estimating heri-
tability and predictive accuracy simultaneously (Method 5)
and compared its performance with several contending
methods from the literature including a popular method
in animal breeding (Method 7). More details on Meth-
ods 5 and 7 can be found in the “Genomic prediction”
section. The authors concluded from these comparisons
that Methods 5 and 7 consistently gave the least biased,
most precise and stable estimates of predictive accu-
racy across all the scenarios they considered. Additionally,
Method 5 gave the most accurate estimates of heritability
[9]. Both methods are founded on the linear mixed effects
model as well as on ridge regression best linear unbi-
ased prediction (RR-BLUP) through a two-stage approach
[34-36]. The first stage of this two-stage approach
involves phenotypic analysis and thus is likely to be
adversely affected by contaminated phenotypic plot data.
In particular, contamination can undermine the accuracy
with which the adjusted means are estimated in the first
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stage and thus negatively impact estimation of both her-
itability (only Method 5) and predictive accuracy in the
subsequent second stage where RR-BLUP is used [15].
Estaghvirou et al. [10] later examined the performance of
the same seven methods in the presence of one outlying
observation under 10 simulated contamination scenarios.
These simulations reaffirmed that Methods 5 and 7 per-
formed the best overall and produced the best estimates of
both heritability (only Method 5) and predictive accuracy
across all the contamination scenarios they considered.
However, one outlying observation for their dataset with
a sample size of 698 genotypes corresponds to a level of
contamination of merely 0.1%. As stated by [10], outliers
may arise in plant breeding studies from measurement
errors, inherent characteristics of the studied genotypes,
enviroments or even years. As the process generating the
outliers may vary across locations and/or trials, it is con-
ceivable that a non-neglegible percentage of phenotypic
observations may be typically contaminated when large
field trial datasets are considered. As a result, the com-
posite effects of such substantial levels of contamination
on the accuracy of methods for estimating heritability and
accuracy of GP can be potentially considerable. Such out-
liers may not always be easy to detect and eliminate prior
to phenotypic data analysis. Therefore, using robust statis-
tical procedures for phenotypic data analysis of field trial
datasets can help ameliorate the adverse effects of outliers.

Robust statistical methods have been around for a
long time and are designed to be resistant to influen-
tial factors such as outlying observations, non-normality
and other problems associated with model misspecifi-
cation [17]. Therefore, the use of robust methods has
been advocated for inference in the linear and linear
mixed model setups [6, 25], as well as in ridge regression
[1, 15, 26, 27, 45, 52]. As a result of such considerations
and the recent advances in computing power, it is not sur-
prising that there has been a strong, renewed interest in
exploring these techniques to robustify existing methods
or develop new procedures robust to moderate deviations
from model specifications [24, 41].

Consequently, to tackle the problem of biased estima-
tion of heritability and predictive accuracy due to contam-
ination of phenotypic data with outliers, we aim to robus-
tify the first phase of the two-stage analysis used in GP. We
use a Monte-Carlo simulation study encompassing sev-
eral contamination scenarios to assess the performance of
the proposed robust approach relative to: (i) the approach
used by [35], and (ii) simulated underlying true breeding
values taken as the gold standard. These assessments are
carried out at each of the two stages involved in predicting
breeding values by comparing the accuracy with which the
two approaches estimate true genotypic values in pheno-
typic analysis. In a third stage, we compare the heritabil-
ities (H?) and predictive accuracies (PA) estimated by the
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two competing approaches using Method 5 (H? and PA)
and Method 7 (PA only). In addition, we compare the
heritability estimated by Method 5 with the generalized
heritability estimated by Oakey’s method [29]. The latter
method was not evaluated by [9].

Also, an application of the methodology to real commer-
cial maize (Zea mays) and rye (Secale sereale) datasets is
presented and used to empirically assess the usefulness of
the proposed robust approach. Lastly, we discuss how to
effectively apply the proposed robust approach to pheno-
typic data analysis and the estimation of heritability and
predictive accuracy of GP in plant breeding.

The robust and the classical approaches are imple-
mented in the R software using the code in the supple-
mentary materials (Additional file 5). The ASREML-R
package is used to fit the models at the second stage.

Materials and methods

Datasets

Rye dataset: The Rye data were obtained from the KWS-
LOCHOW project and is described in more detail else-
where [2, 3]. These data consist of 150 genotypes tested
between 2009 and 2011 at several locations in Germany
and Poland, using « designs with two replicates and four
checks (replicated two times in the two replicates). Each
trial was randomized independently of the others. The
field layout of some trials was not perfectly rectangular.
Trials at some locations and for some years had fewer
blocks but larger size, i.e., two different sizes were used
for a few trials. Blocks were nested within rows in the
field layout. The dataset has 16 anomalous observations
pertaining to distinct genotypes, that the breeders iden-
tified as outliers. Moreover, yield was not observed for
one genotype. For this example we consider two com-
plete datasets (320 observations): the first is the origi-
nal dataset without any corrections, which we call the
‘raw’ dataset, and the second is the original dataset with
the 16 yield observations replaced with missing val-
ues, which we refer to as the ’processed’ dataset. In
addition, we consider a cleaned version of the raw dataset
(288 observations; called cleaned dataset) obtained by
removing from the raw data the 16 outlying genotypes
(32 observations) identified by both the breeders and
the criterion used for outlier detection described in the
“Example application” section. We note that because the
empirical rye dataset has only two replicates, a single
outlier will automatically generate an outlier with the
same absolute value of opposite sign for the other repli-
cate of the same genotype. Consequently, we removed a
testcross genotype entirely from the cleaned dataset even
if only one of its two replicate observations was outlying.
The raw, processed and cleaned datasets comprise only
148, 148 and 132 genotypes with genomic information,
respectively.
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Maize dataset: The maize dataset was produced by KWS
in 2010 for the Synbreed Project. The data set has 1800
yield observations on 900 doubled haploid maize lines and
11,646 SNP markers. Out of the 900 test crosses 698 were
genotyped whereas 202 were not. The test crosses were
planted in a single location (labelled RET) on nine 10 by 10
lattices each with two replicates. Six hybrid and five line
checks connected the lattices (398 observations in total).
The lines were crossed with four testers. After performing
quality control, the breeder recommended replacement of
38 yield observations with missing values. A more elab-
orate description of this maize dataset is provided in
[9, 11].

For this example we consider two datasets each with
1800 yield observations: the first is the original dataset
without any corrections, which we call the raw’ dataset,
and the second one is the original dataset with the 38
yield observations replaced with missing values, which we
refer to as the 'processed’ dataset. Furthermore, we con-
sider a third dataset (called cleaned raw dataset) obtained
by removing 46 outliers from the raw dataset. The fourth
dataset (called the cleaned and processed dataset) is
obtained by removing seven outliers from the processed
dataset. All the outliers satisfied the criterion for outliers
described in the “Example application” section. As with
the rye dataset, we removed a testcross genotype entirely
from the raw dataset if at least one of the two repli-
cate observations was outlying. Thus, the raw, processed,
cleaned raw and cleaned and processed datasets have
1800, 1754, 1800 and 1793 yield observations and 698,
687, 698 and 697 genotypes with genomic information,
respectively.

