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Abstract Spreading reproduction across time or space can
optimize fitness by minimizing the risks for offspring survival
in varying and unpredictable environments. Poison frogs
(Dendrobatidae) are characterized by complex spatial and re-
productive behaviour, such as territoriality, prolonged court-
ship and parental care. The partitioning of larvae from terres-
trial clutches across several water bodies is mainly known
from species with carnivorous tadpoles that allocate their tad-
poles in very small pools, where limited food availability is
accompanied by an increased risk of cannibalism. However,
little is known about the deposition behaviour of non-
carnivorous species that use medium-sized to large pools. In
the present study, we investigated whether the Neotropical
poison frog Allobates femoralis exhibits brood-partitioning
behaviour when males transport tadpoles 3 weeks after ovipo-
sition. We sampled 30 artificial water bodies for tadpoles,
which we genotyped at seven highly polymorphic microsatel-
lite loci. Based on the reconstructed pedigree, we show that
A. femoralis males distribute larvae of single and of successive
clutches across several water bodies. The number of pools
used was significantly associated with the number of clutches
per male. Ninety-three percent of the males that were assigned
to more than one clutch spread their tadpoles across several
water bodies. Given the highly variable and unpredictable
biotic and abiotic conditions in tropical rainforest, at the
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spatial scale of the study species’ behaviour, we interpret this
behaviour as bet-hedging to improve offspring survival.
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Introduction

Variable and unpredictable environmental conditions are ex-
pected to favour the evolution of bet-hedging strategies
(Beaumont et al. 2009; Simons 2011). By spreading the risk
of mortality across time and/or space, individuals can optimize
fitness by reducing the variance in reproductive success in
favour of long-term risk reduction (Hopper 1999; Crean and
Marshall 2009; Olofsson et al. 2009; Simons 2011). Several
studies have demonstrated fitness benefits of diversified re-
productive strategies; e.g. allocating reproduction across sev-
eral mating partners (Fox and Rauter 2003; Mékinen et al.
2007; Sarhan and Kokko 2007; Garcia-Gonzalez et al.
2015), distributing eggs across several sites (Root and
Kareiva 1984; Byrne et al. 2009; Andersson and Ahlund
2012) and variably initiating egg incubation in order to pro-
mote hatching asynchrony (Laaksonen 2004). However, com-
pared to the comprehensive theoretical literature on bet-
hedging strategies, empirical datasets from natural popula-
tions, particularly on parental behaviours affer hatching, are
rather scarce.

Among anurans, parental care is mainly found in terrestrial
breeders in the humid tropics (Wells 2007). Terrestrial ovipo-
sition has evolved independently several times, presumably as
an adaptation to high aquatic predation pressure on eggs
(Magnusson and Hero 1991) and the risk of reduced fertiliza-
tion success due to stray sperm from rivals in aquatic environ-
ments (Roberts and Byrne 2011). The tadpoles of most
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terrestrial breeders still complete their development until
metamorphosis in water, a dilemma which some species solve
by transporting their tadpoles to aquatic sites (Wells 2007).

Pre-metamorphic mortality in amphibians is around 90 %
in most species (Vonesh and De la Cruz 2002), caused by
abiotic and biotic factors, such as predation (Magnusson and
Hero 1991), pond desiccation (Richter-Boix et al. 2011), inter-
and intra-specific competition for food (Gonzalez et al. 2011)
as well as parasitism and pathogen infections (Kriger and
Hero 2007; Rhoden and Bolek 2011). As the choice of high-
quality larval developmental sites has profound effects on off-
spring survival and thus on the parent’s reproductive success,
selection should therefore drive the evolution of parental be-
haviours that assess the quality of breeding sites in order to
maximize offspring growth and survival. Such discriminatory
behaviour regarding larval deposition sites has been shown in
several anuran species (Spieler and Linsenmair 1997,
Summers 1999; Summers and McKeon 2004; Schulte et al.
2011). However, natural environments of amphibian larvae
are also characterized by highly unpredictable variability
(e.g. weather, predators, etc.), making it almost impossible
for the transporting parent to reliably predict the future quality
of a pool for the entire period of larval development.
Depositing offspring (of single and/or successive clutches)
in several pools therefore would constitute a suitable bet-
hedging strategy to minimize the risk of total offspring loss
in face of environmental uncertainty (cf. Byrne et al. 2009).

