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Gene-environment interaction
counterbalances social impairment
In mouse models of autism

Ji-Woon Kim®?, Kwanghoon Park?, RiJin Kang?, Edson Luck Gonzales!, Hyun Ah Oh?,
Hana Seung?, Mee Jung Ko?, Jae Hoon Cheong?, ChiHye Chung(®? & ChanYoung Shin®*

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social
communication deficits and repetitive/restricted behaviors. Although gene-environment interactions
may explain the heterogeneous etiology of ASD, it is still largely unknown how the gene-environment
interaction affects behavioral symptoms and pathophysiology in ASD. To address these questions, we
used Cntnap2 knockout mice (genetic factor, G) exposed to valproic acid during embryonic development
(environmental factor, E) as a gene-environment interaction (G X E) model. Paradoxically, the social
deficits observed in the respective G and E models were improved in the G X E model; however, the
high seizure susceptibility was more severe in the G X E -model than in the G and E models. Repetitive
self-grooming and hyperactivity did not differ among the three models. The amplitudes of miniature
excitatory postsynaptic currents in layer 2/3 pyramidal neurons of the medial prefrontal cortex were
aberrant and similar in the G X E model when compared to the control group. Our findings suggest
that the interaction of two risk factors does not always aggravate ASD symptoms but can also alleviate
them, which may be key to understanding individual differences in behavioral phenotypes and
symptom intensity.

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social communication
deficits and restricted/repetitive behaviors before 3 years of age!. Etiological heterogeneity and complex behav-
ioral symptoms hamper understanding of ASD. Over 1000 genetic factors® and various environmental factors
such as valproic acid (VPA), maternal immune activation, and paternal age can induce ASD**. A multitude of
genome-wide association studies have been conducted to identify a common target gene but have not been suc-
cessful®~, indicating that the etiology of ASD may not be explained by one common genetic factor. Instead,
recent studies have shown that autistic symptoms can be caused or exacerbated by the interaction of genetic and
environmental risk factors®’, suggesting that gene-environment interaction may be a mechanism underlying the
etiology of ASD. Yet, how the gene-environment interaction affects complex behavioral symptoms and patho-
physiology in ASD remains largely unknown.

To date, one of the most important hypotheses to explain the pathophysiological mechanism of ASD is
excitatory-inhibitory (E/I) imbalance!®!!. E/I imbalance can result from abnormalities in excitatory or inhibitory
neural structure and/or function'"'2. The reduced or increased synaptic transmission may cause overprocessing
(noise)'” and misprocessing (disconnection)!! of the transmission, respectively. The impaired transmission may
cause connectivity problems in the neural circuits and thereby may lead to neurodevelopmental disorders such as
ASD!®1113 The impact of E/I imbalance may depend on the affected brain region. The prefrontal cortex (PFC; or
medial prefrontal cortex, mPFC) is a very well-known brain region mediating social behavior'*. Indeed, neural
activity in the mPFC is increased during social behaviors'>!. An optogenetic study showed that over-activation
of excitatory neurons in the PFC induces abnormal social behaviors', recapitulating the effect of E/I imbalance
in the mPFC as an inducer of social impairment.
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In our previous study, contactin-associated-protein-like 2 knock-out mice (Cntnap2 KO, a genetic risk fac-
tor model) and mice exposed to VPA during embryonic development (VPA mice, an environmental risk fac-
tor model) displayed reduced and increased miniature excitatory postsynaptic currents (mEPSCs) in layer 2/3
pyramidal neurons of the mPFC, respectively, possibly because of aberrant expression of glutamate receptors's. Of
note, although these two models show opposite neural transmission impairment in the mPFC, these mice show
similar behavioral symptoms such as social deficits, repetitive behavior, hyperactivity, and seizure susceptibil-
ity'®-20. Thus, it will be tantalizing to study how the interaction of these factors would affect behavioral abnormal-
ities and the pathophysiology of the respective models.