Genomic prediction

True correlation

The correlation between the true (g) and the predicted
(g) breeding values (true correlation or true predictive
accuracy) can be calculated from simulated data as

v 1)

Voog =
104 22
8°g

where s, is the sample covariance between the true and
predicted breeding values, sﬁ and s2 are the sample vari-
ances of the true and predicted genetic breeding values,
respectively. This correlation is often the quantity of pri-
mary interest in breeding studies. The simulation study
therefore assesses the accuracy with which 7,3 is esti-
mated by Methods 5 and 7, whose details are described
below.

Two-stage approach for predicting breeding values

Estaghvirou et al. [9] use the two-stage approach of [35] to
predict true breeding values (g) that are then used to esti-
mate heritability and predictive accuracy. This approach
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is quite appealing because it greatly alleviates the compu-
tational burden of the single-stage approach [47], without
compromising the accuracy of the results.

The single-stage model can be written as

y=9¢1+f 2)

where y is the vector of the observed phenotypic plot val-
ues, ¢ is the general mean, f is a vector that combines
all the fixed, random design and error effects (replicates,
blocks, etc.). For the simulated data f has four random
effects only, namely, f = Z,g + Z,u, + Z,u, + e where
(i) Zg is the design matrix for the genotypes with g ~
N (O, ZSZST 052 = G), Z; is the matrix of biallelic mark-
ers of the single nucleotide polymorphisms (SNPs), coded
as —1 for genotypes AA, 1 for BB and O for AB or
missing values and o2 is the variance of the marker effects;
(ii) Z, is the design matrix for the replicate effects with
u, ~ N (0,07I) and o7 is the variance of the replicate
effects; (iii) Z, is the design matrix for the block effects
withu, ~ N (0, or%bl) and arz:h is the variance of the block
effects; and (iv) e ~ N(0,R) are the residual errors and
R is the variance-covariance matrix of the residuals. In
our model R = o2I where o2 is the residual plot error
variance.

The two-stage approach basically breaks this model into
two models. In the first stage, which we seek to robustify,
we use the model

where y is defined as before, X = Z, is the design matrix
for the genotype means, p = ¢1 + g is the vector of
unknown genotypic means with g denoting the genetic
effects or breeding values, and f=7Zu + Z,u, + e. Note
that in this first stage the genomic information regard-
ing the SNP markers (I' = Z;ZT) is excluded from this
analysis because genotype means p are modelled as fixed.
This is usually the case when stage-wise approaches are
considered, in which case the genomic information is
included only in the last stage [35].

In the second stage, the genotype means I estimated at
the first stage are used as a response variable in a model
for estimating the true breeding values g specified as

A=¢l+g+eé (@)
where ¢ is the general mean and ¢ ~ N (0, ﬁ) with R =
var(it | ¢, g).

Note that any standard varieties or checks are dropped
from the dataset before the adjusted means (fi) from the
first stage are submitted to the second stage. The mixed
model equations for (4) can be solved to obtain the best
linear unbiased prediction for g, BLUP(g) = g, using a
ridge-regression formulation of BLUP, i.e., RR-BLUP.

In case weights are used when fitting the second-stage
model, then R should be replaced by W1, with W being
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a weight matrix computed from the estimated first-stage
variance-covariance matrix R. In our case we used Smith’s
[46] and standard (ordinary) [35] weights. Specifically,
W, = diag(f{_l) for Smith’s and W, = (diag(f{))_l for
standard weights, respectively.

More details on the two-stage approach can be found in
[9, 35, 36].

Method 5
This method (M5) calculates predictive accuracy as
trace(P,,CG)
E(reg) ~ - (5)

trace(P,G)trace (CTP,CV)

where V = G + R with V, G and R being the variance-
covariance matrices for the phenotypes, genotypes and
residual errors of the adjusted genotypes, respectively;
P, = n%l (- %],,), with J, a # X n matrix of ones;
C = Gv''Q with Q = 1— 1(17v-11) 17V},
and 1 denoting a vector of ones. Under this formula-
tion, which provides a direct estimate of the correlation
between the true (g) and the predicted (g) breeding values,
the RR-BLUP of g is now given by g = GV 1QJi [34].
Heritability can then be computed from (5) as

ans =[E(}’g,§)]2.

Method 7
This method (M7) is commonly used by animal breed-
ers to directly compute predictive accuracy (p) from the
mixed model equations (MME, [12, 28, 51]) by firstly com-
puting the squared correlation between the true (g) and
predicted breeding values (g), i.e., reliability (p?).

Since the MME for the second-stage model (4) are
given by

¢1 [1RM1 1R ] [1'R'& ©)
g| | R1 RI4+G! Rz |

with the variance-covariance matrix of (¢ — 0,8 — 8

given by

Ci11 Ci2 _ 1TR~!1  17R!
Co1Co2| | R11 RI4GL|

and the variance-covariance matrix of g and g given by

(7)

G G-Cp
- ~ , 8
|:G—C22G—C22] ()
the reliability for each genotype is computed as
L, _ (cov(@n@)? _ var@) ©

P = var(g)var(g;)  var(g)
where only the diagonal elements of the matrices var(g) =
G, var(g) = G — Cap = cov(g, g) are extracted. The aver-
age reliability across the genotypes in each dataset is then
estimated by
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o _1g¢a
P =—D P} (10)
i=1

where 7 is the total number of genotypes in the dataset.
Predictive accuracy (o ,,,,) is then computed as the square
root of ﬁfm. Alternatively, predictive accuracy can be
computed as

1 n
~ _ [ ~2
lom7_; § IOi'
i=1

Further details on this derivation can be found in [36].

(11)

Oakey’s method
Oakey et al. [29] propose a generalized heritability mea-
sure that was recently re-expressed by [40] as
. trace(D)

n—s

H? (12)
where D = 1,, — G_ngz, s is the number of zero eigen-
values and # — s is the effective dimension of D. We also
use this method to estimate heritability and compare this
estimate with the estimate obtained by method M5.

Robust estimation
Robust estimation of the linear mixed model for phenotypic
data analysis
In this section we briefly review the robust approach
of [19] to linear mixed effects models that we use in
an attempt to robustify the first stage of the two-stage
approach to genomic prediction in plant breeding. This
approach is implemented in the R software package
robustlimm via the function rlmer () [20, 21].

We consider the general linear mixed model

y=Xn+Hu+e (13)

where y is a vector of observations, X is the design matrix
for the fixed effects (intercept included), pu is the vector
of unknown fixed effects, H is the design matrix for the
random effects, u ~ N(0,U) is the vector of unknown
random effects and e ~ N(O,R) is the vector of ran-
dom plot errors. Note that for our first-stage model Hu
=Zu, +Zpuyand p = p1 + g.

Model (13) also assumes that cov(u,e) = 0 and as such
we have that

y ~ N(Xp, HUH' + R).

We henceforward assume for simplicity that e ~ N
(0, O'ZI) and u ~ N (0, O'ezA(O)) where the variance
matrix A of the random effects depends on the vector
of unknown variance parameters € (this assumption can
be relaxed to obtain more general formulations, see e.g.,
[19]). The variance of y now simplifies to

var(y) = 6 HAO)H' + 021 =62 ®
with @ = HA(0)H' + L
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Because A(f) is a positive-definite symmetric matrix
and assuming that @ is known, one can obtain its Cholesky
decomposition as chol(A(f)) = B(#), set u = B(#)b and

rewrite model (13) as
y=Xun + HB(@)b + e, (14)

where b ~ N(0,02I) so that we again have y ~
N (Xp,029).
The classical log-likelihood for (14) can be written as

=200, p,0. | y) = nlog(2m) + log | ae2<I> | +

1 _
+ ==X ey — Xp).
O,

e

(15)

Furthermore, for a given set of @, . and o, ([44], Chapter 7)
b* =bprup = o/B@O)H' &' (y — Xp). (16)

From (15) and (16), an objective function that incor-
porates the observation-level residuals and the random
effects as separate additive terms can be derived and
expressed as

A, 1, 0., b* | y) = nlog(27) + log | oZ® | +

1 , (17)
— (e"e* +b*b")
Ue

where
e’ =e*(u,b*) = (y — X — HB(9)b").