Neotropical poison frogs (Dendrobatidae) show complex
behaviours such as territoriality, elaborate courtship and pa-
rental care. All species deposit their eggs outside of water, and
after hatching, most of them transport the tadpoles to water
bodies, where they complete their larval development until
metamorphosis (Léotters et al. 2007). In some dendrobatids,
adults select deposition sites according to food availability
(Poelman et al. 2013) or the presence of predators or conspe-
cifics (Brown et al. 2008; Schulte et al. 2011; McKeon and
Summers 2013; Rojas 2014). Species that have carnivorous
tadpoles which they transport to small pools, such as brome-
liads or small tree holes, are known to distribute their larvae
across several sites (Caldwell and de Araujo 1998; Summers
1999). Limited food availability accompanied by an increased
risk of cannibalism presumably selected for this behaviour
(Summers and Amos 1997; Brown et al. 2008; see also
Stynoski et al. 2014). Little is known about the deposition
behaviour of non-carnivorous species that use medium-sized
pools, where nutrients are usually not limited.

Given the highly unpredictable biotic and abiotic impacts
in temporal aquatic environments, we expect that brood-
partitioning has evolved also in species that use medium-
sized pools. We tested this hypothesis in the Neotropical poi-
son frog Allobates femoralis by using field observations and
microsatellite genotypes of adults and tadpoles from one re-
productive season in order to identify whether males distribute
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their tadpoles from successive and/or single clutches across
several water bodies.

Methods
Study species

Males of the Neotropical frog A. femoralis (Boulenger 1884;
Anura: Dendrobatidae) are highly territorial and announce
territory possession by a prominent advertisement call
(Narins et al. 2003; Ringler et al. 2011). Females are inter-
dispersed between male territories and show non-aggressive
site fidelity (Ringler et al. 2009, 2012). Pair formation, court-
ship and mating occur in male territories (Roithmair 1992;
Montanarin et al. 2011). Both sexes are highly
polygynandrous throughout the reproductive season.
Females can produce one clutch every 8 days on average
(Weygoldt 1980, in captivity) and males were observed to
guard up to five clutches simultaneously (Ursprung et al.
2011). Tadpole transport by male A. femoralis takes place
15-20 days after oviposition, which carry on average 8
(range=1-25) tadpoles to small to medium-sized terrestrial
pools (e.g. medium-sized temporal pools, floodplains, peccary
wallows, footprints, palm fronds, holes in fallen trees), usually
located outside a male’s territory (Ringler et al. 2013). In cap-
tivity, A. femoralis distribute their tadpoles when provided
with several water pools, and tadpoles require 40-50 days of
aquatic development until metamorphosis (Weygoldt 1980).

Our study population of 4. femoralis is located in a lowland
rainforest near the field camp ‘Saut Parare’ (4° 02" N, 52° 41’
W) in the nature reserve ‘Les Nourages’, French Guiana (de-
tails in Ursprung et al. 2011; Ringler et al. 2014). Thirty arti-
ficial pools (30%30x20 cm) were placed in a 6 by 5 array with
~10 m distance between pools in the centre of our study plot in
2009, originally for another study on the effects of reproduc-
tive resource supplementation in 4. femoralis (Ringler et al.
2015). Each pool was filled with approximately 500 cm® of
leaf litter to match natural forest floor cover and filled with
rainwater.

Sampling and genotyping

Data on the spatial locations of all adult individuals as well as
microsatellite genotypes were already available from a previ-
ous study (Ringler et al. 2013). We sampled the artificial pools
in January and April 2010 to capture tadpole-transport events
over the entire study period and to avoid sampling larvae from
one clutch repeatedly. We randomly sampled approximately
one third of all tadpoles per pool and sacrificed them in 96 %
ethanol. Additionally, we assessed the presence of potential
predators of 4. femoralis at the first sampling event (i.e. we
noted all potential predators of A. femoralis tadpoles that were



Behav Ecol Sociobiol (2015) 69:1011-1017

1013

present at the respective pool). DNA extraction, genotyping
and parentage assignments followed the protocol of Ursprung
et al. (2011). We used all markers that were available for the
Guiana population when samples were genetically analysed.