To investigate the effect of gene-environment interaction, we injected VPA into pregnant Cntnap2 heterozy-
gous female mice that had been mated with Cntnap2 heterozygous male mice on embryonic day 10.5 (E10.5)
and investigated the autism-like behavioral phenotypes in the resulting offspring. We also investigated neural
transmission changes using whole-cell patch clamp in layer 2/3 pyramidal neurons of the mPFC. We found that
the interaction of Cntnap2 KO and prenatal exposure to VPA changed the phenotypes observed in the respective
single-factor models. Remarkably, the interaction model showed improvement in social deficits in comparison
with the single-factor models, whereas the levels of repetitive-grooming and locomotor-activity in the interaction
group were comparable to those in the single-factor models. The interaction also increased seizure susceptibility
in comparison with that of the single-factor models. The depressed and enhanced excitatory transmission in the
mPFC of Cntnap2 KO and VPA-exposed mice, respectively, was rescued by the interaction of Cuntnap2 KO and
prenatal exposure to VPA. This study provides crucial experimental evidence on how the interplay of two risk
factors contributes to phenotypic complexity and on the possible role of E/I imbalance in the modulation of social
impairment in ASD.

Results

Social impairment is restored by the interplay of Cntnap2 KO and prenatal VPA exposure. To
investigate gene-environment interaction, we injected phosphate-buffered-saline (PBS) or VPA (100 or 300 mg/
kg) into pregnant Cntnap2 heterozygous female mice that had been mated with Cntnap2 heterozygous male mice
on E10.5 and obtained nine combination groups affected by different dosage levels of each factor. All mice had no
considerable health problems but those exposed to 300 mg/kg of VPA had crooked tails (Supplementary Fig. 1)
as we described previously?!. Using these nine groups, we performed the three-chamber sociability interaction
test. Vehicle-treated wild-type and Cntnap2 heterozygous mice, and mice exposed to 100 mg/kg VPA regardless
of their genotypes preferred the compartment containing a novel conspecific or its vicinity, whereas Cntnap2 KO
mice and wild-type (WT) mice exposed to 300 mg/kg VPA had no such preference. However, unexpectedly, the
impaired social preference of Cntnap2 KO mice to a novel conspecific was ameliorated in the offspring of female
mice treated with 100 or 300 mg/kg VPA (Fig. la—c). To confirm these unexpected findings, we performed the
juvenile social play test in the following four groups: Cntnap2 WT treated with vehicle (WT x Veh), KO treated
with vehicle (KO x Veh), WT exposed to 300 mg/kg VPA (WT x VPA), and KO exposed to 300 mg/kg VPA
(KO x VPA). In this test, we measured the cumulative social interaction time, including allogrooming, following,
pouncing, and sniffing (Fig. 1d). Again, the KO x Veh and WT x VPA groups exhibited significantly shorter
social interaction time than the WT x Veh group. However, the social interaction time of the KO x VPA group
was similar to that of the WT x Veh group (Fig. 1e; two-way ANOVA, interaction: F(1, 30) =28.04, p < 0.0001;
genotype factor: F(1, 30) = 1.56, p=0.2213; VPA factor: F(1, 30) =0.08728, p =0.7697). Thus, the interaction of
Cntnap2 KO and prenatal VPA exposure alleviates social impairment observed in the respective single-factor
models.

Repetitive self-grooming and hyperactive behaviors are not affected by the interplay of
Cntnap2 KO and prenatal VPA exposure. Next, we investigated the effect of the interaction of Cntnap2
KO and prenatal exposure to VPA on repetitive behavior, another core symptom of ASD. To this end, we meas-
ured cumulative time spent on self-grooming. The Cntnap2 KO x Veh, WT x VPA, and KO x VPA groups spent
significantly more time on self-grooming than did the WT x Veh group (Fig. 2a; Mann-Whitney test: WT x Veh
vs. WT x VPA, p=0.067; Bonferroni’s post hoc test: WT x Veh vs. KO x Veh, p < 0.05; WT x Veh vs. KO x VPA,
P <0.05). However, the self-grooming time in the KO x VPA group was not significantly different from that in the
KO x Veh and WT x VPA group (Fig. 2a; two-way ANOVA, interaction: F(1, 36) =1.021, p=0.3191; genotype
factor: F(1, 36) = 8.868, p = 0.0052; VPA factor: F(1, 36) = 1.406, p=0.2435).

