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Abstract: Multiple sclerosis (MS) is a chronic, inflammatory and immune-mediated disease of the
central nervous system (CNS), commonly affecting young adults and potentially associated with
life-long disability. About 14 disease-modifying treatments (DMTs) are currently approved for the
treatment of MS. However, despite the use of highly effective therapies, some patients exhibit a highly
active disease with an aggressive course from onset and a higher risk of long-term disability accrual.
In the last few years, several retrospective studies, clinical trials, meta-analyses and systematic
reviews have investigated autologous hematopoietic stem cell transplantation (AHSCT) as a possible
therapeutic option in order to address this unmet clinical need. These studies demonstrated that
AHSCT is a highly efficacious and relatively safe therapeutic option for the treatment of highly active
MS. Particularly, over recent years, the amount of evidence has grown, with significant improvements
in the development of patient selection criteria, choice of the most suitable transplant technique and
clinical experience. In this paper, we present six patients who received AHSCT in our MS center and
we systematically reviewed recent evidence about the long-term efficacy and safety of AHSCT and
the placement of AHSCT in the rapidly evolving therapeutic armamentarium for MS.

Keywords: multiple sclerosis; treatment; hematopoietic stem cell transplantation

1. Introduction

Multiple sclerosis (MS) is a chronic, inflammatory, neurodegenerative and immune-
mediated disease of the central nervous system (CNS) characterized by inflammatory
demyelination and subsequently gliosis and axonal loss [1,2].

Over the last two decades, thanks to the growing knowledge about MS pathogen-
esis, a fair amount of disease-modifying therapies (DMTs) have been developed for the
treatment of MS. These drugs have different mechanisms of action directed to control the
inflammatory component of the disease, with the result of reducing the risk of relapse and
the accumulation of the disability [2]. To date, a total of 14 DMTs have been approved
with different efficacies and safety profiles. Despite their use, many patients remain at
some risk for relapses and disability progression; in particular, those exhibiting a severe
disease activity despite the use of highly active treatment or showing an aggressive course
from disease onset are exposed to a high risk of long-term disability accrual [3]. In these
cases, autologous hematopoietic stem cell transplantation (AHSCT) can be considered as
a possible therapeutic option. AHSCT has been employed to treat MS over the last two
decades and, unlike most of the currently approved DMTs, it was originally applied in
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hematologic settings and, since the 1990s, has been used to treat refractory autoimmune
diseases [4].

The aim of AHSCT is to remove the aberrant immune system and then to reconstitute
the immune system in order to prevent recurrent neuroinflammatory activity [5,6]. In
contrast with currently approved DMTs, AHSCT is an intensive one-off treatment, following
which, most of the patients will have no need for additional therapies. Indeed, AHSCT
provides a rapid resolution of disease activity, either in terms of relapse or disability
progression, while, in the long term, the reset immune tolerance due to the reconstitution
of a new immune system is associated with sustained clinical responses.

In the past, concerns regarding the mortality rate of AHSCT have previously limited
its use for the treatment of MS, as MS is usually a non-life-threatening disease. However,
thanks to the increasing transplant center experience and careful patient selection over the
few last years, AHSCT has become relatively safe with minimal risk of treatment-related
mortality. For all these reasons, in October 2020, the National Multiple Sclerosis Society
proposed AHSCT as a suitable treatment option for relapsing MS patients who exhibit
higher disease activity in terms of a high relapse rate and/or new/enlarged MRI lesions,
despite treatment with second-line DMTs or have contraindications to highly effective
DMTs [7].

In the present paper, we present six cases of MS who received AHSCT in our MS
center and we reviewed the main findings about the efficacy and safety of AHSCT for
the treatment of MS patients and the new placement of AHSCT in the rapidly evolving
therapeutic scenario of MS.

2. Materials and Methods
2.1. Case Series Presentation

In this study, we collected data about 6 patients who had received AHSCT for MS in
our MS center in the period between 2019 and 2021. All patients received AHSCT in the
Hematology Department at the Hospital “G. Rodolico—San Marco”, University of Catania
(Catania, Italy).

2.2. Literature Search

We systematically searched all the published studies reporting AHSCT for MS on
PubMed, Embase, Web of Science, Cochrane and Clinical Trials. The literature review was
carried out using keywords and MeSH terms for the concepts “multiple sclerosis” and
“autologous hematopoietic stem cell transplantation”. We included all the peer-reviewed,
full-text and English language articles published between 2001 and 2021. In particular,
randomized controlled trials (RCTs), longitudinal studies, non-randomized clinical trials,
retrospective studies, meta-analyses, reviews and studies from national and international
registries were selected. We excluded single case studies, pediatric studies and non-peer-
reviewed papers. If publications were not available via open or institutional access, the
authors of the papers were contacted. The PRISMA flow diagram is illustrated in Figure 1.
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Figure 1. PRISMA flow. AHSCT, autologous hematopoietic stem cell transplantation.

3. Case Series

Six patients, including three (50%) females, with a mean age of 35.8 ± 10.9 years, re-
ceived AHSCT for MS in our MS center (Table 1). Three of them were affected by highly ac-
tive RMS disease and the remaining had SPMS. The mean follow-up was 16.6 ± 9.8 months.
All patients underwent a BEAM+ATG conditioning regimen. After the procedure, our
cohort showed that the relapse rate was considerably reduced in all patients, with no
relapses occurring after AHSCT. In our cohort, the Expanded Disability Status Scale (EDSS)
improved in three out of six patients after AHSCT, stabilized in two and worse in only one
after one year, confirming the high efficacy of AHSCT in terms of EDSS stabilization. In
contrast, the only patient who reported disease progression had a higher level of disability
at the time of the transplant procedure.

The risk profile of AHSCT was acceptable and the grade of AEs (in three patients) was
mild. No severe AEs were reported. So far, no long-term toxicity has been reported.

Moreover, all patients were vaccinated with both doses of the Comirnaty vaccine
(BioNTech, Pfizer®, Mainz, Germany) and four of them underwent the booster dose. A
measurement of SARS-CoV-2 antibodies performed after the vaccination showed a slightly
lower response compared to the general population.
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Table 1. Demographical and clinical characteristics of the patients who received AHSCT.

Patient 1 2 3 4 5 6

Age (years) 29 28 29 31 55 43

Sex Male Female Male Female Male Female

Disease duration (months) 138 123 171 132 72 84

MS phenotype RMS RMS RMS SP SP RMS

Prior therapies Natalizumab,
rituximab Natalizumab

IFN-beta1a s.c.,
teriflunomide, fingolimod,

rituximab

Cyclophosphamide,
IFN-beta1a s.c.,

natalizumab

IFN-beta1a s.c.,
fingolimod,

alemtuzumab
(two courses)

Alemtuzumab
(three courses)

N of relapses at MS diagnosis 4 2 3 6 3 2

N of relapses in the year before AHSCT 2 5 3 3 1 1

N of relapses after AHSCT 0 0 0 0 0 0

EDSS at onset 4.5 1.5 2.0 4.5 6.5 4.0

EDSS before AHSCT 6.0 3.0 5.5 6.5 7.0 5.0

EDSS 6 months after AHSCT 6.0 2.5 4.0 6.5 7.0 4.0

EDSS 12 months after AHSCT 6.0 2.0 4.0 NA 7.5 NA

N of new/enlarged/Gd-enhanced lesions at MS diagnosis 1 1 1 2 1 2

N of new/enlarged/Gd-enhanced lesions before AHSCT 2 5 0 1 0 1

N of new/enlarged/Gd+-enhanced lesions 6 months
after AHSCT 0 0 0 0 0 0

N of new/enlarged/Gd+-enhanced lesions 12 months
after AHSCT 0 0 0 NA 0 NA

Date of AHSCT 11/Jan/2021 01/Jul/2019 22/Dec/2020 30/March/2021 22/Jan/2020 01/September/2021

Conditioning regimen BEAM BEAM BEAM BEAM BEAM BEAM

AEs (grade) during and/or after AHSCT None None Fever (mild) Urinary infection
(moderate) Fever (mild) None

Previous COVID-19 infection No No No No No No

Date of COVID-19 vaccination
(both doses) * May/June 2021 March 2021 April 2021 June 2021 March/May 2021 March/April 2021

COVID-19 third dose of vaccine * November 2021 November 2021 December 2021 Not done yet November 2021 Not done yet
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Table 1. Cont.