This particular trick is crucial in order to independently
control contamination at the levels of the residual and
random effects.

Assuming 6 and o, are known and taking the partial
derivatives of (17) with respect to u and b*, we get the
following estimating equations for these effects,

X'e* /o, -0
(18)
(B(0)’H’?“ - B*) /o, =0
where
= (ﬁ,ﬁ*) = <y — Xji — HB(&)E*) : (19)

If B() is diagonal, as in our case, these equations are
robustified by replacing € and b* by bounded functions

Ye(e*) and Yy, (E*), where the v, and v, functions need
not be the same:
X' (€ /0e) /Ae =0
(20)
B(O) H'Y/e(@"/00) /he — Y (b"/00) /2 = 0
where 1, = Eo[ ] is required to balance the €* and
b* terms in case different i functions are used; 1/A,

and 1/A, are scaling factors (as in M-regression [17]) and
cancel out in the special case where vV, = V.
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If we let
o _ [ Wele) /e if e £ 0
WE(e)_{wé(O) if 8*=0’
o _ [ Vs®")/b" if b* £ 0
we(b") = { Y0 if b =0"
Ap = Ae/rp, W, = Diag(we(e]/o.)) and W), =

Diag(wy (b} /0.)), and after some simplification, Eq. (20)
can be written as

X'Wee* =0

B(O)H'W,e* — A,W,b* =0

which, after expanding €* with (19), yields the following
system of linear equations:

XTW X XTW.HB(0) rl_
B(0)THTW.X B(O)THTW.HB(6) + AW, | | b* | —
_ XTW.y
_ [B(G)THTWJ} . (21)

The algorithm for estimating parameters of (21) begins
with a predefined set of weights. It then alternates
between computing f and b* for a given set of weights and
updating the weights for a given set of estimates. Koller
and Stahel [18] and Koller [19] provide more details on the
estimation of the scale and covariance parameters and the
estimation procedure for the non-diagonal case.

If replicate and block (nested within replicates) are the
only random effects apart from the residual error in the
first-stage model (this is the case for the simulation study
for our first-stage model and for the first-stage model

2 2
for the rye dataset) then § = <U’, g’f’), where 2 and
Ue

o7

O"%b are the variances for the replicate and block random
effects, respectively. Also here, A(#) is a two-block diag-
onal matrix (k = 2 blocks). Furthermore, because we
assume u, ~ N(O, 0,21) and u, ~ N(O, of:bl) for the
first-stage model, B(9) =[ AB)]Y?isa diagonal matrix.

In particular, for the simulated data consisting of 698
observations of maize yield from 2 replicates each having
39 blocks (more details in the “Simulation” section), we
compute 2+ 39 = 41 weights (W},) for the observations at
the level of the random effects and 2 x 698 = 1396 weights
(W) for the observations at the level of the fixed effects

(i.e., for the residuals).

Robust approach to phenotypic analysis

Phenotypic data derived from field trials are prone to sev-
eral types of contamination that may range from measure-
ment errors, inherent characteristics of the genotypes and
the environments to the years in which the trials were con-
ducted. As such, if contaminated observations are present
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in the vector of phenotypes y in the first stage of phe-
notypic data analysis, then they can unduly influence the
estimation of the means for the testcross genotypes ()
in model (3), resulting in inaccurate estimates of adjusted
phenotypic means . In turn, these possibly inaccurate
estimates of u are passed on to the second stage of the
procedure (model (4); adjusted RR-BLUP) from which the
breeding values g are estimated. The possibly biased esti-
mates of (g) may undermine the accuracy of the estimated
heritability and predictive accuracy.

To minimize bias in the estimation of heritability and
predictive accuracy, we propose using the preceding
robust model for the first stage of phenotypic data analy-
sis. The second stage then proceeds in the same way as the
classical method except that, now, the robust estimates it
from the first stage are used in (4).

Simulation

Simulated datasets

We consider a real maize dataset from the Synbreed
Project (2009 — 2014). This dataset was extracted for one
location from a larger dataset and consists of 900 doubled
haploid maize lines, of which only 698 testcrosses were
genotyped, and 11,646 SNP markers. Six hybrid checks
and five line checks were considered and genotypes were
crossed with four testers as explained in more detail
in [9]. Variance components estimated from this dataset
(0} =0,0% = 627,02 = 53.8715 and 67 = 0.005892)
were used to simulate the block and plot effects based on
an «-design [31] with two replicates and the model

Vik = & + 1 + bj + gi + ey (22)

where y;j is the yield of the i-th genotype in the j-th block
nested within the k-th complete replicate, ¢ is the general
mean, ry is the fixed effect of the k-th complete replicate,
bjy is the random effect of the j-th block nested within the
k-th complete replicate, g; is the random effect of the i-th
genotype, and e;j is the residual plot error associated with
Yijk- More details on (22) can be found in Table S3 in the
supplementary materials of [10].

Our simulations consider 1000 simulated Maize
datasets described as follows: each dataset consists of
698 observations of yield in 2 replicates, with the 698
genotypes distributed over 39 blocks as in Table 1. Four
out of the 39 blocks have 17 observations, whereas the
remaining 35 have 18 observations.

Simulation of outliers

The type of outliers we consider, commonly known in
the literature as shift-outliers (or location outliers), are
typically the hardest type to detect in multivariate set-
tings because they have the same shape (the same covari-
ance structure but shifted mean) as the overall data [39].
The shift-outliers can arise from various contamination
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Table 1 A sample simulated Maize dataset

/ Rep Block Genotype Yield

1 1 1 267 7416505
2 1 1 149 1.945098
698 1 39 459 25.097810
699 2 1 604 12.640605
1396 2 39 614 18.859413

sources, including the following: errors, inherent charac-
teristics of the genotype(s) in a particular spatial location
or replicate, or, occurrence of a specific phenomenon that
negatively or positively impacts the genotype(s). Although
our simulations focus on these particular cases, other
types of outliers that we do not consider here are certainly
conceivable (see [39] for more details).

In order to simulate outliers, a percentage of phenotypic
observations in the dataset is chosen and contaminated
by replacing the observed value of each selected observa-
tion by that value plus 5-, 8- or 10- times the standard
deviation of the residual error (o) used to simulate the
phenotypic datasets. Additionally, we also consider two
distinct scenarios of data contamination:

(i) Random contamination: 1, 3, 5, 7 and 10% of the
phenotypic data in only one of the two replicates are
randomly contaminated, amounting to an overall
data contamination rate of 0.5, 1.5, 2.5, 3.5 and 5%,
respectively.

(ii) Block contamination: phenotypic datain 1, 2, 3, 4
and 5 whole blocks in only one of the two replicates
are contaminated, amounting approximately to
1.3, 2.6, 3.9, 5.2 and 6.5% overall rate of data
contamination, respectively.