Hyperactivity is another important symptom observed in the Cntnap2 KO and prenatal VPA exposure
models?*?2. To determine the effect of the interaction of these two factors on hyperactivity, we performed the
open-field test. The distance moved was significantly longer in the Cntnap2 KO x Veh and WT x VPA groups
than in the WT X Veh group (Fig. 2b; unpaired ¢-test: WT X Veh vs. WT X VPA, p=0.0067; Bonferroni’s post hoc
test: WT X Veh vs. KO x Veh, p <0.01). The combination of VPA and Cntnap2 KO also significantly increased
locomotor-activity in comparison with the WT x Veh group. However, the increased locomotor-activity was sim-
ilar to that of the Cntnap2 KO x Veh and WT x VPA groups (two-way ANOVA, interaction: F(1, 45) =1.302,
p=0.2599; genotype factor: F(1, 45) = 15.40, p =0.0003; VPA factor: F(1, 45) = 6.542, p=0.0140; Bonferroni’s
post hoc test: WT x Veh vs. KO x VPA, p < 0.001). Taken together, the above data show that the interaction of
Cntnap2 KO and prenatal VPA exposure does not affect the repetitive and hyperactive behaviors observed in the
respective single-factor models.

Electric shock-induced seizure susceptibility is increased by the interplay of Cntnap2 KO and
prenatal VPA exposure. In a previous study, Cntnap2 KO mice exhibited spontaneous seizures following
mild handling stress'®. VPA-exposed rats also showed increased seizure susceptibility following electric stimu-
lation relative to control rats*>?*. To examine the effect of the interaction of Cntnap2 KO and prenatal exposure
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Figure 1. Social deficits caused by Cntnap2 knockout and valproic acid exposure are normalized by the
interaction of these factors. (a-c) Three-chamber social interaction test. (a) Stay duration in the indicated
compartments. (b) Approach duration near either the cage with a conspecific or the empty cage. (c)
Representative movement traces of subject mice. An unpaired t-test or Mann-Whitney test was performed to
determine significant differences. WT x Veh, n=18; Het x Veh, n=35; KO X Veh,n=25 WT x 100,n=28;
Het x 100, n=10; KO x 100,n=17; WT x 300, n=11; Het x 300, n=19; KO x 300, n=16. (d,e) Juvenile
social play (P23-26). (d) Measured social behaviors during the test, (e) Cumulative social interaction time.
Two-way ANOVA followed by Bonferroni multiple comparison test was performed to determine between-
group differences. WT X Veh, n=9; KO x Veh, n=8; WT x VPA (300 mg/kg), n=9; KO x VPA (300 mg/kg),
n=29.In e, asterisk (*) shows the results of statistical comparison between WT x Veh and the indicated group;
*, p<0.05, #*, p < 0.01. Sharp (#) shows the results of statistical comparison between the indicated groups; ##,
p<0.01, ###, p <0.001. In all bar graphs, data are the mean £ S.E.M. Abbreviations: S, compartment or cage
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with a novel conspecific; E, compartment or cage with no conspecific, WT, Cutnap2 WT mice; KO, Cntnap2 KO
mice; Het, heterozygous mice; 100 mpk, 100 mg/kg of VPA; 300 mpk, 300 mg/kg of VPA; VPA, treatment with
valproic acid at E10.5; Veh, treatment with phosphate-buffered saline at E10.5.

to VPA on seizure susceptibility, we measured the convulsive threshold determined by the convulsive current
50 (CC50; Fig. 3). The CC50 values were lower in the Cntnap2 KO x Veh and the WT x VPA groups than in
the WT x Veh. Interestingly, the KO x VPA group had lower CC50 values than Cntnap2 KO x Veh and the
WT x VPA groups, suggesting that seizure susceptibility is increased by the interaction of Cntnap2 KO and pre-
natal VPA exposure.