Patient 1 2 3 4 5 6

Anti-SARS-CoV-2 antibodies titre
(date)

163 BAU/mL
(October 2021)

43 BAU/mL
(September 2021)

54.2 BAU/mL
(October 2021)

219.7 BAU/mL
(October 2021)

164.9 BAU/mL
(October 2021)

287.3 BAU/mL
(September 2021)

Comorbidities Thyroiditis,
ulcerative colitis None None None Hypertension,

spasticity None

AHSCT: autologous hematopoietic stem cell transplantation; BAU/mL: binding antibody unit/mL; COVID-19: coronavirus disease 2019; IFN: interferon; s.c.: subcutaneously
administered; i.m.: intramuscularly administered; EDSS: Expanded Disability Status Scale; Gd: gadolinium; MS: multiple sclerosis, SARS-CoV-2: severe acute respiratory syndrome
coronavirus 2. * All patients were vaccinated with BioNTech (Comirnaty), Pfizer®.
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4. Biological Background and Rationale

The rationale for using AHSCT as a treatment option for MS is the removal of the
self-reactive immune system through immunoablative agents, resulting in the depletion of
autoreactive effector cells and the reconstitution of an immune system with more normal
functions thanks to the infusion of autologous hematopoietic stem cells [8,9]. After AHSCT,
the analysis of circulating lymphocytes shows the decrease in the circulating autoreactive
effector T cells, mostly Th17, together with the development of recent thymic emigrants
post transplant [4,10,11]. The grade of the variability of the reconstituted T cell depends
on the intensity of the conditioning regimen [12]. According to a recent study, prior to
the transplant procedure, it was demonstrated that the presence of circulating mucosal-
associated invariant T cells (MAITs) with CD8+, a CD161 high phenotype [13], may play
a role in the pathogenesis of MS, promoting the production of several cytokines, such as
interferon-gamma and interleukin-17a, and thus, exerting a pro-inflammatory effect [14].
After transplantation, these cells showed a significant reduction in the peripheral blood,
together with an increment in regulatory CD4+, FoxP3+ T cells, CD127 and CD25 high [15].
The reconstitution of this “new” immune system may be responsible for the high efficacy
of AHSCT, which is sustained even in the case of the re-occurrence of autoreactive effector
cells [10]. In addition, other mechanisms were proposed, including changes in the genes
expression, in particular, the downregulation of microRNAs associated with MS pathogene-
sis [11,16]. Thus, the complex mechanisms responsible for the long-term benefit of AHSCT
are not fully understood.

5. Procedure

AHSCT consists of four main steps: mobilization of hematopoietic stem/progenitor
cell (HSPC), HSPs collection, conditioning and reinfusion of HSPs and blood/immune
therapy [17]. The procedure should be performed in a hematological ward with accredited
stem cell laboratory facilities associated with stem cell transplant programs (Figure 2).

After neurological and hematological consultations aimed at verifying the inclusion
criteria and discussing the benefits and the risks of the autologous hematopoietic stem
cell transplantation (AHSCT) procedure, the MS patient is admitted to a hematological
ward (screening). This first step includes mobilization consisting of the administration
of chemotherapy, mainly cyclophosphamide (Cy) with a dosage of 2–4 g/m2, followed
by daily granulocyte-colony stimulating factor (G-CSF) with the dosage of 5–10 µg/kg
daily until harvest completion. Following mobilization into the circulation and after an
average of 10 days, hematopoietic stem/progenitor cells (HSPCs) are collected through
leuko-apheresis. The autoreactive immune cells are systematically depleted from the bone
marrow, peripheral blood, lymphoid tissue and the CNS through the infusion of several
immunodepleting drugs (conditioning regimen). According to the European Society for
Blood and Marrow Transplantation (EBMT) guidelines, there are three grades of intensity
of conditioning regimens (high, intermediate and low-intensity protocols), according to
the degree of myelotoxicity and immunodepletion. Then, HSPs are re-infused together
via hydration, antiemetics and other supportive care measures reducing the effects of the
dimethyl-sulfoxide and cytolysis debris. The engraftment typically occurs on average
within 10–15 days. Then, the patient can be discharged and monitored for potential late
adverse events (follow-up).

5.1. Mobilisation of HSPs

Mobilization is usually realized through the administration of chemotherapy, mainly
cyclophosphamide (Cy) with the dosage of 2–4 g/m2, followed by daily granulocyte-colony
stimulating factor (G-CSF) with the dosage of 5–10 µg/kg daily, until harvest completion.
As an alternative, although G-CSF could be used alone, the combination with priming
chemotherapy should be favored as it is associated with a lower risk of disease flares and
the percentage of potential auto-reactive cells in the graft [18]. Cy or steroids may also
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prevent a possible exacerbation of MS induced by the G-CSF and allow for more effective
mobilization, resulting in a lower burden of lymphocytes in the graft and better control of
the disease [18].

Figure 2. AHSCT procedure.

5.2. HSPs Collection

Following mobilization into the circulation and after an average of 10 days, HSPs
are collected through leuko-apheresis. The optimal target is about 5 × 106/kg of body
weight with a minimum safety threshold of 2 × 106/kg [17]. The HSPs are collected
through multiple aspirations from the bone marrow of the iliac crests or via apheresis from
peripheral blood after mobilization into the circulation [19].

HSPs and progenitor cells mobilized into the bloodstream represent the most fre-
quently used resource for MS patients receiving HSCT. Indeed, the higher proportion
of progenitor cells and the more rapid engraftment may reduce the risk of neutropenic
infections. Afterward, it is possible to manipulate, cryopreserve and store the HSP graft,
until HSPs infusion [20].

The selection of immune cells consists of removing them from the graft product
through a positive selection of hematopoietic stem and precursor cells that selectively ex-
press CD34+ antigen on the surface. Several clinical-scale devices are utilized to selectively
deplete the immune cells using immunomagnetic separation. After the incubation of the
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cells in the HSPs graft with an antibody to CD34 covalently bound to a paramagnetic bead,
those cells that express CD34 are selectively retained while the remaining cells (including
lymphocytes and monocytes) are wiped out thanks to the passage of the cell suspension
through a column in a magnetic field [19].

5.3. Conditioning Regimen

The conditioning regimen aims to systematically deplete the autoreactive immune
cells from the peripheral blood, lymphoid tissue, bone marrow and the CNS. The kind of
regimen used may vary regionally [4,21].