Brood-partitioning behaviour

We reconstructed patterns of tadpole deposition by
A. femoralis males via parentage assignments of larval and
adult genotypes. Specifically, we aimed to reveal whether
males distribute their larvae of single and/or successive
clutches across multiple pools. We only included tadpoles
with at least five unambiguously genotyped loci. Given that
females produce multiple clutches throughout the breeding
season, but rarely mate with the same male twice (Ursprung
et al. 2011; Ringler et al. 2012), and males only transport
tadpoles from a single clutch at a time (Ringler et al. 2013),
we were able to distinguish between inter- and intra-clutch
partitioning of A. femoralis males. We assumed that tadpole
full-siblings (as inferred by the parentage analysis) from the
same sampling cohort (January or April) belonged to the same
clutch. Full-siblings that were sampled in different cohorts, as
well as paternal half-sibs, were considered to originate from
separate clutch depositions and were thus treated as distinct
transportation events of the respective fathers. Given the larval
development time in water until metamorphosis of about
45 days, tadpoles from the first sampling cohort would have
already left the pool at the second sampling event. We only
included clutches that were represented by at least two full-
sibs, and for the analyses of inter-clutch partitioning, we con-
sidered only males that were assigned to at least two clutches.
All statistical tests were performed in IBM SPSS Statistics
20.0.0. Normality of variables was tested with the
Kolmogorov—Smirnov test. Medium values, interquartile
ranges (iqr) and non-parametric tests were applied in cases
where normality was rejected.

Results

We counted a total of 2595 A. femoralis tadpoles in our artificial
pools across both samplings, with pools containing a median
number of 19 tadpoles per pool (iqr=7.5-67.25, max=363,
Fig. 1). Dragonfly larvae were the most common aquatic pred-
ators in our artificial pools. Pools contained also a few singular
carnivorous tadpoles of Dendrobates tinctorius, which usually
get deposited in elevated tree holes. We observed that the num-
ber of tadpoles per pool significantly decreased with increasing
number of dragonfly larvae (n=9, Spearman’s p=-0.717, y=
—12.013x+59.25, R*=0.37, p=0.03; Fig. 2). Pools without any
dragonfly larvae contained up to 135 tadpoles (mean+SD=
46.14+39.38). During the study period, we sporadically ob-
served the presence of other potential predators of

A. femoralis tadpoles in and at the pools: spiders, snakes (e.g.
Helicops angulatus), terrestrial crabs and twist-necked turtles
(e.g. Platemys platycephala). In three cases, we observed a
dramatic decrease in water quality caused by fallen fruits, dead
animals and faeces (e.g. of howler monkeys) that started to
ferment and rot inside the pools, which lead to a total loss of
tadpoles inside the affected pools. We sampled in total 414
tadpoles by collecting up to 19 tadpoles per pool and sampling
session (median=6, iqr=3.75-10).

We had to exclude 19 tadpoles from further analyses due to
low PCR amplification success. Of the remaining 395 tad-
poles, 340 could be unambiguously assigned to a known fa-
ther from the 2010 population. Ninety-three (43.9 %) of the
212 A. femoralis males in our study had produced offspring.
Our genetic analysis indicated that of these 93 males, 65 sired
more than 2 of the analysed tadpoles and 44 males sired tad-
poles from more than one clutch. Forty-one (93.18 %) of the
44 males distributed their tadpoles (from single or successive
clutches) across several water bodies (Fig. 3). Seventeen
males spread the larvae of single clutches over either two
(n=14) or three (n=3) pools, respectively. Not a single male
with more than three clutches carried its tadpoles to only one
single pool (Fig. 4). On average, we found larvae of three
males within one pool at a given sampling session (iqr=
1.75-4). Individual males who were assigned to more than
one tadpole used a median of two pools (iqr=1-3, n=65).
The number of pools used per male was significantly associ-
ated with the number of identified clutches (n=93, r=0.877,
linear regression fit: y=0.825x+0.303, R*=0.769, p<0.001;
Fig. 4). One additional clutch per male translated into, on
average, 0.825 (standard error=0.047) additional used pools.
This relationship also remained significant when all males
with only one assigned tadpole were removed from the anal-
ysis, but the effect size was then reduced to additional 0.44
(standard error=0.064) pools, on average, per added clutch
(n=65, r=0.843, linear regression fit: y=0.789x+0.444, R>=
0.710, p<0.001).