Impaired excitatory transmission in each single-factor model is counterbalanced by the inter-
play of Cntnap2 KO and prenatal VPA exposure. Proper regulation of neural activity in the mPFC is
very important for social behavior'>-”. In our previous study, Cntnap2 KO mice and mice prenatally exposed
to VPA showed decreased and increased amplitudes of mEPSCs in layer 2/3 pyramidal neurons of the mPFC,
respectively, compared to those in the respective control mice!s. We also observed that the counterbalancing of
impaired excitatory transmission using a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) mod-
ulators specifically improved social behavior in Cntnap2 KO mice and mice prenatally exposed to VPA'®. Thus,
the improved sociability in the G x E group may be due to neural transmission in the mPFC corrected by the
interaction. To examine this possibility, we measured mEPSCs and miniature inhibitory postsynaptic currents
(mIPSCs) in layer 2/3 pyramidal neurons of the mPFC (Figs 4 and 5) using whole-cell patch clamping. The
mEPSC amplitudes were increased in the WT x VPA groups and reduced in the KO x Veh group in comparison
with the WT X Veh group. The KO x VPA group had mEPSCs amplitudes similar to those of the WT x Veh
group (Fig. 4b; two-way ANOVA, interaction: F(1, 45) =0.08325, p =0.7743; genotype factor: F(1, 45) =12.94,
p=0.0008; VPA factor: F(1, 45) =11.77, p=0.0013). However, there were no significant between-group differ-
ences in mEPSC frequencies (Fig. 4¢; two-way ANOVA, interaction: F(1, 45) =0.00004, p =0.9953; genotype
factor: F(1, 45) =0.6577, p=0.4217; VPA factor: F(1, 45) =0.2836, p=0.5970). There were also no significant
between-group differences in the amplitudes of mIPSCs (Fig. 5b; interaction: F(1, 35) = 0.488, p = 0.4894; gen-
otype factor: F(1, 35) =0.0002, p =0.9882; VPA factor: F(1, 35) =1.153, p=0.2904) and frequencies of mIPSCs
(Fig. 5d; interaction: F(1, 35) =0.0012, p =0.9721; genotype factor: F(1, 35) =0.3205, p = 0.5749; VPA factor:
F(1, 35)=0.0435, p=0.8359). Thus, the interplay of Cntnap2 KO and prenatal exposure to VPA counterbalances
the abnormal excitatory neural transmission in the mPFC of the respective single-factor models, which might
contribute to the improved social behaviors in the interaction group.

Discussion

In this study, we investigated how the interplay between genetic and environmental risk factors affects phenotypic
complexity using the Cntnap2 KO and prenatal exposure to VPA as genetic and environmental factors, respec-
tively. We observed that the interplay between these two factors improved social deficits but increased seizure
susceptibility, with no further changes in repetitive self-grooming behaviors or hyperactivity compared to the
respective phenotypes of Cntnap2 KO and VPA mice (Supplementary Table 1). Finally, we also found that the
aberrant excitatory neural transmission in the mPFC of the single-factor models was corrected by the interaction
of the two factors. Our study provides an important clue to understanding the potential role of gene-environment
interaction in the behavioral and pathophysiological spectrum in ASD.

Our results show that behavioral and physiological phenotypes caused by a genetic mutation can be changed
by an environmental input. VPA upregulates target gene expression by inhibiting histone deacetylase**?*. Thus,
the altered gene expression may lead to phenotypic changes in the Cntnap2 KO mice. For example, our previous
studies have shown that prenatal exposure to VPA upregulates Pax6, which may induce differentiation of gluta-
matergic neurons and thereby enhance synaptic maturation in glutamatergic neurons®"?. These changes in glu-
tamatergic neurons caused by prenatal exposure to VPA may alter excitatory neural transmission and behavioral
phenotypes in Cntnap2 KO mice.