The European Society for Blood and Marrow Transplantation (EBMT) guidelines
classified the conditioning regimens in three grades of intensity (high-, intermediate- and
low-intensity protocols) based on the degree of myelotoxicity and immunodepletion. The
high-intensity protocol includes total body irradiation (TBI) or busulfan combined with Cy
(Bu-Cy), each of which is possibly associated with anti-thymocyte globulin (ATG). Doses
used for TBI ranged between 12 and 15 Gy, given in 8 to 12 fractions over 4 days, with two
to three treatments daily. The American Association of Physicists in Medicine (AAPM)
recommends the use of <20 cGy/min in order to reduce the risk of complications [22].
Doses higher than 15 Gy were shown to decrease the relapse rate while increasing the
incidence of graft disease and mortality. Low-dose TBI consisting of 2 to 8 Gy given in one
to four fractions, in combination with chemotherapy, was demonstrated to be an effective
conditioning regimen for HSCT in patients who cannot tolerate myeloablation [23].

The intermediate intensity protocol can be further divided into myeloablative or
non-myeloablative. In the myeloablative protocol, HSPs are reinfused in order to re-
cover from the aplastic phase. It may consist of a BEAM protocol that includes bischloro-
ethyl-nitrosourea (BCNU) 300 mg/m2, cytosinearabinoside 200/800 mg/m2, etoposide
200/800 mg/m2 and melphalan 140 mg/m2 associated with ATG. In the non-myeloablative
protocol, consisting of Cy 200 mg/m2 and ATG, the recovery of hematopoiesis is usually
spontaneous and the reinfusion of HSPs is able to reduce the aplastic phase and the related
risks. Finally, the low-intensity protocol includes chemotherapy only (e.g., Cy 100 mg/kg)
and is not associated with serotherapy [24].

5.4. HPSs Reinfusion

Following the conditioning, HSPs are reinfused that is usually with hydration, antiemet-
ics and other supportive care measures that are aimed to contain the adverse events of
the dimethyl-sulfoxide and cytolysis debris. The engraftment typically occurs on average
within 10–15 days [17,24].

The stem cell infusion (also called “day 0” of the new immune system) is a relatively
simple procedure that is usually performed at the bedside, followed by the administration
of supportive treatments and anti-microbial prophylaxis during the aplastic phase and the
recovery. Between 10–14 days after the procedure, pancytopenia usually requires irradiated
red cell and platelet transfusions, while menstrual bleeding could be prevented by the
use of hormonal therapy. Prophylactic and therapeutic anti-infective agents (antibacterial,
antiviral and antifungal) are also used in order to cover immunosuppressed periods.

The grafted cells settle in the bone marrow and start replacing the blood cells in about
2 weeks. The complete immune reconstitution and patient systemic and neurological
restoration usually take 12 months or longer [17].

6. Efficacy of AHSCT for Multiple Sclerosis

The main findings from the most relevant studies about the use of AHSCT in MS are
presented in Table 2.
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Table 2. Relevant studies about the use of AHSCT in Multiple Sclerosis.

Study, Year Design Comparator Conditioning
Regimen

Sample
Size

MS Form
(%)

Median Age
(Range)
(Years)

Median MS
Duration
(Range)

Years

Median
EDSS at
Baseline
(Range)

Median
Follow-

Up
(Range)

NEDA or
EFS PFS MRI TRM

(%) AEs

Mancardi et al.,
2015 [25] RCT

AHSCT

MTX

BEAM/ATG 9

12

RR (22)
SP (78)

RR (42)
P (58)

36 a

(22–46)

35 a

(19–43)

10.5
(5–20)

9.8
(2–23)

6.5
(5.5–6.5)

6.0
(5.5–6.5)

4 years

NR

NR

43% at 4y

52% at 4y

Reduced number
of new T2 MRI

lesions at 4 years
compared with

MTX

0 Early AEs in 80% of
patients of AHSCT

Burt et al.,
2019 [26] RCT

AHSCT

Different
DMTs

Cy/ATG 52

51

RR (50.5)

RR (49.5)

34
(18–54)

36 (19–52)

4.7
(0.7–14)

5.4 (0.7–21.2)

3.0
(1.5–6.5)

3.0 (1.0–6.0)

2 years
(1–4)

78.5% at 5y

2.97% at 5y

90.3% at 5y

24.7% at 5y

T2 lesion volume
improved in

AHSCT
0

No grade 4 AEs; 73
grade 3 AEs in

AHSCT

Atkins et al.,
2016 [27]

Phase II
CT NA Bu-Cy/ATG +

CD34 selection

12

12

RR (50)

SP (50)

34
(24–45)

5.8
(1.3–11.2)

5.0
(3.0–6.0)

6.7 years
(3.9–12.7) 70% at 3y 69.6% at 3y

No Gd+ or new T2
lesions on 314 MRI

scans
0

8 (33%) of 24
patients had grade
2 AEs, 14 (58%) had
grade 1 AEs and 2
patients had grade

3 or 4 AEs

Nash et al.,
2017 [28]

Phase II
CT NA

BEAM/ATG
24 + CD34
selection

24 RR 37
(NR)

5
(1–12)

4.5
(3.0–5.5)

62 months
(12–72) 69.2% at 5y 91.3% at 5y

T2 lesion volume
decreased at 6
months; brain

volume decreased
at 6 months but

subsequently
stabilized

0 92 grade 3 AEs
100 grade 4 AEs

Moore et al.,
2019 [29]

Phase II
CT NA BEAM/ATG 35

RR (57)

SP (43)

37
(21–55)

6.9
(0.7–21.6)

6.0
(2.0–7.0)

36 months
(12–66)

90% at 1y
70% at 3y

75% at 1y
50% at 3y

95% at 1y
88% at 3y

75% at 1y
55% at 3y

Reduction of 2.8%
in T2 lesion volume 0

5.7% (1 thyroiditis,
1

microcolitis)

Burman et al.,
2014 [30]

Obs,
long NA

BEAM/ATG
(85%),

Cy/ATG (15%)

48
(safety)

41
(efficacy)

RR (84)

P (17)

31 a

(9–52)
6.2 a

(0.3–25)
6.0

(1.0–8.5) 3.9 years 68% at 5y 77% at 5y

No Gd+ in 16
patients; MRI

event-free survival:
85%

0

Early AE in almost
all patients (46%:
bacteremia with

fever); late AEs in 7
patients (4%:

herpes
reactivation)

Shevchenko et al.,
2015 [31]

Obs,
retro NA

BCNU +
melphalan (61%),
mini-BEAM-like

(39%)

99

RR (43)

P (57)

35 a

(18–54)
5

(0.5–24)
3.5

(1.5–8.5) 4 years 80% at 4y 83.3% at 4y

At 6 months, 14 (of
15 patients)

showed no MRI
activity.