We use the notation “% cont" to denote a particular
percentage (%) of data contamination with outliers, “sd”
to denote the size of the outliers and “No.blocks" to refer
to the number of contaminated blocks.

First- and second-stage models

In the first stage (Eq. 3), we consider yield as the response
variable, the genotypes as the fixed effects and the
replicates and blocks nested within replicates as the ran-
dom effects. In the second stage (Eq. 4), we consider the
adjusted genotypic means estimated in the first stage as
the response variable, the intercept as the fixed effect

Page 7 of 18

and the genotypes as the random effects with a variance-
covariance structure given by the genomic relationship
matrix.

Comparing performance of the classical and robust
approaches

The performance of the classical and robust approaches
is evaluated in three steps, labelled L1, L2 and L3. L1
involves a comparison of results from the first stage; L2
entails a comparison of results from the second stage and
L3 focuses on a comparison of the estimated heritability
and predictive accuracy, which can be viewed as constitut-
ing the third stage. For each of the three levels, we consider
the null scenario (uncontaminated datasets), random and
block contamination scenarios.

Additionally, the influence of the Smith’s and standard
weighting schemes used in the second stage of the two-
stage approach are considered in L2.

The following quantities are computed and used to
compare the performance of the classical and robust
approaches at levels L1-L3.

L1 : The mean squared deviation (MSD) of the estimated
from the true genotypic means is computed for both the
classical and robust approaches as

1000 698

i)
22698 X 1(;00

where p; is the true mean of the i-th genotype in the /-th
simulation run and i;; is its estimate.

The estimates of MSDy; for the classical (C) and robust
(R) approaches are compared for each scenario using

(23)

1000 698 AR Ac)

M5Dy = 121: ; 698 x 1000

(24)

and are expected a priori to agree for the null scenario.
It is also instructive to compute and plot

(T — pin)?
b= 2 " Ta00 25)

=1

1000 , ~
MSD:

for each genotype i = 1, ..., 698 for both approaches. Fur-
thermore, the overall estimated genotypic mean (across
genotypes and simulations) is also computed and com-
pared to the corresponding true genotypic mean. More-
over, since the rank order of genotypes is also of great
importance in plant breeding studies, the Pearson cor-
relation coefficient (r,) between the true and estimated
genotypic means (predictive accuracy) is also computed
and compared between the two approaches. This yields
an estimate of the predictive accuracy for the genomic
means.
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L2: At this level, we compute the MSDs for the genomic
breeding values g analogously to Eqgs. (23)—(25). The r,
between the true and estimated breeding values is again
computed and used to compare the two methods and
assess any improvement in the estimation of g when
genomic information is included in the analysis. This pro-
vides an estimate of the accuracy of genomic prediction.

L3: Here, the methods are compared by computing the
following MSDs,

R (B}~ (rgp)?)’

MSDy = ) 000 (26)
=1
1&05) @El - rg?)z
MSDpp = Y &8 &8] (27)
— 1000

where r,7 is the Pearson correlation computed between
the true and the estimated breeding values and averaged
across the 1000 simulations, ﬁlz and 7,5, are, respectively,
the heritability and predictive accuracy estimated in the
s-th simulation via the methods described earlier. These
MSDs quantify the deviation of the estimated from the
true heritability (H?) or predictive accuracy (PA). In addi-
tion, we provide boxplots of the estimated heritablity and
predictive accuracy for the 1000 simulation runs for each
scenario.

Simulation results
Null scenario
L1: The following computed MSDs

1000 698 AR Ac)

MSDz = 121: ; 698 x 1000

=~ 0.06,

1000 698 Ac —u l
MSDS = ° ~28.97 and
121: ; 698 x 1000 .
1000 698 (@ — 1
MSDR = —T ~29.08
121: ; 698 x 1000
show, as expected, that both methods perform similarly
when the data are not contaminated (MSDz; =~ 0). How-
ever, the classical method performs slightly better than the
robust one (MSDS < MSDIIj). Even so, both MSD val-
ues are not particularly close to zero. Still, as these MSD
values are squared deviations averaged across all the 1000
simulation runs and 698 genotypes, they seem reasonable.
The slightly better performance of the classical relative
to the robust method is also apparent in the per-genotype
MSDs (Additional file 2: Figure S1). The two approaches
produce virtually identical estimates for the overall mean
of it (i.e., mean{u;}, i = 1,..,698, [ = 1,...,1000) and r,
(Table 2).
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Table 2 Estimated overall mean of i and predictive accuracy
expressed as the Pearson correlation coefficient r, obtained
using the classical (CLS) and the robust (ROB) methods (averaged
across the 1000 simulations)

True mean=8.923 ROB CLS
Overall mean it 8.906 8.908
Ip 0.764 0.765

The two methods estimate the variances of both the
random effects and the residual errors equally well
(Additional file 2: Figure S2).

The Smith’s and standard weights obtained in the first
stage for both the classical and robust approaches are very
small (Additional file 2: Figure S3). Precisely, the MSD
between the two different types of weights is approxi-
mately 0.6 x 10~° and the MSD between the values of each
type of weight computed by the two approaches is about
0.6 x 107°.

L2: There were no major differences between the esti-
mated breeding values obtained using either the stan-
dard or Smith’s weighting schemes at the second stage
(MSD, =~ 25 for both cases). For this reason we only
present results produced using Smith’s weights.

The MSDs for the second stage

1000 698 gl)
L ~
MSDg = Z ; 698 x 1000 0.03

1000 698 AR

gzl
MSDR ~ 25.55;
Z Z 698 x 1000
=1 i=1
1000 698 gl
MSDC Y~ 92518
121: ; 698 x 1000

show a modest improvement over the corresponding esti-
mated genotypic means at the first stage and that the
methods continue to perform similarly as in the first
stage. Relative to the estimates for the first stage, the per-
genotype MSDs (Additional file 2: Figure S13) increase for
about 22% but decreases for about 47% of the genotypes.
This trend is similar for both the classical and robust
approaches. Additionally, for the second stage, the mean
rp = 0.903 for both approaches. This increase in r, rela-
tive to the first stage (= 18.2%) shows that using genomic
information at the second stage improves genomic predic-
tion and hence the ranking of genotypes. For the overall
mean of the EBVs (g), it drops to ~ 5 from =~ 9 for both
approaches (first row, Additional file 1: Tables S2 & S4).
Quite interestingly, in terms of the estimation of the
genetic variance, the robust approach performs slightly
better than the classical (Additional file 2: Figure S14).
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L3: Both the classical and robust approaches produce the
following MSDs for heritability (Method M5 only) and
predictive accuracy (Methods M5 and M7):

MSDM> ~ 0.00

0.00 for M5
0.01 for M7

showing the estimates of heritability and predictive accu-
racy to be quite accurate. We note that estimates of
heritability and predictive accuracy were computed by fix-
ing the residual variance from the first stage to one as
described in the “Genomic prediction” section. In general
this produced more accurate estimates than the alterna-
tive for which the residual variance estimated in the first
stage is used. Therefore all the results displayed here for
the third stage use the former implementation.

Boxplots for the estimated PA (methods M5 and M7)
and H? (method M5 only) across the 1000 simulations for
the null scenario are shown together with the ones for the
random and block contamination scenarios (Additional
file 2: Figures S19-S20). These suggest that method M5
produces more accurate estimates of PA than method M7.