Perhaps the most interesting finding in our study is that the interaction of Cntnap2 KO and prenatal expo-
sure to VPA resulted in normal social behaviors comparable to those of the control group in the three-chamber
sociability and juvenile social play tests. Currently, we are not sure how the interaction of the two factors paradox-
ically recovers the social impairments observed in the respective single-factor models. Our current and previous
findings suggest two possibilities. First, we found that the aberrant mEPSC amplitudes in the mPFC region of
the single-factor groups were corrected in the KO x VPA group, suggesting that the recovered excitatory neural
transmission in the mPFC may be associated with the improved social behaviors in the interaction group. Indeed,
neural transmission in the mPFC is very important in regulating social behaviors'>~'7. In our previous study,
Cntnap2 KO mice exhibited an underexpression of glutamatergic receptors and decreased mEPSCs amplitudes
in layer 2/3 pyramidal neurons of the mPFC, whereas VPA mice exhibited the opposite pattern'®. Additionally,
a positive allosteric modulator and an antagonist of the AMPA receptor recovered impaired social behaviors
without affecting repetitive self-grooming or hyperactivity in Cntnap2 KO mice and VPA mice, respectively's.
Thus, the corrected excitatory neural transmission in the mPFC of the KO x VPA group might underlie the
improved social behaviors. However, this possibility should be tested further, since a recent report suggested that
social impairments in adult Cntnap2 KO mice may be induced from abnormal activity of parvalbumin-positive
interneurons in the mPFC?. This discrepancy may be due to the difference in experimental conditions such as
the age of mice. Since we used 4- to 5-week-old mice, whose synaptic structures undergo dynamic changes?®,
the synaptic response might be different from that of adult mice. Thus, further study is required to address this
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Figure 2. Repetitive self-grooming and hyperactivity of Cntnap2 KO and VPA-exposed mice are not altered
by the interaction of those factors. (a) Cumulative time spent on repetitive self-grooming. WT x Veh, n=10;
KO x Veh,n=12; WT x VPA, n=8; KO x VPA, n=10. (b) Distance moved in an open-field test. WT x Veh,
n=14; KO x Veh,n=14; WT X VPA, n=11; KO x VPA, n=10. Two-way ANOVA followed by Bonferroni
multiple comparison test was performed to determine between-group differences. To compare the indicated
groups, Mann-Whitney test was performed in a and unpaired t-test in b. Asterisk (*) shows the results of
statistical comparison between WT x Veh and the indicated group; *p < 0.05, **p < 0.01, ***p < 0.001. In all
bar graphs, data are the mean = S.E.M. Abbreviations: WT, Cntnap2 W'T mice; KO, Cntnap2 KO mice; VPA,
treatment with valproic acid (300 mpk) at E10.5; Veh, treatment with phosphate-buffered saline at E10.5.
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Figure 3. Increased seizure susceptibility in Cntnap2 KO and VPA-exposed mice is further enhanced by the
interaction of these factors. (a) Current vs. convulsion rate plot. (b) Current that induced convulsions in 50%

of the animals was defined as the CC50. Summary of the mean and S.E.M of the CC50. WT X Veh, n=10;

KO x Veh, n=6; WT x VPA, n=6; KO x VPA, n=7. Abbreviations: WT, Cntnap2 WT mice; KO, Cntnap2 KO
mice; VPA, treatment with valproic acid (300 mpk) at E10.5; Veh, treatment with phosphate-buffered saline at
E10.5.

discrepancy. Second, there might be a compensation mechanism in the neural structure of the KO x VPA group.
Indeed, a functional magnetic resonance imaging (fMRI) study showed that long-range connectivity in the fron-
tal cortex region was reduced in CNTNAP2 risk allele carriers?®. Another fMRI study showed that Cntnap2 KO
mice had reduced local connectivity in the PFC, and the reduction in connectivity showed a significant correla-
tion with impaired social behaviors®. On the other hand, increased local connectivity in the mPFC have been
suggseted in prenatal VPA exposure model of autism'**. Given that the CNTNAP2 protein has been implicated
in synaptic stability*'*2, the reduced synaptic contacts in Cntnap2 KO mice may be compensated by the effects of
prenatal VPA exposure, which may enhance synaptic maturation in glutamatergic neurons?'. Thus, the compen-
sation mechanism might contribute to relieving social impairments by recovering abnormal functional connec-
tivity in the PFC. All these possibilities should be tested in further study using more in-depth electrophysiological
and imaging approaches.