Discussion

In this study, we provide evidence for brood-partitioning be-
haviour in A. femoralis. The number of pools where males
used to deposit their tadpoles increased significantly with their
number of clutches. On average, 0.82 additional pools were
used per additional clutch by each male. All males with more
than three clutches used multiple pools for larval deposition.
This demonstrates that 4. femoralis males generally distribute
their offspring from successive clutches, and to a lesser extent
also from single clutches, across several pools.

Based on the heterogeneity of ephemeral aquatic environ-
ments, there are presumably large differences in quality with
respect to tadpole development. Small natural water bodies at
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Fig. 1 Total number of tadpoles 400

detected in individual pools at
both samplings. Grey bars refer to
the first and white bars to the
second sampling, respectively

300+

2004

100+

Number of tadpoles per pool

12 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

our study site were observed to quickly dry out when exposed
to direct sunlight in periods of little rainfall (cf. Roth and
Jackson 1987; Summers 1999; pers. obs. by all authors).
Large pools are less susceptible to desiccation, but in turn
are associated with increased predation risk by invertebrate
larvae (Alford 1999). In our experimental design, pool size
was constant (approx. 20 L), because pools were originally
established for a study on reproductive resource supplemen-
tation (Ringler et al. 2015). We found dragonfly larvae and to
a lesser extent heterospecific carnivorous tadpoles (e.g.
D. tinctorius) as common aquatic predators of A. femoralis
tadpoles at our study site. Also, spiders, snakes and tortoises
were identified as potential predators of A. femoralis tadpoles.
Although cannibalism is common in many dendrobatids
(Caldwell and de Aratjo 1998; Summers and Symula 2001),
A. femoralis tadpoles do not show this behaviour (Weygoldt
1980, obs. in captivity; ER pers. obs.). Consequently, male
A. femoralis do not avoid placing their offspring with other
conspecific tadpoles.

In pools where dragonfly larvae were present, the number
of tadpoles per pool significantly decreased with increasing

100+

y =-12.013x + 59.25
R*=0.37, p=0.03

80

Number of tadpoles per pool

1 2 3 4 5
Number of dragonfly larvae per pool

Fig. 2 Total number of tadpoles in relation to the number of dragonfly
larvae per pool
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Pool

number of dragonfly larvae. We cannot unambiguously dis-
tinguish whether this effect was caused by prior predation by
the dragonfly larvae or whether it is a result of differential
deposition of fewer tadpoles into pools with many dragonfly
larvae. It has been shown by McKeon and Summers (2013)
that A. femoralis males try to assess the presence of predators
at specific water bodies immediately before larval deposition
and adjust their deposition behaviour accordingly. However,
predators could also enter the pool affer tadpoles have been
released. Thus, even if transporting males assess predator
presence prior to tadpole deposition, these males cannot be
certain of a low predation risk for their brood in the near
future. In addition to predation, other confounding and highly
unpredictable factors were identified, such as fruits, faeces or
dead animals that fell into the pools and severely degraded
water quality (i.e. no surviving tadpoles were detected inside
these pools). In contrast, other pools contained up to 363 tad-
poles when they were sampled (Fig. 1). We conclude that
there are highly diverse and unforeseeable threats regarding
tadpole development across pools—a crucial prerequisite for
bet-hedging strategies to evolve.

The costs of tadpole transport for the carriers, such as con-
spicuousness to predators (Crump 1995), energetic effort

16
Brood spreading:
14 Osingle pool
12 Oonly within clutches
Donly between clutches
10 mwithin and between clutches

Frequency
[ee]
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4

gl |

0 ‘ .
3 4 5 6 7

1 2
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Fig.3 Histogram of pool use for larval deposition by A. femoralis males.
Only males with at least two clutches are considered in this graph
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Fig. 4 Relation between the number of clutches per male and the number
of pools used per male. Dot size indicates the number of cases