0 NR
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Table 2. Cont.

Study, Year Design Comparator Conditioning
Regimen

Sample
Size

MS Form
(%)

Median Age
(Range)
(Years)

Median MS
Duration
(Range)

Years

Median
EDSS at
Baseline
(Range)

Median
Follow-

Up
(Range)

NEDA or
EFS PFS MRI TRM

(%) AEs

Burt et al.,
2015 [32]

Obs,
retro NA Cy/ATG (85%)

Cy/ALM (15%) 145

RR (81)

SP (19)

37
(18–60)

5.1
(0.7–22)

4.0
(NR)

2 years
(0.5–5) 68% at 4y 87% at 4y No Gd+ in 61

patients (42%) 0

9.6% (7 thyroiditis,
7

ITP); 1.4%
(malignancie: 1

lymphoma, 1 breast
cancer)

Muraro et al.,
2017 [9]

Obs,
retro NA

High (19%),
intermediate
(64%), low

(17%)

281
RR (16)

P (84)

37
(17–65)

6.7
(0–34.4)

6.5
(1.5–9.0)

6.6 years
(0.2–16) NR 46% at 5y NR 8

(2.8)

9 tumors and 14
new autoimmune

diseases

Casanova et al.,
2017 [33]

Obs,
retro NA BEAM/ATG

38
(safety)

31
(efficacy)

RR (74)

SP (26)

36.7 a

(SD 9.1)
2.3

(0.3–9.4)
6.5

(2.0–8.5)
8.4 years

(2–16)

23% of SP:
progression
of disability

60% of MS:
sustained

recovery of
disability for
7 years after

AHSCT

77.4%

Increased T2
lesions in 2 patients
after a median time

of 5 years

0

55% had fever, 55%
had engraftment
syndrome; 3 solid
tumors (2 breast
carcinomas and 1

cervical
intraepithelial

neoplasm grade 2).

Tolf et al., 2019
[34]

Obs,
retro NA

BEAM/ATG
(90%)

Cy/ATG (10%)
10 RR 27

(9–33)
2.3

(0.3–9.4)
6.5

(2.0–8.5) 10 years 70% at 10y 100% at
10y

Annual change in
the corpus

callosum area was
similar before and

after HSCT

0 17 CTCAE grade 3
3 CTCAE grade 4; 0

Nicholas et al.,
2021 [35]

Case
series NA BEAM/ATG 120 RR (48)

P (52)
32

(26–58) NR 6.0
(5.5–6.5) 1.8 years 53% at 4y 65% at 4y NR 3

(2.5) 4.2%

Boffa et al.,
2021 [36] Retro NA BEAM/ATG 210

RR (58)

PP (42)

34
(28–53)

45 (39–58)

NR 6.0
(1.0–9.0) 6.2 years

85.5% at 5y
71.3% at 10y

71% at 5y
57.2% at 10y

NR NR 3
(1.4) 5.3%

Mariottini et al.,
2021 [37]

Open
label,
retro

NA BEAM/ATG 26 SP 37 (27–58) 9 (4–18) 6.0 (4.0–7.5) 99 months
(27–222) NR

48% at 3y
43% at 5y

30% at 10y

At year 1, 55% of
patients showed an
annualized rate of

BVL below the
pathological

threshold of −0.4%

0 73%: fever; 4%:
malignancies
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Table 2. Cont.

Study, Year Design Comparator Conditioning
Regimen

Sample
Size

MS Form
(%)

Median Age
(Range)
(Years)

Median MS
Duration
(Range)

Years

Median
EDSS at
Baseline
(Range)

Median
Follow-

Up
(Range)

NEDA or
EFS PFS MRI TRM

(%) AEs

Zhukovsky et al.,
2021 [38] Obs ALM Cy

ATG 69

69 AHSCT

75
ALM

30

35

6.4 (±5.7)

7.0 (±5.7)

3.0 (2.0–4.0)

2.0 (1.0–2.5)

2.8 (±1.6)

2.9 (±1.1)

88

37

97

82

Freedom from MRI
events: 93 of

AHSCT and 55 of
ALM

0

Early AEs: 48/69
grade 3 in AHSCT;

0 in ALME; late
AEs: 1.4 in AHSCT;

6.7% grade 3 in
ALM

AE: adverse event; AHSCT: autologous hematopoietic stem cell transplantation; ALM: alemtuzumab; ATG: anti-thymocyte globulin; BCNU: bis-chloro-ethyl-nitrosourea; BEAM:
carmustine (BCNU), etoposide, cytosine arabinoside (ARA-C) and melphalan; Bu: busulfan; CT: clinical trial; CTCAE: Common Terminology Criteria for Adverse Events; Cy:
cyclophosphamide; DMT: disease-modifying treatment; EDSS: Expanded Disability Status Scale; EFS: event-free survival; Gd+: gadolinium-enhanced lesions; ITP: idiopathic
thrombocytopenic purpura; long: longitudinal study; MS: multiple sclerosis; MTX: mitoxantrone; NA: not applicable; NEDA: no evidence of disease activity (no relapses, no disability
progression and no magnetic resonance imaging activity); NR: not reported; NS: not standardized; PFS: progression-free survival; obs: observational study; P: progressive form of
MS (including progressive-relapsing, secondary progressive and primary progressive MS, when not specified); PP: primary-progressive MS; RCT: randomized clinical trial; retro:
retrospective study; RRMS: relapsing-remitting MS; SPMS: secondary-progressive MS; TRM: transplant-related mortality. a Mean values.
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6.1. Relapses

Our monocentric experience is in line with several meta-analyses that provided ev-
idence that AHSCT can induce long-term remissions for MS patients and confirmed the
efficacy of HSCT against MS relapses [39,40]. Indeed, the current literature shows that
AHSCT is able to induce complete remission of clinical relapses in 70–100% of treated
relapsing-remitting MS (RRMS) patients. In particular, the relapse-free survival rates
ranged from 80% at 4 years to 100% at a median of 6.7 years of follow-up [27,32,34,35,41].
This massive anti-inflammatory effect was observed in MS patients with highly active
disease prior to AHSCT, as shown by the median/mean annualized relapse rate (ARR) in
the previous year ranging from 1.2 to 8 [27,32,34]. In another study, high-intensity AHSCT
consistently reduced the ARR from 167 relapses over 146 patient-years before the AHSCT
procedure to zero over 179 patient-years at the follow-up [27].

Other studies showed that the ARR following AHSCT was markedly reduced, rang-
ing from zero to values below 0.05 [27,30,34]; the ARRs reported by the pivotal trials of
highly effective DMTs, although lower than the pre-treatment values, were considerably
higher than those reported in AHSCT studies, which ranged between 0.16 and 0.34 [42–45].
However, such results should be considered with caution [30,46].

6.2. Disability

Several studies demonstrated that AHSCT is able to achieve progression-free survival
values of up to 100% at 10 years, with a reduction of long-term disability progression
in at least 40% of patients [34]. In particular, in RRMS patients, the progression-free
survival ranged from 73% to 100% at 5 years, which was maintained for up to 10 years in
one study [9,33–35]. In another recent cohort where RRMS patients were treated with a
BEAM+ATG conditioning protocol, disability-worsening-free survival was reached in 85.5%
(range 76.9–94.1%) at 5 years and in 71.3% (range 57.8–84.8%) of patients at 10 years [36].

A considerably lower progression-free survival was found in another study showing
that 43% of the seven RRMS patients enrolled were progression-free at 5 years [46]. How-
ever, the authors assumed that this result was due to the higher disability of the patients
at baseline (the Expanded Disability Status Scale (EDSS) ranged between 6 and 7); thus, it
could be hypothesized that these patients might have entered the secondary progressive
(SPMS) phase early after the enrolment [46].

Studies evaluating AHSCT in progressive MS patients showed progression-free sur-
vival values ranging from 33% at 5 years to 78.7% at 8 years [9,31]. In a recent study
that included 26 SPMS patients with moderate–severe disability, mostly exhibiting signs
of clinical or MRI inflammatory activity at the time of the AHSCT, the progression-free
survival at years 5 and 10 was 42% and 30%, respectively [37].