Another interesting finding in this study is the increased seizure susceptibility of Cntnap2 KO x VPA mice in
comparison with the respective single-factor groups. Seizure susceptibility can be induced by increased excitation
or decreased inhibition in any brain region*. Since the KO x VPA group exhibited mEPSCs and mIPSCs in the
mPFC similar to those of the WT x Veh group, increased excitability in other brain regions may be the reason
for the increased seizure susceptibility of the KO x VPA group. For example, in a previous report, Cntnap2 KO
mice had decreased expression of inhibitory neuronal marker proteins such as glutamate decarboxylase (GAD)
67, parvalbumin, calbindin 2, and neuropeptide Y in the somatosensory cortex and striatum, suggesting abnor-
mal inhibitory neuronal function'®. A whole-cell recording study showed that perisomatic inhibitory neural
inputs were decreased in the hippocampal CA1 pyramidal neurons of Cntnap2 KO mice*, suggesting increased
excitability in the hippocampus. Another whole-cell recording study showed that Cntnap2 KO mice displayed
reduced excitatory and inhibitory transmission, but the sum of these transmissions resulted in an increased E/I
ratio in layer 2/3 of the somatosensory cortex*. Moreover, VPA animal models have been suggested to have
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Figure 4. Abnormal mEPSC amplitudes in Cntnap2 KO and VPA-exposed mice are normalized by the
interaction of these factors. Whole-cell patch-clamp recordings in neurons in layer 2/3 of the mPFC. (a)
Representative mEPSC traces. (b) mEPSC amplitudes. (¢) mEPSC frequencies. Two-way ANOVA followed by
Fisher’s LSD test was performed to determine between-group differences. WT x Veh, n=7; KO x Veh,n=7;
WT x VPA, n=19; KO x VPA, n=16. In (b) asterisk (*) shows the results of statistical comparison between
WT x Veh and the indicated group; *, p < 0.05. Sharp (#) shows the results of statistical comparison between
the indicated groups; #, p < 0.05, ##, p < 0.01, ###, p < 0.001. In all bar graphs, data are the mean £+ S.E.M.
Abbreviations: WT, Cntnap2 WT mice; KO, Cntnap2 KO mice; VPA, treatment with valproic acid (300 mpk) at
E10.5; Veh, treatment with phosphate-buftered saline at E10.5.

over-excitation caused not only by increased glutamate receptor expression and transmission® but also by
decreased levels of GAD65/67 in the somatosensory cortex®’. Thus, the interaction of Cntnap2 KO and prenatal
exposure to VPA may increase over-excitability in some brain regions such as the somatosensory cortex, which
might contribute to the increased seizure susceptibility in the interaction group.

One confounding result in our study is that the Cntnap2 KO x VPA interaction did not induce any signifi-
cant changes on repetitive self-grooming or hyperactivity behaviors, although each factor independently induced
these behavioral symptoms. The pathophysiological mechanisms of increased repetitive self-grooming and
hyperactivity behaviors in Cntnap2 KO mice and VPA-exposed models are not clear, yet. In previous studies, the
repetitive self-grooming and hyperactivity behaviors were rescued by a dopamine receptor antagonist in Cntnap2
KO mice’ and by N-methyl-D-aspartate (NMDA) receptor blockers in prenatal VPA exposure models®®*. These
results suggest the involvement of the dopaminergic and glutamatergic systems in these behavioral alterations
in Cntnap2 KO mice and prenatal VPA exposure models, respectively. However, since these two systems are
involved in the cortico-basal ganglia-thalamic pathway, which is important for motor coordination and patho-
physiology of repetitive and hyperactive behaviors***!, Cntnap2 KO or prenatal exposure to VPA may be suffi-
cient to fully induce repetitive and hyperactive behaviors, or one of these two factors may be dominant. This may
presumably explain why the interplay of Cntnap2 KO and VPA resulted in no further increase in those behavioral
symptoms. Obviously, these possibilities await experimental validation.