(Simon 1983), or lost mating opportunities (Townsend 1986)
will increase with the time spent distributing tadpoles. We
expect increased costs for both inter- and intra-clutch
partitioning (e.g. increased searching effort or longer duration
when allocating tadpoles of a single clutch across multiple
pools) compared to males always using the same pool for
larval deposition. However, the resulting increase in tadpole
survival might outweigh the associated costs for the
transporting individual. Our data do now allow the assessment
of whether patterns of tadpole distribution ultimately influ-
ence individual reproductive success in 4. femoralis. But giv-
en the high variation in quality among (natural) water bodies,
the low predictability of risks for the entire period of larval
development and the presumably small increase in costs for
the transporting parent (compared to single-pool use), a strong
selective benefit of bet-hedging strategies can be assumed (cf.
Leimar 2009). The allocation of larvae across multiple sites
may act as a risk-spreading strategy to overcome the risk of
total offspring loss, by combining advantages from between-
and within-generation bet-hedging (i.e. inter- and intra-clutch
partitioning), respectively (cf. conservative bet hedging:
Philippi and Seger 1989; see also Summers 1990 and
Starrfelt and Kokko 2012). We hypothesize that such brood-
spreading behaviour has evolved as an adaptation to environ-
mental uncertainty.

We cannot unambiguously differentiate whether males ac-
tively approached specific pools or whether they roamed
through the area in search of suitable water bodies.
However, A. femoralis males can accurately navigate in famil-
iar areas around their territories (PaSukonis et al. 2014a, b),
and previous studies indicate a strategic behaviour rather than
an aimless search for suitable tadpole deposition sites (Ringler
et al. 2013). As naturally occurring tadpole-deposition sites
are generally neither common nor evenly distributed, the use

of known pools would be preferable to repeated random
searching. Preliminary data on tadpole transport trajectories
show straight approach trajectories (Pasukonis, unpublished
data). Hence, we presume that males actively approach the
pools they know to distribute their larvae.

The observed brood-partitioning behaviour might also
have causes other than bet-hedging, such as reduced compe-
tition among kin or resource depletion (cf. Smith 1990;
Saidapur and Girish 2001; see also Pfennig 1990). Given that
A. femoralis tadpoles are herbivorous and nutrients in
medium-sized pools are not a limiting factor (Brown et al.
2008 and references therein), we expect that the negative im-
pact of tadpole density is rather negligible. The variation in the
number of tadpoles across pools was high (Fig. 1); thus, it is
highly unlikely that the observed brood-spreading strategy has
evolved as a mechanism to avoid high larval density in water
bodies. However, the observed brood-partitioning behaviour
is not necessarily driven by one single mechanism. Beside the
benefits of bet-hedging, other positive effects due to allocating
kin across space might have helped to shift the cost-benefit
ratio in favour of a brood-spreading strategy.

In dendrobatid frogs, we find the evolutionary transition
from species carrying many tadpoles (e.g. whole clutches) into
large water bodies to species that allocate single tadpoles each
to distinct small-sized pools, such as bromeliad axils or other
phytotelmata (Weygoldt 1987; Brown et al. 2010). We hy-
pothesize that the group-wise partitioning of tadpoles, partic-
ularly of single clutches, in species that use medium-sized
pools might have been a transitional evolutionary step towards
the deposition of only single tadpoles in very small pools (cf.
Summers and McKeon 2004). While large bodies of water are
generally associated with high predation risk, small pools of-
fer almost predator-free environments (see Brown et al. 2008
and references therein). At the same time, food availability for
larvae decreases with decreasing size of the water body.
Consequentially, species with carnivorous tadpoles allocate
their larvae singly into small phytotelmata to avoid larval can-
nibalism among siblings (Summers 1999; Summers and
McKeon 2004) and regularly return to the deposition site in
order to provision their young with unfertilized eggs (Poelman
and Dicke 2007; Brown et al. 2009). However, these modal-
ities are only the two extremes of a continuum, with many
dendrobatid species actually using medium-sized pools for
larval deposition (Brown et al. 2010). In our study, we show
that brood-partitioning behaviour can occur in a species that
uses medium-sized water bodies. This finding demonstrates
that brood-spreading behaviour can evolve also in the absence
of cannibalism and fully independent from post-deposition
provisioning of aquatic larvae.