In a retrospective study of 120 MS patients (52% with progressive MS (secondary or
primary)) treated with AHSCT, 90% at 2 years and 85% at 4 years showed no new MRI
lesions, with a progression-free survival of about 75% at 2 years and 65% at 4 years [35]. In
a recent Italian study, disability-worsening-free survival was 71.0% (range 59.4–82.6%) and
57.2% (range 41.8–72.7%) at 5 and 10 years [36].

However, AHSCT is not recommended by EBMT guidelines in primary progressive MS
(PPMS) since registry studies did not demonstrate acceptable levels of effectiveness [21,24].

Confirmed disability improvement was investigated in several studies [30,33,34].
Particularly, it was more frequently reported in RRMS patients and predominantly within
the first year after AHSCT. Moreover, a study showed a reduction of at least 1 EDSS point at
1 year in about 50% of patients, and this improvement was constant up to 5 years of follow-
up [33]. Another study of 111 RRMS patients demonstrated a significant improvement in
EDSS after transplantation [9]. In particular, during the 12 months before AHSCT, the mean
EDSS score was increased by 0.94 points; in contrast, during the 12 months after AHSCT, a
mean decrease of 0.32 points was observed. Interestingly, although the improvement in
EDSS between the pre- and post-treatment periods was higher in relapsing MS patients, a
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significant change was also found in progressive MS [9]. In addition, the reduction in the
median EDSS was also confirmed in other studies showing a change ranging from −0.75
(range −7 to 1.5) to −3.0 points, with a more pronounced decrease in RRMS [30,34].

Furthermore, Neurological Rating Scale (NRS) and Multiple Sclerosis Functional Com-
posite (MSFC) scores were found to be significantly improved in patients who underwent
AHSCT in several reports [28,32].

Several studies investigating the effect of AHSCT on quality of life reported an im-
provement in both physical and mental health domains in all MS phenotypes, even if it was
more marked in RRMS patients [29,31,32]. In the Canadian AHSCT study of 23 patients
who underwent AHSCT, the median Fatigue Impact Scale (FIS) score showed a decrease of
36%, with four patients having a 100% reduction [47].

Finally, after AHSCT, 37% of patients in another study improved their functional
capacity, where they were able to return to daily life, including returning to work or
school [27].

6.3. MRI Activity

The intermediate-intensity conditioning AHSCT was able to induce a consistent reduc-
tion in the gadolinium-enhanced (Gd+) lesions up to 99% compared with the pre-treatment
count using a triple dose of gadolinium (Gd) [35]. Similarly, in another study that analyzed
327 MRI scans of 23 patients treated with a high-intensity AHSCT regimen, no signs of MRI
activity were detected in comparison with the high disease activity documented prior to
AHSCT [27]. Moreover, in a study using the BEAM/ATG regimen, the mean pre-treatment
Gd+ lesion count was reduced by over 90%, with a consistent decrease from 1.32 to 0.07
after 6 months and to 0.08 at the last follow-up [29]. Other reports demonstrated a reduction
in the median T2 lesion volume of 33% after 27 months and of 2.8% after 6 months and at
the last follow-up [29,32].

In contrast, in another study of seven patients who received a low-intensity regimen,
the mean number of Gd+ lesions per month and per patient fell from 4.1 before treatment
to 0.2 after 3 years using a triple dose of Gd [46]. In this study, the complete remission of
MRI activity was achieved in only one patient, suggesting a milder effect on inflammatory
lesion activity following a low-intensity conditioning regimen [46].

6.4. Disease Activity Free Survival

No evidence of disease activity (NEDA-3) was defined as the absence of relapse, EDSS
progression and MRI activity (new T2 lesions and Gd+ lesions) [48]. According to the
current literature, over 60% of patients who underwent AHSCT showed NEDA at 3 years,
reaching 70% at 10 years in only one study enrolling a small cohort of RRMS patients [34].
In contrast to these studies, another report showed that, out of the seven patients enrolled,
one experienced relapse, four experienced disease progression and six experienced MRI
activity at 5 years of follow-up [46]. However, it should be noted that the use of a triple
dose of Gd may have potentiated the detection of MRI activity in this study, as it is usually
able to detect 75% more lesions than the standard dose [46,49]. In another recent Italian
study of 122 RRMS patients treated with the BEAM/ATG conditioning protocol, the risk of
NEDA-3 failure was markedly reduced (HR = 0.27 [0.14–0.50], p < 0.001) [36].

Furthermore, a recent meta-analysis showed that patients treated with AHSCT achieved
higher values of NEDA compared with those treated with currently approved DMTs [50].
Similarly, in a monocentric registry-based cohort study, significantly more patients reached
NEDA in the AHSCT group (p < 0.05) compared with the alemtuzumab-treated group [51].

6.5. Brain Atrophy

It is known that MS patients exhibit higher rates of brain volume loss (BVL) than in
healthy controls; moreover, brain atrophy correlates with long-term disability and cognitive
decline [52].
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Different imaging techniques were developed in order to evaluate the BVL between
two time points, and several corresponding pathological cut-offs have recently been intro-
duced [53–55]. Particularly, yearly values of BVL were −0.49 ± 0.65% and −0.64 ± 0.68%
for RRMS and SPMS, respectively, in a large cohort of untreated MS patients [56].

Several studies adopting high-intensity regimens for AHSCT showed that, in the short
term, the rates of BVL decreased to −3.2% over a median time of 2.4 months, with −15.1%
per year and of −2.33% from month 1 to month 12 of follow-up [57,58]. Long-term analysis
of the HALT-MS (High-Dose Immunosuppression and Autologous Transplantation for
Multiple Sclerosis) study demonstrated that the decrease in brain volume predominantly
occurred within 6 months; then, this rate slowed after 3 years and became stable until
5 years after AHSCT [28,59]. Furthermore, another study confirmed the high rates of BVL
during the first 6 months after Bu-Cy AHSCT, followed by a stabilization beyond 24 months
with −0.32 ± 0.67% by reaching similar values to normal aging healthy individuals [27].

In order to provide an explanation about the high rates of BVL reported within the
first months after AHSCT, several mechanisms were suggested. Each of these hypotheses,
which are not mutually exclusive, may contribute to a different degree to the BVL, relying
on individual patients’ characteristics and the treatment agents for the regimen. First, it is
possible that the brain atrophy observed in the short term could be due to the remission
of inflammation within the brain parenchyma that, in turn, reduces the tissue edema
(so-called “pseudo-atrophy”). Second, the ongoing reduction of brain tissue could be
already present at baseline and potentially accelerated by neurotoxicity of the AHSCT
regimen [37]. More recently, a study of 19 patients, with 12 RRMS and 7 SPMS, treated with
high-intensity AHSCT proposed a four-component model [60]. According to the authors,
both neurotoxicity and sustained degeneration of damaged brain tissue might contribute
to the initial acceleration of BVL [60]. In summary, although the BVL rates detected within
the first months after AHSCT were higher than those found in untreated MS patients, they
slowed down after a period of 2–3 years, achieving values similar to the healthy population.
Thus, this may suggest that effective remission of inflammation could reduce the BVL rates
to normal value, at least in selected patients [60].

Variations of the lateral ventricular volume, a validated marker of BVL, were estimated
in 24 patients treated with BEAM-AHSCT, showing in 75% of them (either RR- or SPMS)
that the annualized values were below the pathological threshold [29]. Furthermore,
changes in normalized corpus callosum area were comparable to pre-treatment values
within 2.5 years after AHSCT, reducing to zero thereafter; at up to 10 years of follow-up,
only two of ten patients showed ongoing atrophy [34].