Our results suggest several points to consider. First, the interaction of two different risk factors does not
always aggravate ASD symptoms but can also alleviate them. Second, an environmental factor can change phe-
notypes induced by a genetic factor. In addition to prenatal exposure to VPA, other environmental factors such
as maternal immune activation®*, advanced paternal age*>*, and sex difference®* may increase the phenotypic
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Figure 5. mIPSCs are not affected by Cntnap2 KO, prenatal VPA exposure, or the interaction of these factors.
Whole-cell patch-clamp recordings in neurons in layer 2/3 of the mPFC. (a) Representative mIPSC traces. (b)
mIPSC amplitudes. (c) mIPSC frequencies. Two-way ANOVA followed by Fisher’s LSD test was performed
to determine significant between-group differences. WT x Veh, n=9; KO x Veh,n=9; WT x VPA, n=10;
KO x VPA, n=11. In all bar graphs, data are the mean £ S.E.M. Abbreviations: WT, Cntnap2 WT mice; KO,
Cntnap2 KO mice; VPA, treatment with valproic acid (300 mpk) at E10.5; Veh, treatment with phosphate-
buffered saline at E10.5.

complexity of genetic predispositions. Furthermore, an environmental input may rescue impaired neural physi-
ology and autism-like symptoms. Second, although we did not test this here, the effects of an environmental input
may depend on its timing. Indeed, VPA is a very well-known teratogen and its effects can be different depending
on exposure period®. If it is taken during the first trimester period, it greatly increases the risk of craniofacial
and limb malformation and neuropsychiatric symptoms such as impaired cognition and autistic behaviors in
humans*’. We have also previously characterized such exposure-period-dependent phenotypic change in animals.
We found that animals exposed to VPA during neural tube closure (E12.5* in rats and E10.5* in mice) showed
an increased incidence of autism-like symptoms®**3. If VPA is given earlier than this critical time point, it causes
embryonic lethality. Conversely, if it is given later, VPA does not cause embryonic lethality or autism-like phe-
notypes*®. Thus, the timing of exposure may be an important variable in gene-environment interaction studies.

In conclusion, we demonstrated that the interplay of Cntnap2 KO and prenatal VPA exposure increases the
phenotypic complexity by changing the original phenotypes induced by the respective factors. Thus, the complex
interaction of multiple factors may explain the behavioral and pathophysiological spectrum in ASD.

Methods
Animals. Cntnap2 KO mice were kindly provided by Dr. Daniel H. Geschwind'®. The day of checking the
vaginal plug was designated as E0 and the day of birth as P0. VPA or PBS was injected subcutaneously at E10.5%.
From the obtained offspring, 3-week-old male mice were transferred to new cages according to their genotype
and treatment (3-6 mice per cage). Genomic DNA was extracted from the tail at P14 and the genotype of each
animal was identified using PCR.

Animals were maintained on a standard light-dark cycle (on: 2:00 am; off: 2:00 pm) at 20 °C to 24°C and
relative humidity between 30% and 70%. Animals were given free access to food and water. Animal handling,
housing, and treatments, including anesthesia, euthanasia, and administration, were performed in accordance
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with the Principles of Laboratory Animal Care (NIH publication No. 85-23, revised 1985) and were approved by
the Institutional Animal Care and Use Committee of Konkuk University, Korea (KU14142 and KU14143).

Behavioral studies. Behavioral studies were conducted during the dark cycle. To minimize the unpredicta-
ble effects of handling stress, animals were habituated for 3 days to the experimenter’s handling. For this purpose,
a mouse was placed on experimenter’s cupped hands and allowed to freely explore for 1 min, once a day. On the
day of behavioral tests, mice were acclimated to the behavioral room for 1 h before the tests.

Three-chamber sociability test. The three-chamber sociability test was conducted as previously
reported'®#. The task consisted of two sessions. In the first session, the subject mouse was introduced to the mid-
dle compartment and habituated for 5min. After habituation, a new animal (same age, strain, and no previous
contact with the subject) was introduced inside a wired cage randomly to either the left or right compartment,
while the other wired cage was empty during the 10-min sociability test. Time spent in each compartment and
around the cage (within 5 cm from the cage) was measured as stay duration and approach duration, respectively's.

Self-grooming test. The test was conducted as previously reported!®*. Before the experiment, each mouse
was placed in a polycarbonate cage (20 x 26 x 13 cm) and habituated for 10 min. The cumulative time spent
grooming was measured over the next 10 min with observers blinded to the mouse’s group from at least 2m away
from the cage.