Relative to method M5, Oakey’s heritability estimates
are unacceptably lower than the simulated true values

MSDPA ~ {
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(Fig. 1). To further explore why these estimates were
remarkably smaller than those produced by M5 or the
simulated true values, we took 100 out of the 1000
simulation replicates and refitted the entire two-stage
model by setting G = og21 at the second stage. The
heritability estimates for M5 and Oakey’s were virtually
identical (MSD~ 0.1 x 10~%7). This strongly suggests
that Oakey’s method works fine with independent geno-
types but performs poorly when the model used to esti-
mate heritability has a kinship matrix. Consequently, we
do not consider Oakey’s heritability estimates further
except in a few comparisons in the “Example application”
section.

Random contamination scenarios

L1: The MSD,, for these scenarios are similar between
approaches for each level of contamination and size of
outlier (Tables 3 and Additional file 1: Table S1). Hence for
the random contamination scenarios, the robust and clas-
sical approaches produce comparable estimates for the
genotypic means. The per-genotype MSDs also reaffirm
the similar performance of the two approaches (Additional
file 2: Figure S4). Nevertheless, it is noteworthy that even
for the least extreme scenario, 1% contamination with an

! ——
o e p—— e
S : e

' —5—
e
o
© |
o
0 |
o
<
o
° S =

B CLS — :
N] H ROB o
[
M5 Oakey
Fig. 1 Estimates of heritability obtained from methods M5 and Oakey's for the classical (CLS) and robust (ROB) approaches
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Table 3 MSD,, between the estimated genotypic means and the
true breeding values considering the classical (CLS) and robust
(ROB) approaches and the random contamination scenarios

Random scenarios

CLS ROB

% cont sdt

0 - 2897 29.08

1 5 3244 3251

1 8 37.83 37.78

1 10 42.80 42.64
5 5 46.26 46.39
5 8 7298 72.87
5 10 97.50 97.25
10 5 63.30 63.65
10 8 116.40 116.67
10 10 165.22 165.30

% cont stands for percentage of contamination; sd stands for the number of
standard deviations of the outliers

outlier of size 5 sd, the increase in the per-genotype MSDL
is non-negligible relative to the corresponding values
computed by the classical method under the null scenario
and used as a benchmark (Fig. 2). The per-genotype MSDs
increase greatly with increase in the percentage contami-
nation and size of outliers (Additional file 2: Figure S4).
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The estimated overall mean of the estimated genotypic
means (i) for both approaches departs increasingly from
the true overall mean of p as both the level of contam-
ination and size of outliers increase (Additional file 1:
Table S2). The same trend is evident for the r,, imply-
ing deterioration of the ranking of genotypes (Additional
file 1: Table S2).

The two methods also differ with respect to how well
they estimate particular variance components. More pre-
cisely, the classical method estimates the variance for
blocks nested within replicates (crzb) somewhat better than
the robust method does from 5% contamination upwards.
However, the robust method estimates the variances for
replicates (0.?) and residual errors () far better than the
classical method does (Additional file 2: Figures S6—S8).

The Standard and Smith’s weights computed for both
the classical and robust approaches across the random
contamination scenarios are shown in Additional file 2:
Figures S9 and S10.

As the percentage of contamination and size of the
outliers increase, the degree of overlap of the empirical
frequency distributions of the classical and robust weights
evidently reduces. In particular, the distributions do not
overlap at all from the 3% contamination level upwards for
the 8— and 10—sd shift-outliers. Also, the weights show

— o
=3 reference o
O CLS
m ROB 5 :
0
o
0 | :
™ ;
) 8 |
2 °
o | : : :
o) o
ol
Fig. 2 Boxplot of the 698 per-genotype mean squared deviations (MSD;L) under the null scenario (classical as reference) against the ones obtained
in the random scenarios 1_5 for the classical (CLS) and robust (ROB) approaches
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an overall decreasing trend, which is more evident for the
classical approach and the Standard weights.

L2: The mean squared deviations (MSDg) between the
EBVs and the TBVs for the classical approach are dis-
played in Additional file 1: Table S5. The MSDy’s for the
Standard and Smith’s weights show some minor differ-
ences in favour of the latter from 7% contamination and
8-sd shift-outliers onwards. Thus, only the second-stage
results obtained using the Smith’s weights are presented
in the remainder of this section.

The robust approach tends to produce smaller MSDs
between the EBVs and the TBVs as the percentage
of random contamination and the size of the shift-
outliers increase (Tables 4 & Additional file 1: Table S1).
The second-stage per-genotype MSDs do not show the
increasing trend observed for the per-genotype MSDs
from the first stage with values ranging between 0 and
100 (Additional file 2: Figure S16). In addition, the robust
method always produces higher estimated predictive
accuracy, expressed as the averaged Pearson correlation
coefficient rp, than the classical method, implying better
ranking of the genotypes (Additional file 1: Table S2). The
overall mean EBVs (g) is similar for both approaches but
drops steadily as the percentage contamination and size of
outliers increase, implying underestimation.

The robust approach also produces more accurate esti-
mates of the marker-effect variance (052) up to 10%
contamination and 5-sd shift-outliers (Additional file 2:
Figure S15). For the 10% contamination scenarios with
8- and 10-sd shift-outliers the robust estimates of 6> no
longer overlap with the true marker-effect variance but
their boxplots show a smaller inter-quartile range (IQR)
and lower dispersion than those for the classical approach.

Table 4 Mean squared deviation of the estimated from the true
genomic breeding values (MSDg) for the classical (CLS) and robust
(ROB) approaches under the random contamination scenarios

Random scenarios

CLS ROB

% cont sdt

0 - 25.18 25.55
1 5 26.29 26.26
1 8 27.84 26.44
1 10 29.16 26.49
5 5 29.37 2872
5 8 34.53 29.97
5 10 38.31 3033
10 5 32.53 3241
10 8 40.39 3740
10 10 4571 39.04
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L3: The robust approach produced generally more accu-
rate estimates for both H? and PA for the random con-
tamination scenarios (Additional file 2: Figures S18-S20).
However, both approaches tend to underestimate both
parameters as the percentage contamination and size of
outliers increase. The MSD'® ranged between approxi-
mately 0.00 — 0.09 and 0.00 — 0.07 for the classical and
robust methods, respectively. The corresponding, MSDPS?A
ranged between approximately 0.00 — 0.02 and 0.00 — 0.01
whereas MSD“E’,Z ranged between approximately 0.01 —
0.04 and 0.01 — 0.07. Overall, method M5 performs some-
what better than method M7 in estimating predictive
accuracy (Additional file 1: Table S6 and Additional file 2:
Figures S18-520).