7. Safety of AHSCT in Multiple Sclerosis

The main AHSCT-related complications in MS are illustrated in Table 3.

7.1. Early Complications

The AHSCT procedure includes the administration of cytotoxic chemotherapy that
may cause several common adverse effects (AEs), such as anaphylactic reactions, neu-
tropenic fever, infections and sepsis, gastrointestinal toxicity and viral reactivations (partic-
ularly Epstein–Barr virus (EBV), cytomegalovirus, varicella zoster virus, etc.) [32,61,62].

Neutropenic fever and/or sepsis require immediate assessment, clinical examina-
tion and a prompt therapeutic approach with antibiotics; in case this condition signifi-
cantly persists even beyond the conditioning phase, it should also be evaluated whether
it could be related to the effect of AHSCT. Corticosteroids and paracetamol may help to
prevent prolonged pyrexia when the presence of infections is excluded [32]. Moreover,
peri-transplant-sustained pyrexia, aside from being a possible infective cause, correlated
with poor long-term neurological recovery [32]. Indeed, patients who underwent AHSCT
may experience a transient neurological worsening; in particular, fever secondary to the
AHSCT and/or to infection may worsen neurological symptoms, such as spasticity, pain,
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urinary symptoms, weakness and fatigue. For this reason, therapeutic interventions should
be promptly carried out to prevent prolonged pyrexia, whatever might be the cause.

Table 3. AHSCT-related complications commonly associated with MS patients.

MS Risk Factor Measure to Prevent/Treat

Early AEs

ATG fever
[32,61] Cytokine release Steroids, antipyretics

Worsening of neurological symptoms
[32,61,62] Fever Treat cause of fever

LUTS
[61,62] Neurologic bladder Antimicrobials

Rehydration

Hemorrhagic cystitis
[32,61,62] Neurologic bladder Urinary catheter, rehydration

EBV/CMV reactivation
[32,61,62] Previous exposure to EBV/CMV Monitoring of EBV/CMV DNA

Pneumonia
[32,61,62] Muscular weakness, immobility Antimicrobials, early mobilization

Deep vein thrombosis
[61,62] Immobility Early mobilization, anticoagulants

Falls
[32] Muscular weakness, dehydration Physiotherapy, fluid monitoring

Late AEs

PML
[63–65]

Positive antibodies against JCV, previous
treatment with natalizumab

Wash-out after the withdrawal of
natalizumab, JCV testing prior to the

AHSCT procedure

Varicella zoster reactivation
[27] Immunosuppression Antiviral prophylaxis

Secondary autoimmune diseases
[9,27,32,66–68] Pretreatment with ALM or ATG Close follow-up

Premature menopause and infertility
[42,68–70]

Older age, high intensity of the
conditioning regimen

Counseling, adoption of fertility
preservation strategies

Malignancies
[25,26,28–34,46,71]

Allogeneic HSCT, previous use of
immunosuppressive drugs Close follow-up

AHSCT: autologous hematopoietic stem cell transplantation, AE: adverse event, ALM: alemtuzumab, ATG:
anti-thymocyte globulin, EBV: Epstein–Barr virus, CMV: cytomegalovirus, JCV: John Cunningham virus, LUTS:
lower urinary tract symptoms, MS: multiple sclerosis; PML: progressive multifocal leukoencephalopathy.

7.2. Late Complications

One of the most common late complications of AHSCT is the reactivation of the
varicella zoster virus, possibly secondary to the significant immunosuppression related to
the conditioning regimen [27].

Among viral reactivations, progressive multifocal leukoencephalopathy (PML), a
severely disabling and potentially life-threatening disease caused by the reactivation of John
Cunningham virus (JCV), mainly in immunosuppressed patients, has raised concerns in the
last decade as a potential adverse event of several DMTs, particularly natalizumab [63–65].
According to the current literature, only one case of PML has been reported 11 years after
an AHSCT in a patient who had received natalizumab treatment for about 3 years, and
thus, it could not be considered as related to the AHSCT [71]. Therefore, to date, no cases of
PML associated with AHSCT have been reported so far in MS patients. However, the PML
risk could be mitigated by adopting adequate wash-out periods after the discontinuation of
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highly active DMTs potentially at risk of PML and/or dosing the titer of antibodies against
JCV prior to the AHSCT procedure.

Following AHSCT, a higher percentage of MS patients compared to the oncologic
setting exhibits secondary autoimmune diseases, such as autoimmune thyroiditis, immune
thrombocytopenic purpura (ITP), rheumatoid arthritis, Crohn’s disease and acquired anti-
factor VIII inhibitor diseases [9,27,66,72]. In a retrospective analysis of patients from the
EBMT and Center for International Blood and Marrow Transplant Research (CIBMTR)
databases, the incidence of autoimmune AEs mainly consists of thyroiditis, with 5% over
a median follow-up of 6.6 years after AHSCT [9,67]. Higher rates (26% and 23%) were
reported in a subgroup of patients who had performed the ex vivo manipulation of the
graft and in a cohort who had received a conditioning regimen that included alemtuzumab,
respectively [27,32].

However, patients treated with alemtuzumab showed higher rates of autoimmune
AEs compared to those receiving AHSCT, with almost half of the patients developing a
secondary autoimmune condition at 2 years from the second alemtuzumab course [73].

Long-term potential AEs also include effects on fertility and the occurrence of ma-
lignancies. For female patients of childbearing potential who underwent AHSCT, the
high risk of premature menopause and infertility represents a relevant concern. The risk
is significantly associated with the age at transplant, with patients older than 30 years
showing the highest risk, and the intensity of the conditioning regimen [74]. Neverthe-
less, a retrospective analysis of 324 women treated with AHSCT for autoimmune diseases
reported 15 pregnancies, 11 of them terminated with 7 healthy live births [68].

A multicenter study reported on post-AHSCT menstrual resumption in 43 MS fe-
male patients showing that 30 (70%) started menstruating again after a mean time of
6.8 months [69].

Moreover, in a phase 2 trial of AHSCT for MS, out of 55 patients enrolled, 33 were
women and had undergone AHSCT while being of childbearing age at the time of the
AHSCT procedure. In a study reporting the outcomes of four pregnancies that occurred
after AHSCT, two of them were carried to term with no maternal or neonatal complications.
The remaining were not carried to term due to elective termination. In this study, out of
21 males enrolled, one patient has fathered three children since his AHSCT. No newborn
complications were reported [70].

Data about male fertility after AHSCT are scarce; however, AHSCT seems to only
minimally affect reproductive functions. A small study that enrolled four males who
underwent a procedure with Cy and ATG for autoimmune diseases showed a reduction in
testosterone compared with baseline values. However, the levels of testosterone remained
within the normal range in three patients [42]. Potential complications on the reproductive
functions and the possible adoption of fertility preservation strategies should be extensively
discussed with patients who are potentially eligible for AHSCT.

Few studies have described the occurrence of tumors following AHSCT. In a recent
retrospective study, malignancies were diagnosed in 3.2% of patients (9 of 281 treated
patients) [9]. In this analysis, with the exception of three cases of myelodysplastic syn-
dromes typically associated with exposure to cytotoxic drugs, no organ-specific prevalence
was detected [9]. Moreover, in the current literature, six malignancies occurred, where
one of them was reported in a patient treated with DMT after AHSCT [32,33,71]. No-
tably, an increased risk of malignancies was reported in patients who received allogeneic
HSCT (allo-HSCT) [75]. Similarly, some studies suggested that treatments received prior
to AHSCT might play a role in the global cancer risk as MS patients treated with im-
munosuppressive drugs were more at risk of malignancies, possible due to a reduction in
immunosurveillance [76,77].