Acknowledgments The work in the field and laboratory was funded by
the University of Vienna (‘Férderstipendium’), the Centre national de la
recherche scientifique (CNRS, ‘Nouragues Grant’, PI: MR) and by the

@ Springer



1016

Behav Ecol Sociobiol (2015) 69:1011-1017

Austrian Science Fund (FWF: P18811, PI: WH; P24788-B22, PI: ER).
The Nouragues Ecological Research Station is supported by the CNRS.
All necessary permissions were acquired from the CNRS and the DEAL
Guyane. We are grateful to Alexandra Fischer-Pardow, Florian Ulm,
Johannes Dohlemann and Mathias Fernandez for the assistance with tad-
pole sampling, to Matthias Nemeth and Norbert Milasowszky for the
statistical advice and to Gesche Westphal-Fitch for the language editing.
Barbara Fischer and two anonymous reviewers provided valuable com-
ments on the manuscript.

Ethical standards We confirm that there are no competing interests for
any of the authors. All research presented in the manuscript was conduct-
ed in accordance with all applicable laws and rules set forth by their
governments and institutions, and all necessary permits were in hand
when the research was conducted.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

Alford RA (1999) Ecology: resource use, competition and predation. In:
McDiarmid RW, Altig R (eds) Tadpoles. The biology of anuran
larvae. University of Chicago Press, Chicago, pp 240278

Andersson M, Ahlund M (2012) Don’t put all your eggs in one nest:
spread them and cut time at risk. Am Nat 180:354-363

Beaumont HJ, Gallie J, Kost C, Ferguson GC, Rainey PB (2009)
Experimental evolution of bet hedging. Nature 462:90-93

Boulenger GA (1884) On a collection of frogs from Yurimaguas,
Huallaga River, Northern Peru. Proc Zool Soc London 1883:635—
638

Brown JL, Twomey E, Morales V, Summers K (2008) Phytotelm size in
relation to parental care and mating strategies in two species of
Peruvian poison frogs. Behaviour 145:1139-1165

Brown JL, Morales V, Summers K (2009) Tactical reproductive parasit-
ism via larval cannibalism in Peruvian poison frogs. Biol Lett 5:
148-151

Brown JL, Morales V, Summers K (2010) A key ecological trait drove the
evolution of biparental care and monogamy in an amphibian. Am
Nat 175:436-446

Byrne PG, Keogh SJ, Keogh JS (2009) Extreme sequential polyandry
insures against nest failure in a frog. Proc R Soc Lond B 276:115-
120

Caldwell JP, de Aratijo MC (1998) Cannibalistic interactions resulting
from indiscriminate predatory behavior in tadpoles of poison frogs
(Anura: Dendrobatidae). Biotropica 30:92—103

Crean AJ, Marshall DJ (2009) Coping with environmental uncertainty:
dynamic bet hedging as a maternal effect. Philos Trans R Soc B 364:
1087-1096

Crump ML (1995) Parental care. In: Sullivan BK, Heatwole H (eds)
Social behaviour. Surrey Beatty, Chipping Norton, pp 518-567

Fox CW, Rauter CM (2003) Bet-hedging and the evolution of multiple
mating. Evol Ecol Res 5:273-286

Garcia-Gonzalez F, Yasui Y, Evans JP (2015) Mating portfolios: bet-
hedging, sexual selection and female multiple mating. Proc R Soc
Lond B 282:20141525

Gonzalez SC, Touchon JC, Vonesh JR (2011) Interactions between com-
petition and predation shape early growth and survival of two
Neotropical hylid tadpoles. Biotropica 43:633—639

@ Springer

Hopper KR (1999) Risk-spreading and bet-hedging in insect population
biology. Annu Rev Entomol 44:535-560

Kriger KM, Hero J (2007) The chytrid fungus Batrachochytrium
dendrobatidis is non-randomly distributed across amphibian breed-
ing habitats. Divers Distrib 13:781-788

Laaksonen T (2004) Hatching asynchrony as a bet-hedging strategy—an
offspring diversity hypothesis. Oikos 104:616-620

Leimar O (2009) Environmental and genetic cues in the evolution of
phenotypic polymorphism. Evol Ecol 23:125-135

Lotters S, Jungfer K, Henkel FW, Schmidt W (2007) Poison frogs.
Biology, species and captive husbandry. Edition Chimaira,
Frankfurt am Main, Germany

Magnusson WE, Hero J (1991) Predation and the evolution of complex
oviposition behaviour in Amazon rainforest frogs. Oecologia 86:
310-318

Mikinen T, Panova M, André C (2007) High levels of multiple paternity
in Littorina saxatilis: hedging the bets? J Hered 98:705-711