Juvenile social play. The subject mouse was isolated for 30 min in a cage with new bedding (3 cm deep) to
stimulate social interaction before the test. A stranger mouse was subsequently introduced to the subject’s cage.
The cumulative social interaction time was measured for 10 min. The social interactions included nose-to-nose
sniffing, nose-to-anus sniffing, following, allogrooming, and crawling under the partner’.

Electric shock seizure threshold test. Electric shock seizure threshold was measured according to
previously reported methods?. Briefly, electric shock was applied using an ECT apparatus (Electro Convulsive
Therapy, Ugo Basile, Varese, Italy) through ear clips (frequency: 100 pulses/s, pulse width: 0.5 ms, shock dura-
tion: 1s). To minimize the number of animals sacrificed, electric current was increased or decreased stepwise by
2mA according to the animal’s response to electric shock. A seizure was defined as overt hind limb extension.
The convulsive current 50 (CC50) was defined as the current at which 50% of all animals showed seizure and was
determined by log current vs. response calculation.

Open-field test. Exploratory activity in a novel environment was assessed in an open-field box
(40 x 40 x 30 cm). Mice were introduced into the center, and the total distance moved in the whole arena and
velocity were measured for 20 min using a CCD camera-assisted motion-tracking apparatus and software
(EthoVision 3.1, Noldus Information Technology, Leesburg, VA, USA).

Slice preparation. Slices were prepared from mice aged 4 to 5 weeks. Mice were anesthetized using isoflu-
rane, and the brains were quickly removed and transferred into ice-cold sucrose solution (in mM, 212 sucrose,
3 KCl, 26 NaHCO;, 1.25 NaH,PO,, 7 MgCl,, and 10 glucose). Prefrontal cortical coronal slices (350-um thick)
were obtained using a vibratome (Leica VT1200S, Leica Biosystems Inc., Buffalo Grove, IL, USA). Slices were
incubated in a submerged holding chamber filled with artificial cerebrospinal fluid (in mM, 118 NaCl, 2.5 KCl,
1 NaH,PO,, 26.2 NaHCO;, 11 glucose, 2 CaCl,, and 1 MgCl,, oxygenated with 95% O,/5% CO,) at 35°C. After
recovery for 1 h, brain slices were kept at room temperature.

Whole-cell patch-clamp recordings. Layer 2/3 pyramidal neurons of the mPFC were visually selected
and voltage-clamped at - 60 mV or 0 mV to measure the excitatory or inhibitory transmission, respectively, using
an Axoclamp-200B amplifier (Axon Instruments, Union City, CA, USA), filtered at 2kHz, and sampled at 5 kHz.
pClamp software (Version 10.3, Axon Instruments) was used for data acquisition and analysis. The resistance of
patch glass pipettes was 2-4 M), and the internal solution used contained, in mM, 115 Cs methanesulphonate,
20 CsCl, 10 HEPES, 2.5 MgCl,, 4 Na,-ATP, 0.4 Na,-GTP, 10 Na-phosphocreatine, and 0.6 EGTA, pH 7.2. The
mEPSCs were measured with picrotoxin (50 uM) and tetrodotoxin (1 uM) to block the effects of GABA receptors
and depolarization throughout the experiment. The mIPSCs were measured with 6-cyano-7-nitroquinoxaline-2,
3-dione (10 uM), AP5 (50 uM), and tetrodotoxin (1 uM) to block the effects of AMPA and NMDA receptors, and
depolarization throughout the experiment. Input and series resistance were continuously monitored.

Statistical analysis. All data are expressed as the mean + standard error of the mean (S.E.M). Statistical
methods are described in each figure legend and in Supplementary Table 2. Briefly, unpaired Student’s ¢-test or
Mann-Whitney test was used to determine between-group differences in mean values. To analyze data with two
factors, a two-way ANOVA was performed followed by Bonferroni or Fisher’s LSD test. Differences were con-
sidered statistically significant when the P-value was less than 0.05. All statistical analyses were conducted using
GraphPad Prism 5 software (GraphPad Software, La Jolla, CA, USA).

Data Availability
All data generated or analyzed during this study are included in this published article (and its Supplementary
Information File).
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