The risk of mortality represents the main concern limiting the use of AHSCT for
MS treatment. Procedures performed between 1995 and 2000 showed transplant-related
mortality of 7.3%, 1.3% between 2001 and 2007 and 0.7% between 2008 and 2016, with a
dramatic decline in the last decade, where it progressively reduced to 0.2% (1/439) [78].
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Across the studies, overall mortality was 2.0% in 829 MS patients transplanted and 2.8% of
281 treated in two retrospective studies [4,9]. A higher rate (4%) was reported in another
study; in this analysis, one of the 24 deaths was attributed to hepatic necrosis following
busulfan-related sinusoidal obstruction syndrome. Thereafter, during the study, in order
to reduce regimen-related toxicity, the dose and route of administration of busulfan were
changed [27]. In most of the remaining studies, the mortality was 0% [25,26,28–34,46,71].
According to recent meta-analyses, patients with specific clinical and demographic features,
such as higher disability at baseline, older age and a non-RRMS course, were associated
with higher mortality risk [39,40,79]. Moreover, high intensity of the conditioning regimens
was associated more frequently with higher rates of mortality (3.13% for high vs. 0.97% for
low-to-intermediate intensity). Interestingly, patients who received AHSCT before 2006
were at higher risk, with a significant chronological improvement in the more recent 5-year
epochs from 1994 to 2015, probably thanks to a better selection of eligible patients and
improving expertise of transplant centers [79].

7.3. COVID-19

In the last two years, coronavirus infectious disease (COVID-19) caused by severe
acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become a pandemic threaten-
ing global health, as well as affecting the therapeutic management for MS [80]. During the
pandemic, a retrospective Italian study found that most of the currently used DMTs were
acceptably safe, bringing out some specific elements of risk concerning the use of anti-CD20
drugs [81]. COVID-19 has a great impact on HSCT activity worldwide; the EBMT has,
therefore, developed recommendations for transplant programs and physicians caring for
these patients [82]. Patients receiving AHSCT for hematological diseases showed a pro-
tracted duration of COVID-19 symptoms and a higher risk of generation of highly mutated
viruses. Moreover, several studies demonstrated a higher risk of COVID-19 mortality in
patients receiving HSCT; however, older age, the presence of comorbid conditions and the
immunosuppression due to both treatments and underlying hematological malignancy
may also contribute to a more severe COVID-19 course [83]. Particularly, the mortality rate
was 11.5% in patients who were not treated with immunosuppressive drugs at the time of
COVID-19 diagnosis, while it rose to 33% in those who were immunosuppressed [84].

In the MS setting, not enough data are available in order to define the risk profile of
AHSCT during the COVID-19 pandemic. However, reports from the current literature
do not suggest a more severe course and higher mortality rates in MS patients who have
received AHSCT and faced SARS-CoV-2 infection [81].

8. AHSCT and Vaccination

To the best of our knowledge, no data are available about the effect of AHSCT on
vaccination response in MS [85]. However, even considering patients receiving trans-
plants for hematological diseases, the literature is scarce and consensus on the timing of
post-hematopoietic stem cell transplantation vaccination is currently lacking. In a recent
review, it was reported that patients receiving allo-HSCT had a 12 months post-transplant
response to influenza vaccine of over 45% that ranged between 10 and 97% at 7–48 months.
The response to pneumococcal vaccination at 3–25 months post transplant was 43–99%,
increasing over time. For diphtheria, tetanus, pertussis, poliomyelitis and Hemophilus
Influenzae type b vaccinations the response ranged from 26 to 100% after 6–17 months from
the transplant. The rate of response after meningococcal vaccination at 12 months post
transplant was 65%; whilst the hepatitis B vaccine at 6–23 months produced a response
in 40–94%. Similarly, measles, mumps and rubella vaccinations at 41–69 months post
transplant showed a response in 19–72%. In general, in patients receiving AHSCT, the
responses were slightly higher when compared with allo-HSCT [86].

Initial reports on the antibody response after full SARS-CoV-2 vaccination in hemato-
logical patients showed that antibody response rates were lower compared with the healthy
population. In a prospective study of the Spanish Hematopoietic Stem Cell Transplantation
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and Cell Therapy Group (GETH-TC) on a large cohort of patients with different diseases
(most of them with onco-hematological conditions), 242 (78%) of patients who received
allo-HSCT and 73 (85%) of those who have received AHSCT showed detectable SARS-
CoV-2-reactive antibodies [87]. Most patients received mRNA-based vaccines and were
vaccinated more than 1 year after transplantation [87].

9. Factors Influencing the Success of AHSCT and Choice of Conditioning Regimen

Several baseline characteristics were identified as predictive factors for the AHSCT
outcome. Some studies demonstrated that a progressive phenotype was associated with a
higher risk of post-AHSCT progression (HR 2.33, 95%CI 1.27–4.28) compared with relapsing
MS [9,32,33,88]. On the other hand, short disease duration, younger age at the time of the
AHSCT and a lower number of previous DMTs correlated with a positive outcome [9]. This
was confirmed by a recent retrospective study in which 20 patients with “aggressive” MS
underwent AHSCT as a first therapeutic choice. After a median follow-up of 30 (12–118)
months, the median EDSS score markedly reduced from 5.0 (1.5–9.5) at baseline to 2.0
(0–6.5), and no patient exhibited further relapses. MRI showed residual disease activities in
three patients during the first 6 months after AHSCT, while no further new or enhancing
lesions were detected in subsequent scans [41].

In general, these studies contribute toward providing an outline of the “ideal candi-
date” profile for the AHSCT, suggesting that younger age, highly inflammatory-active MS,
mild disability progression and no multiple treatments failure are distinctive elements of
better outcomes in terms of efficacy and safety profile following AHSCT [4].

10. Cost Effectiveness

In contrast to ongoing repeated treatment with currently approved DMTs, AHSCT rep-
resents a “one-off” treatment, providing therapeutic benefits in carefully selected patients.
Several studies reported favorable cost-effectiveness in MS patients receiving AHSCT and
showing a sustained response compared with some DMTs [89,90]. Although list prices of
MS DMTs, ranging from USD 50,000 to USD 70,000 per year in the USA, are apparently
lower, the cost of AHSCT (about USD 120,000) is incurred mainly during the first year with
minimal subsequent direct costs [91]. Similarly, a UK study showed that the annual costs
of second-line DMTs with a long-term schedule of administration, such as natalizumab,
fingolimod and ocrelizumab, range from GBP 14,730 to GBP 19,169. Conversely, a complete
course of DMTs with an expected long-standing effect costs about GBP 55,000, in particular,
GBP 56,360 for alemtuzumab and GBP 50,157 for a 2-year course of cladribine in a patient
with an average weight of 70 kg [92]. Furthermore, in a study of SPMS patients with
moderate-to-severe disability receiving AHSCT, with a cost of GBP 30,000, the transplant
appeared to be more cost-effective than the mitoxantrone (indirect comparator) in two of
three scenarios evaluated [89]. The comparator prevailed on AHSCT only when consider-
ing the short duration of the effect (sustained for 5 years only). Thus, it is conceivable that
the long-standing effect of AHSCT and decrease in mortality rates may contribute to an
acceptable cost-effectiveness balance.