McKeon CS, Summers K (2013) Predator driven reproductive behavior
in a tropical frog. Evol Ecol 27:725-737

Montanarin A, Kaefer IL, Lima Pimentel A (2011) Courtship and mating
behaviour of the brilliant-thighed frog Allobates femoralis from
Central Amazonia: implications for the study of a species complex.
Ethol Ecol Evol 23:141-150

Narins PM, Hodl W, Grabul DS (2003) Bimodal signal requisite for
agonistic behavior in a dart-poison frog, Epipedobates femoralis.
Proc Natl Acad Sci U S A 100:577-580

Olofsson H, Ripa J, Jonzén N (2009) Bet-hedging as an evolutionary
game: the trade-off between egg size and number. Proc R Soc
Lond B 276:2963-2969

Pasukonis A, Loretto M, Landler L, Ringler M, Hodl W (2014a) Homing
trajectories and initial orientation in a Neotropical territorial frog,
Allobates femoralis (Dendrobatidae). Front Zool 11:29

Pasukonis A, Warrington I, Ringler M, H6dl W (2014b) Poison frogs rely
on experience to find the way home in the rainforest. Biol Lett 10:
20140642

Pfennig DW (1990) The adaptive significance of an environmentally-
cued developmental switch in an anuran tadpole. Oecologia 85:
101-107

Philippi T, Seger J (1989) Hedging one’s evolutionary bets, revisited.
Trends Ecol Evol 4:41-44

Poelman EH, Dicke M (2007) Offering offspring as food to cannibals:
oviposition strategies of Amazonian poison frogs (Dendrobates
ventrimaculatus). Evol Ecol 21:215-227

Poelman EH, Wijngaarden RAP, Raaijmakers CE (2013) Amazon poison
frogs (Ranitomeya amazonica) use different phytotelm characteris-
tics to determine their suitability for egg and tadpole deposition.
Evol Ecol 27:661-674

Rhoden HR, Bolek MG (2011) Distribution and reproductive strategies of
Gyrinicola batrachiensis (Oxyuroidea: Pharyngodonidae) in larvae
of eight species of amphibians from Nebraska. J Parasitol 97:629—
635

Richter-Boix A, Tejedo M, Rezende EL (2011) Evolution and plasticity
of anuran larval development in response to desiccation. A compar-
ative analysis. Ecol Evol 1:15-25

Ringler M, Ursprung E, Hodl W (2009) Site fidelity and patterns of short-
and long-term movement in the brilliant-thighed poison frog
Allobates femoralis (Aromobatidae). Behav Ecol Sociobiol 63:
1281-1293

Ringler M, Ringler E, Magafia Mendoza D, H6dl W (2011) Intrusion
experiments to measure territory size: development of the method,
tests through simulations, and application in the frog Allobates
femoralis. PLoS ONE 6:¢25844

Ringler E, Ringler M, Jehle R, Hodl W (2012) The female perspective of
mating in A. femoralis, a territorial frog with paternal care—a spatial
and genetic analysis. PLoS ONE 7:e40237


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Behav Ecol Sociobiol (2015) 69:1011-1017

1017

Ringler E, Pasukonis A, Hodl W, Ringler M (2013) Tadpole transport logis-
tics in a Neotropical poison frog: indications for strategic planning and
adaptive plasticity in anuran parental care. Front Zool 10:1-10

Ringler M, Mangione R, PaSukonis A et al (2014) High-resolution forest
mapping for behavioural studies in the Nature Reserve ‘Les
Nouragues’, French Guiana. J Maps. doi:10.1080/17445647.2014.
972995

Ringler M, Hodl W, Ringler E (2015) Populations, pools, and peccaries:
simulating the impact of ecosystem engineers on rainforest frogs.
Behav Ecol. doi:10.1093/beheco/aru243

Roberts JD, Byrme PG (2011) Polyandry, sperm competition, and the
evolution of anuran amphibians. Adv Stud Behav 43:1-53

Roithmair ME (1992) Territoriality and male mating success in the dart-
poison frog, Epipedobates femoralis (Dendrobatidae, Anura).
Ethology 92:331-343

Rojas B (2014) Strange parental decisions: fathers of the dyeing poison
frog deposit their tadpoles in pools occupied by large cannibals.
Behav Ecol Sociobiol 68:551-559