Block contamination scenarios

L1: Although the MSD,, for the block contamination sce-
narios is relatively stable for the robust approach (between
29.08 and 30.11), it increases with increasing level of
contamination and size of the outliers for the classical
approach (Tables 5 & Additional file 1: Table S3). In the
worst block contamination scenario (5_10) the MSD for
the classical approach is about 1.7 times larger than that
for the robust approach. The per-genotype MSDs show
even poorer performance for the classical method in esti-
mating each of the 698 genotypic means (Additional file 2:
Figure S5). By contrast, the robust approach maintains the
errors at roughly the same level across the contamination
scenarios; a level that is close to the one estimated for the
null scenario. This is an attractive property of this method.
Block contamination had generally less debilitating effect
on the accuracy of the estimated genotypic means than
random contamination (Additional file 1: Tables S1 and

Table 5 Mean squared deviation of the estimated genotypic
means from the true breeding values (MSD,,) for the classical
(CLS) and robust (ROB) approaches under the block contamination
scenarios

Block scenarios

CLS ROB

No. blocks sdt

0 - 2897 29.08
1 5 30.90 29.44
1 8 30.75 29.69
1 10 31.16 29.82
3 5 32.06 29,64
3 8 3522 29.96
3 10 38.02 30.11
5 5 35.31 29.76
5 8 4333 29.83
5 10 50.66 29.88

% cont stands for percentage of contamination; sd stands for the number of
standard deviations of the outliers

No.blocks stands for the number of contaminated blocks.; sd stands for the
number of standard deviations of the outliers.
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S3). For example, the block contamination scenario 1_5,
which corresponds to an overall 1.3% data contamination,
produces smaller MSDs than the random contamination
scenario 1_5, which corresponds to only 0.5% overall
contamination (Figs. 2 and 3; Table 5).

The performance of the two methods also differed
noticeably with respect to the estimation of the overall
mean of it. For example, for the worst case scenario (block
5_10) the overall mean of i deviated from the true mean
by merely 5.5% for the robust approach but by 50.2% for
the classical approach (Additional file 1: Table S4), indi-
cating superior performance of the robust approach. Nev-
ertheless, the poor predictive performance of the classical
approach at the first stage does not necessarily translate to
a reduced predictive accuracy r, because it does not alter
the relative ranking of the genotypes (Additional file 1:
Table S4). Accordingly, the ranking of the genotypes does
not differ much between the two approaches (estimated
rp 2 0.76 for both approaches across all scenarios).

An overall superior performance of the robust com-
pared to the classical approach is also evident for the accu-
racy of the estimated variance components (Additional
file 2: Figures S6-S8).

L2: In this case, the MSDg obtained in the second stage
differ depending on whether the Smith’s or the standard
weights are used. In particular, using the Smith’s weights
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produces more stable MSD, estimates across all the block
contamination scenarios than using the standard weights,
which tend to increase with increasing number of con-
taminated blocks and size of outliers (Additional file 1:
Table S5). For this reason, only results obtained using the
Smith’s weights are presented in the remainder of this
section.

For all levels of contamination and size of outliers, the
robust overall MSDs between the EBVs and the TBVs did
not differ much and fluctuated around ~ 25 (Additional
file 1: Table S5), a value that is similar to the corresponding
value for the null scenario (Table 6).

The per-genotype MSD, values vary little with increas-
ing size of outliers but suggest that the classical method
performs slightly better than the robust method (Additional
file 2: Figure S17).

The average estimated predictive accuracy (r,) across
all scenarios was approximately 0.90 for both approaches
(Additional file 1: Table S4). Predictive accuracy thus
increased from the first to the second stage for the classi-
cal (by 17%) and robust (by 18%) approaches, an increase
comparable to that observed under the null scenario.

Finally, the robust method estimates the marker-
effect variance 02 more accurately than the classical
method throughout all the block contamination scenarios
(Additional file 1: Table S15).
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Fig. 3 Boxplot of the 698 per-genotype mean squared deviations (MSD;L) under the null scenario (classical as reference) against the ones obtained
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Table 6 Mean squared deviation of the estimated from the true
breeding values (MSDg) for the classical (CLS) and robust (ROB)
approaches under the block contamination scenarios

Block scenarios

CLS ROB

No. blocks sd

0 - 25.18 2555
1 5 2535 25.61
1 8 2538 2563
1 10 2539 2563
3 5 2534 25.65
3 8 2537 25.68
3 10 2537 25.67
5 5 2539 2558
5 8 2540 25.58
5 10 2540 25.59

L3: MSD}> and MSD}: were both >~ 0.00 for both
the classical and robust approaches across all the block
contamination scenarios, with the classical producing
marginally better results than the robust approach
(Additional file 2: Figures S18 and S19). MSDE; =~ 0.01 for
both approaches with the robust estimates of PA obtained
via M7 showing slightly greater dispersion (Additional
file 2: Figure S20). It is noteworthy that estimates of H?
and PA are rather stable across block contamination sce-
narios (Additional file 2: Figures S18-S20), consistent with
the estimated marker-effect variances (Additional file 2:
Figure S15).

Example application

In this section, we comparatively evaluate differences in
the performances of the classical and robust approaches
on raw empirical rye and maize datasets prior to qual-
ity control. Substantial differences in results between the
two approaches would imply problems with the data that
require closer inspection by the breeder or data analyst.
Such inspection can be followed by data cleaning, which
can be a very challenging and time-consuming task. For
the two example datasets in this section, we perform data
cleaning based on a simple rule of thumb that relies on the
weight given to each observation by the robust method.
Specifically, observations assigned weights smaller than
0.5 are flagged as outliers. More sophisticated outlier
detection techniques are outside the scope of this paper
[3, 23]. We apply the classical and robust approaches to
the cleaned dataset and compare the results with each
other and with the results for the raw dataset. We note
that cleaning the data does not necessarily make it con-
form to model assumptions such as the normality of the
errors. We note further that because empirical datasets for
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both examples each have only two replicates, the robust
method usually assigns the same, or very similar, weights
to both replicates. This is the reason that a testcross geno-
type is removed entirely from the cleaned dataset even if
only one of its two replicate observations is outlying. This
problem would be eliminated by replicating each genotype
three or more times.

We similarly analyze the empirical datasets after taking
into account the recommendations of the breeder based
on quality control to demonstrate that quality control
alone will not always detect and eliminate all sources of
data contamination and hence does not preclude the use
of robust statistical methods.

Rye dataset

In this example we consider only one trial from the Rye
dataset described in the “Materials and methods” section,
which otherwise has the same structure as the simulated
maize data set shown in Table 1. The first- and second-
stage models fitted to the Rye data set are the same as
those described in the “Simulation” section.

The classical and robust approaches produced strikingly
different estimates for the residual and blocks variances
at the first stage as well as for heritability and predic-
tive accuracy at the third stage (Table 7; CLS" and ROB"
results). The robust weights assigned to each of the 320
observations in the first stage identified 32 observations
for the exact same 16 genotypes identified as outliers
by the breeders. When the 32 observations are removed
from the data, which amounts to around a 10% reduction
in the size of the dataset, then the classical and robust
approaches produce very similar estimates, as is expected
when data conform to the model’s assumptions (Table 7;
CLS™ and ROB™™ results). In particular, the distributions
of the residuals from the classical first- and second-stage
models fit to the cleaned dataset satisfy the normality
assumption (Shapiro-Wilk normality test: p = 0.9771
and p = 0.6974, respectively), but the distribution of the
residuals from the raw dataset do not (Shapiro-Wilk nor-
mality test: p < 1077). Inspection of the QQ plots of
the residuals (not shown) further reinforced the results
of the normality tests. This example clearly demonstrates
how the robust approach ameliorates most of the devas-
tating influences of outliers on the classical method. Thus,
contamination with outliers inflates the estimated resid-
ual variance ~ 20 times for the classical method but only
~ 3.6 times for the robust method. By contrast, contami-
nation reduces the estimated block variance from ~ 11.5
to zero for the classical method but from ~ 11.9 to ~ 8.2
for the robust method. Lastly, contamination reduces the
estimated heritability and predictive accuracy far more
strikingly for the classical than for the robust approach.
However, contamination inflates the marker-effect vari-
ance equally by a factor of two for both approaches.
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Table 7 The estimated residual (052), replicate (o) and blocks within replicates (Cp
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?b) variance components, genetic variance (052),

heritability computed by Method M5 (H2.M5) and predictive accuracy computed by Methods M5 (PA.M5) and M7 (PAM?7), using the

classical (CLS) and robust (ROB) approaches, for the rye dataset

Stage Parm CLs ROB’ CLsae ROB9© CLS™ ROB™

1 ol 120.1400 17.6797 5.5267 5.3369 5.5267 5.3674
o} 44262 64327 52124 5.7228 52124 5.7276
sz 0.0000 8.1911 11.5441 11.8846 11.5441 11.8804
o} 41.2101 404765 246136 24.3552 21.8182 215183