11. Discussion

In the last few years, the efficacy and safety of the AHSCT procedure for MS treatment
have been widely explored, particularly by open-label studies and randomized clinical
trials [25,28,29]. However, no clear conclusions could be drawn, mainly due to the small
number of patients included in the studies and the high variability in terms of the clinical
characteristics and regimens used for AHSCT.

One of the most important advantages of the AHSCT procedure is the direct effect
on the CNS. Indeed, the high efficacy of the AHSCT procedure could rely on the effect
on the inflammatory cells in the CNS, which are considered to be the main driver of
demyelination and axonal damage. To confirm this, data from studies in an oncological
setting showed that, after intravenous administration, busulfan diffuses across the BBB
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with a cerebrospinal fluid (CSF)/plasma ratio of 0.95 [93]. In contrast, the activity of DMTs
for MS is mainly confined to the peripheral immune compartment, as most of them do not
cross the blood–brain barrier (BBB). Thus, it is conceivable that the pathological increase in
BBB permeability observed in active MS patients may affect the drugs’ penetration into
the CNS, even if no data supporting this hypothesis are available. This mechanism may be
responsible for the potential high efficacy of AHSCT on disability shown in the majority of
the studies given that most of the patients eligible for AHSCT typically exhibit aggressive,
highly active MS, with some not responding to the approved DMTs [29,33,39,40].

Considering the protocol regimens (high, intermediate or low), there is no consensus
as to which of them is superior. This is because of the lack of studies directly comparing
these different HSCT conditioning regimens on MS outcomes and the high heterogeneity
of the cohorts, including differences in study design, patient selection, outcome measures
and length of the follow-up [40,78]. However, higher intensity regimens seem to be more
effective, resulting in more sustained disease control, even with a higher risk of infective
complications and systemic toxicity [94].

AHSCT represents a good treatment option in light of the cost-effectiveness analyses.
Indeed, highly effective second-line therapies might have a lower price, but healthcare
costs and treatment management account for considerable healthcare expenses [95]. As
observed in most of the cost-effectiveness analyses for DMTs, treating in the early stage and
during the RR phase of the disease results is more cost effective than treatments that are
started in already disabled patients [96,97]. Indeed, the disability status heavily impacts
health costs due to the production losses, the decrease in work productivity and decline in
utility, which are strictly associated with the increase of EDSS [96,97]. To confirm this, a
European cost-of-illness study showed that the average yearly cost was about EUR 37,100
in moderately disabled patients and EUR 57,500 in more severely disabled patients [98].
In this scenario, AHSCT could have a potential advantage representing a “front-loading”
strategy in which the investment of more resources at the onset of the disease, e.g., with
the use of more expensive and more effective DMTs, may reduce long-term costs related to
disability and associated complications [91,99].

In light of this, studies comparing the AHSCT with high-efficacy DMTs may help to
determine the place of AHSCT in the treatment pathway in patients with RRMS but also
add information about the potential cost saving of AHSCT compared with more expensive
DMTs. Indeed, few retrospective real-world studies have suggested a higher efficacy of
AHSCT, even in terms of maintaining NEDA and cognition improvement compared with
alemtuzumab [38,51,100]. However, such randomized clinical trials are not available and,
to date, only a multicenter, randomized, phase III trial (STAR-MS) aiming to evaluate
whether AHSCT has superior clinical efficacy to highly effective DMT (alemtuzumab or
ocrelizumab) is still ongoing [101].

Although the potential risk of long-term AEs and the higher rates of mortality com-
pared with DMTs may potentially reverse these advantages, in the last few years, thanks to
the increased center expertise of transplant centers and protocol refinements, these safety
concerns have been mitigated by promoting programs for the long-term monitoring of
various late transplant-related complications. Indeed, until recently, the AHSCT procedure
was performed at transplant centers with strong experience and high expertise, with the
healthcare services usually tailored for hemato-oncology patients. In the last two decades,
the increasing use of the AHSCT procedure in the MS field has highlighted the need for MS-
specific supportive care measures, including multidisciplinary teams, in order to improve
the center experience and standard of care.

Furthermore, considering that, due to the higher prevalence of MS in women, many MS
patients eligible for AHSCT are at childbearing age, the risk of temporary ovarian/testicular
failure and infertility secondary to AHSCT require specialist counseling. Moreover, it
should be discussed whether high-efficacy DMTs are potentially associated with short-
and long-term toxicities, including PML, and other serious infections, which also lead to
significant morbidity and mortality rates [102,103]. Indeed, as the main concern of AHSCT



J. Clin. Med. 2022, 11, 942 20 of 26

is the mortality risk, patients selected for the procedure that AHSCT should be adequately
informed that AHSCT is potentially associated with a risk of mortality of approximately 1%
in a hemato-oncologic setting, particularly in patients suffering from myeloma, lymphoma
and solid neoplasms.

Recent data about the risk of COVID-19 seem to be encouraging. Moreover, even if
initial reports suggested lower antibody response rates after a full SARS-CoV-2 vaccination
in patients suffering from hematological conditions, data from the National Registry have
shown higher response rates [87]. Furthermore, the COVID-19 pandemic has shown
that other powerful DMT, particularly ocrelizumab and rituximab, may compromise the
vaccination response in MS patients [104]. Notably, no data are available about the effect of
AHSCT for MS on COVID-19 vaccination.

Another challenge is whether AHSCT may be effective even in the progressive forms
of MS. In the last two decades, AHSCT was used to treat a large number of patients
with progressive MS, demonstrating a reduction in the ARR and the disability progres-
sion [9,31,66,94]. Moreover, this limited therapeutic effect must be weighed against the
potential higher risk of AEs, especially the fatal ones, that are typically associated with
advanced disability. Although PPMS seems to not benefit from this treatment, and thus it
is was not recommended in the EBMT guidelines [21,24], recent studies have found that
several DMTs, including ocrelizumab and rituximab, are effective in reducing the disability
progression of PPMS, suggesting that inflammation may play a crucial role in the progres-
sive phase of the disease [105–108]. Thus, further randomized clinical trials are needed to
assess the effectiveness of AHSCT in both secondary and primary progressive MS.

12. Conclusions

In conclusion, AHSCT is evolving as a relatively safe and highly effective therapeutic
option, where it is able to induce rapid and sustained remission of disease activity with a
significant improvement of disability. In recent years, the increased expertise of transplant
centers, the improved patient selection and the proper choice of conditioning regimen has
contributed to reducing the AE rates and mitigating safety concerns.

Data from the current literature have clearly delineated the profile of the “ideal” can-
didate for AHSCT. Indeed, the early stages of the disease, with predominant inflammation
and low disability level, represent the optimal “window of therapeutic opportunity” in
which to propose this therapeutic option [109]. Nevertheless, due to the rapidly evolving
therapeutic scenario, it is common practice to offer AHSCT to transplant patients who failed
multiple treatments, some of them with potential carry-over safety problems (e.g., PML for
natalizumab). However, even in this setting, AHSCT showed an acceptable efficacy and
safety profile, while taking into consideration careful monitoring provisions [29].

Finally, definitive evidence from new and ongoing clinical trials is awaited from
ongoing RCTs in order to endorse AHSCT as “standard of care, clinical evidence available”
for the treatment of aggressive and refractory relapsing MS patients.
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