Root RB, Kareiva PM (1984) The search for resources by cabbage but-
terflies (Pieris rapae): ecological consequences and adaptive signif-
icance of Markovian movements in a patchy environment. Ecology
65:147-165

Roth AH, Jackson JF (1987) The effect of pool size on recruitment of
predatory insects and on mortality in a larval anuran. Herpetologica
43:224-232

Saidapur SK, Girish S (2001) Growth and metamorphosis of Bufo
melanostictus tadpoles: effects of kinship and density. J Herpetol
35:249-254

Sarhan A, Kokko H (2007) Multiple mating in the Glanville fritillary
butterfly: a case of within-generation bet hedging? Evolution 61:
606-616

Schulte LM, Yeager J, Schulte R, Veith M, Wemer P, Beck LA, Létters S
(2011) The smell of success: choice of larval rearing sites by means
of chemical cues in a Peruvian poison frog. Anim Behav 81:1147—
1154

Simon MP (1983) The ecology of parental care in a terrestrial breeding
frog from New Guinea. Behav Ecol Sociobiol 14:61-67

Simons AM (2011) Modes of response to environmental change and the
elusive empirical evidence for bet hedging. Proc R Soc Lond B 278:
1601-1609

Smith DC (1990) Population structure and competition among kin in the
chorus frog (Pseudacris triseriata). Evolution 44:1529—1541

Spieler M, Linsenmair KE (1997) Choice of optimal oviposition sites by
Hoplobatrachus occipitalis (Anura: Ranidae) in an unpredictable
and patchy environment. Oecologia 109:184—199

Starrfelt J, Kokko H (2012) Bet-hedging—a triple trade-off between
means, variances and correlations. Biol Rev 87:742-755

Stynoski JL, Shelton G, Stynoski P (2014) Maternally derived chemical
defenses are an effective deterrent against some predators of poison
frog tadpoles (Oophaga pumilio). Biol Lett 10:20140187

Summers K (1990) Paternal care and the cost of polygyny in the green
dart-poison frog. Behav Ecol Sociobiol 27:307-313

Summers K (1999) The effects of cannibalism on Amazonian poison frog
egg and tadpole deposition and survivorship in Heliconia axil pools.
Oecologia 119:557-564

Summers K, Amos W (1997) Behavioral, ecological, and molecular ge-
netic analyses of reproductive strategies in the Amazonian dart-
poison frog, Dendrobates ventrimaculatus. Behav Ecol 8:260-267

Summers K, McKeon CS (2004) The evolutionary ecology of
phytotelmata use in Neotropical poison frogs. Misc Publ Mus Zool
Univ Michigan 193:55-73

Summers K, Symula R (2001) Cannibalism and kin discrimination in
tadpoles of the Amazonian poison frog, Dendrobates
ventrimaculatus, in the field. Herpetol J 11:17-21

Townsend DS (1986) The costs of male parental care and its evolution in
a neotropical frog. Behav Ecol Sociobiol 19:187-195

Ursprung E, Ringler M, Jehle R, H6dl W (2011) Strong male/male
competition allows for nonchoosy females: high levels of
polygynandry in a territorial frog with paternal care. Mol Ecol
20:1759-1771

Vonesh JR, De la Cruz O (2002) Complex life cycles and density depen-
dence: assessing the contribution of egg mortality to amphibian
declines. Oecologia 133:325-333

Wells KD (2007) The ecology and behavior of amphibians. The
University of Chicago Press, Chicago

Weygoldt P (1980) Zur Fortpflanzungsbiologie von Phyllobates
femoralis (Boulenger) im Terrarium. Salamandra 16:215-226

Weygoldt P (1987) Evolution of parental care in dart poison frogs
(Amphibia: Anura: Dendrobatidae). Z Zool Syst Evol 25:51-67

@ Springer


http://dx.doi.org/10.1080/17445647.2014.972995
http://dx.doi.org/10.1080/17445647.2014.972995
http://dx.doi.org/10.1093/beheco/aru243

	Brood-partitioning behaviour in unpredictable environments: hedging the bets?
	Abstract
	Introduction
	Methods
	Study species
	Sampling and genotyping
	Brood-partitioning behaviour

	Results
	Discussion
	References