3 H2.M5 04628 0.7387 0.8373 0.8339 0.8305 0.8259
H2.0K 0.1906 0.4681 0.6220 06160 06173 0.6094
PAMS5 0.6803 0.8594 09150 09132 09113 0.9088
PAM7 0.6531 0.8428 0.9038 0.9018 0.8997 0.8969

 Parm=Parameter;
" refers to the raw dataset, i.e, the original dataset before quality control;
9¢ refers to dataset after quality control; "* refers to the cleaned raw dataset

Although far lower than the simulated true values, Oakey’s
heritability estimates are also shown and compared
between the full and the cleaned datasets for completeness
(Table 7).

Results for the processed dataset are similar for the
two approaches (Table 7 ; CLS?° and ROB?¢ ). They
are also quite similar to the results for the cleaned
dataset, except for the estimated marker-effect variances,
which are smaller for the cleaned dataset perhaps due
to the decrease in the sample size at the second stage.
Interestingly, for this particular case, the residuals from
the first stage of the classical model fit satisfy the normal-
ity assumption (Shapiro-Wilk normality test: p = 0.6974)
but those from the second stage only marginally pass the
normality test (Shapiro-Wilk normality test: p = 0.0437).
A quick look at the QQ plot of these residuals reveals
two residuals that deviate substantially from the equality
line (plot not shown). The robust method did not, how-
ever, assign any observation a weight smaller than 0.5 and
and hence we did not analyse the cleaned and processed
datasets. Nevertheless, if a less conservative threshold of
0.7, say, were used instead of 0.5, then, the robust method
would have flagged one observation for a check genotype
and two for one testcross genotype.

Maize dataset

In the first stage (Eq. 3), we consider yield as the response
variable, the genotypes as the fixed effects and the tri-
als, the replicates nested within trials and the blocks
nested within replicates nested within trials as the ran-
dom effects. In the second stage (Eq. 4), we consider the
adjusted genotypic means estimated in the first stage as
the response variable, the intercept as the fixed effect
and the genotypes as the random effects with a variance-
covariance structure given by the genomic relationship
matrix. Note that only the 698 genotypes with available

genomic information are submitted to the second stage. In
addition, 46 observations of yield (amounting to around
2.6% overall contamination) were identified as outliers by
the robust weights computed from the robust first-stage
model using the raw dataset. Here, all the observations
assigned weights of 0.5 or less by the robust model were
classified as outliers. Among these 46 outliers, 22 cor-
responded to 11 genotypes with genomic information,
meaning that the second stage for the cleaned raw dataset
comprised only 687 (698 — 11) genotypes. Of the remain-
ing 24 outliers, 18 correspond to 9 genotypes with no
genomic information and 6 to 3 hybrid checks and 3
line checks. Overall, 11 + 9 = 20 test crosses and 4 of
the 6 checks are a subset of the 38 yield observations
recommended for removal (deletion) by the breeder dur-
ing quality control. The robust method identified only 7
observations as outliers from the processed maize dataset
(i.e., with 38 missing yield observations). Two of the 7
observations came from one genotyped test cross, 2
hybrid and 3 line checks. Furthermore, two out of these
7 outliers were also identified when the raw dataset was
analysed with the robust method. A detailed treatment
of outlier detection strategies is beyond the scope of this
paper and can be found elsewhere [4, 23, 39, 48].

As with the Rye dataset, the classical and robust
approaches produced different results for the full dataset
(Table 8; CLS" and ROB' results). The differences between
the two methods at the first and second stages trans-
late into major differences in the estimated heritability
and predictive accuracy. For the cleaned dataset (Table 8;
CLS™ and ROB™* results) the methods produce more sim-
ilar estimates of variance components, heritability and
predictive accuracy, although estimates are not as close
as the ones observed in the case of the rye dataset. In
addition, the robust results for the full dataset are close
to those obtained via the classical method applied to the
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Table 8 The estimated residual (aez), trial (0[2), replicates within trials (0,2) and blocks within replicates within trials (O‘bz) variance
components, genetic variance (o), heritability computed by Method M5 (H2.M5) and predictive accuracy computed by Methods M5
(PAMS5) and M7 (PA.M7), using the classical (CLS) and robust (ROB) approaches, for the maize dataset

Stage Parm’ CLY" ROB' CLsae ROBA* CLS™ ROB™* CLSae* ROBI“*

1 a? 3524962 56.0533 47.8927 49.1810 46.5067 486339 45.0147 47.9068
of 7.5289 9.7426 6.3445 10.5256 9.1892 12.0945 8.7991 12.2285
a? 34126 3.7156 3.4067 2.9704 3.2630 3.1115 36797 3.0902
ag 0.0000 4.8448 79319 6.6856 8.0854 6.5774 7.7984 6.4579
o} 0.0008 0.0067 0.0074 0.0058 0.0096 0.0071 0.0085 0.0062

3 H2.M5 0.2573 0.8020 0.8328 0.8013 0.8634 0.8231 0.8504 0.8099
H2.0K 0.0219 0.2732 0.3139 0.2713 0.3671 0.3035 0.3420 0.2824
PAMS5 0.5073 0.8960 09126 0.8951 0.9292 0.9077 0.9222 0.8999
PAM7 04705 0.8184 0.8338 08178 0.8486 0.8287 0.8426 0.8221

T Parm=Parameter; " refers to the raw dataset, i., the original dataset before quality control;

¢ refers to dataset after quality control; "* refers to the cleaned raw dataset;
9c* refers to the cleaned ‘after quality control’ dataset

cleaned dataset. Note that removal of the outliers was
sufficient for the residuals from the first stage but not the
second stage of the classical model fit to conform to the
normality assumption, in contrast to the results for the rye
dataset.

The results for the full dataset after quality control
(Table 8; CLS?° and ROBY°) are similar to those from the
robust method (ROB”; Table 8) However, the residuals
from the classical first-stage model fit violate the normal-
ity assumption. After removing the 7 outliers from the
processed dataset (CLS?°* and ROBY¢*) the classical and
robust approaches produced even more similar results
(Table 8) but the residuals still depart from the normality
assumption.

As before, Oakey’s heritability estimates are also pro-
vided and compared between the full and the cleaned
datasets (Table 8).

Discussion

The simulation results showed that the classical and
robust approaches perform similarly when datasets are
not contaminated and thus conform to the linear model
assumptions. This is a desirable property for any method
that seeks to be an alternative to the classical method.
Since datasets do not usually conform to all model
assumptions, we assessed the relative performance of both
methods in estimating genetic breeding values, heritabil-
ity and predictive accuracy, across a range of contami-
nation scenarios with outliers, which tamper mostly with
the assumptions of normality and variance homogeneity
of the residuals. All the scenarios involved either random
or block contamination (mimicking plausible field con-
ditions), and for each contamination type, differed only
in the percentage of the observations that were contam-
inated and the size of the outliers. Also, two weighting

schemes were used with each dataset in the second stage
of the two-stage approach.

The simulations revealed that block contamination has
a lesser impact on the estimated parameters than random
contamination. Also, the estimated true breeding values
improve from the first to the second stage, based on the
Pearson correlation coefficient, reaffirming the value of
using genomic information in the analyses. In addition,
the use of the Smith’s weights produces more consistent
parameter estimates from the second stage onwards and
is therefore recommended for the two-stage approach.

A comparison of the performance of the classical and
robust two-stage approaches is summarized in Additional
file 1: Table S7. In general, the proposed robust method
shows a superior performance to the classical approach. In
terms of the accuracy of heritability and genomic predic-
tion, the robust approach clearly outperforms the classical
for the random contamination scenarios but performs
similarly to the classical approach for the block contami-
nation scenarios. Also, method M5 produces more accu-
rate estimates of predictive accuracy of genomic prediction
than method M7. Quite surprisingly, the simulations sug-
gest that Oakey’s method is unsuitable for estimating
heritability when using a model with a kinship matrix.

Interestingly for the block contamination scenarios, the
robust method generally outperformed the classical in
both the first and second stages, but this did not translate
into higher predictive accuracies. This is likely because
the block effect (i.e., effect of blocks within replicates) is
completely confounded with the effect of contamination
within blocks. As a result, if the block effect is included
in the model at the first stage it captures the effect of
contamination within the block, yielding an inflated block
variance for the classical but not the robust approach. This
explains why the performance of the classical approach
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improves from the first to the second stage. It also empha-
sizes the need to include a random block effect in the first
stage to account for intrablock variance especially when
using the classical approach.

A noteworthy observation from the simulations is that if
a study design has only two replicates, then the robust or
the classical methods cannot identify only one of the two
replicate observations as an outlier. Hence, when using an
automated cleaning process, one has to discard twice as
many observations as the actual number of outliers. This
is because given only two replicates, a single outlier results
in two large residuals with the same absolute value but
opposite signs. This makes it hard to determine which of
the two replicates is actually the outlier.

The robust method can also be useful to breeders doing
variety testing for which only the first-stage model is
required. Here, the robust approach had clearly supe-
rior performance for the block contamination scenarios.
For the random contamination scenarios, except for the
blocks within replicates variance, the robust method pro-
duced more accurate estimates of the variance compo-
nents than the classical method did. Moreover, because
late-generation breeding trials typically use only two repli-
cates as breeders aim to maximize the number of different
environments, the robust method will merely downweight
but not require deleting both replicate observations if it
identifies either one or both of them as outliers. This prop-
erty of the robust method is highly desirable because it
enables the plant breeder to obtain genomic predictions
for all the target genotypes. By contrast, using the classical
method only would result in discarding all the genotypes
for which at least one of the two replicate observations is
an outlier. This is because it is impossible to determine
which of the two replicate observations is the true outlier.

The analysis of the real datasets also furnished some
insights into the performance of the methods. For the
rye dataset, for example, the 16 outliers identified by the
breeders, were also detected by the robust model. Each
of the 16 outliers belonged to a distinct block, thus mim-
icking a random contamination scenario. Also, 8 outliers
were observed in the first replicate and the remaining 8
in the second replicate hence resulting in a balanced dis-
tribution of outliers at the replicate level. The differences
between the results obtained by the classical and robust
approaches for the complete dataset are consistent with
the ones observed for the simulated random contami-
nation scenarios. Removing the outliers from the data
produced a closer agreement between the classical and
the robust results but some slight difference from the
results produced by the robust approach for the complete
dataset still remained. A plausible explanation for this is
that removing outliers from the data may: (i) substan-
tially reduce sample size; (ii) alter the distribution of the
data and (iii) potentially lead to the underestimation of
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variances for the cleaned data. This last point precisely
matches what is observed for the estimated residuals and
marker-effect variances in the two empirical data analyses.
The first-stage results from the analysis of the full empir-
ical raw maize dataset showed a huge discrepancy in the
estimated residual variance component, moderate dis-
agreement in the estimated block variances and similar
estimates of replicate and trial variances between the clas-
sical and robust approaches. This result is surprising and
deviates from expectation based on the results of the anal-
yses of the simulated data sets. A possible explanation
for this unexpected result may relate to the difference in
the models fitted to the simulated data and the empirical
maize data set and the nature of the outliers. In this case,
the 46 observations removed were unevenly spread across
17 out of the 20 blocks (of size 90) and amount to 3% of all
the data. Two of these 17 blocks had approximately 8 —9%
contamination. The criterion used to identify the outliers
in the maize data set was the robust weights computed
from the robust model fit and was somewhat conserva-
tive as only the observations assigned weights equal to
0.5 or less were flagged. This criterion, when applied to
the rye dataset, correctly identified the 16 outliers that
had already been identified by the breeders. However,
for the maize dataset this approach to outlier identifica-
tion is probably too restrictive because the distribution
of the residuals from the classical first-stage model fit to
the cleaned dataset satisfied the normality assumption but
the residuals from the classical second-stage model fit did
not. This observation reinforces the view that successfully
cleaning the data to eliminate outliers prior to analysis,
plus satisfactorily addressing the drawbacks listed above
can be exceedingly challenging. Of the 38 yield observa-
tions replaced with missing values as recommended by
the breeder based on quality control, 24 were identified
by the robust method as outliers based on the analy-
sis of the raw dataset and consisted of either negative
or zero yield values, which are evidently anomalous. The
other 14 of the 38 deleted observations were plausible
and were not identified as outliers by the robust method.
Results of the analysis of the processed maize dataset with
38 missing yield observations set to missing were very
similar between the two approaches. In particular, the
results are also quite similar to those from the analysis
of the raw dataset using the robust method. This find-
ing emphasizes the stability and reliability of the robust
approach both in the presence of outliers and missing
observations.

Conclusion

We have proposed a robust framework for enhancing the
accuracy of genomic prediction in plant breeding applica-
ble to fully replicated designs or replicated genotypes in
partially replicated designs. The approach does not apply



Lourenco et al. BMC Genomics (2020) 21:43

to fully unreplicated designs or to unreplicated genotypes
in partially replicated designs for which it is impossible to
detect outliers using linear models. Hence, fully or par-
tially unreplicated designs tradeoff the ability to detect
outliers for cost-effectiveness of field trials. We emphasize
that the ideas underlying the robustness of the proposed
approach can be extended to multi-stage and single-stage
approaches. But, because the single-stage approach is
characteristically computationally expensive for large or
complex data sets, robustifying it would make it even
more computationally demanding.

In conclusion, we show not only the advantages of a
robust approach to phenotypic data analysis and genomic
prediction but also provide new insights into the poten-
tial problems associated with using the classical approach
to phenotypic data analysis and genotypic prediction in
plant breeding. Accordingly, in addition to performing
standard data quality controls, plant breeders would do
well to seriously consider using these robust methods reg-
ularly alongside the classical approach to better minimize
the influence of outliers on genomic prediction.
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