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Head motion during PET scans causes image quality degradation, decreased concentration in 

regions with high uptake and incorrect outcome measures from kinetic analysis of dynamic 

datasets. Previously, we proposed a data-driven method, center of tracer distribution (COD), to 

detect head motion without an external motion tracking device. There, motion was detected using 

one dimension of the COD trace with a semiautomatic detection algorithm, requiring multiple user 

defined parameters and manual intervention. In this study, we developed a new data-driven motion 

detection algorithm, which is automatic, self-adaptive to noise level, does not require user-defined 

parameters and uses all three dimensions of the COD trace (3DCOD). 3DCOD was first validated 

and tested using 30 simulation studies (18F-FDG, N = 15; 11C-raclopride (RAC), N = 15) with 

large motion. The proposed motion correction method was tested on 22 real human datasets, 

with 20 acquired from a high resolution research tomograph (HRRT) scanner (18F-FDG, N = 10; 
11C-RAC, N = 10) and 2 acquired from the Siemens Biograph mCT scanner. Real-time hardware-

based motion tracking information (Vicra) was available for all real studies and was used as the 

gold standard. 3DCOD was compared to Vicra, no motion correction (NMC), one-direction COD 

(our previous method called 1DCOD) and two conventional frame-based image registration (FIR) 

algorithms, i.e., FIR1 (based on predefined frames reconstructed with attenuation correction) and 

FIR2 (without attenuation correction) for both simulation and real studies. For the simulation 

studies, 3DCOD yielded −2.3 ± 1.4% (mean ± standard deviation across all subjects and 11 brain 

regions) error in region of interest (ROI) uptake for 18F-FDG (−3.4 ± 1.7% for 11C-RAC across 

all subjects and 2 regions) as compared to Vicra (perfect correction) while NMC, FIR1, FIR2 and 

1DCOD yielded −25.4 ± 11.1% (−34.5 ± 16.1% for 11C-RAC), −13.4 ± 3.5% (−16.1 ± 4.6%), 

−5.7 ± 3.6% (−8.0 ± 4.5%) and −2.6 ± 1.5% (−5.1 ± 2.7%), respectively. For real HRRT studies, 

3DCOD yielded −0.3 ± 2.8% difference for 18F-FDG (−0.4 ± 3.2% for 11C-RAC) as compared 

to Vicra while NMC, FIR1, FIR2 and 1DCOD yielded −14.9 ± 9.0% (−24.5 ± 14.6%), −3.6 ± 

4.9% (−13.4 ± 14.3%), −0.6 ± 3.4% (−6.7 ± 5.3%) and −1.5 ± 4.2% (−2.2 ± 4.1%), respectively. 

In summary, the proposed motion correction method yielded comparable performance to the 

hardware-based motion tracking method for multiple tracers, including very challenging cases 

with large frequent head motion, in studies performed on a non-TOF scanner.
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1. Introduction

Head movement is a major limitation in brain positron emission tomography (PET) 

imaging, reducing image resolution, lowering apparent concentration in high-uptake regions, 

introducing attenuation-emission mismatch artifacts, and causing bias in parameter estimates 

fit by tracer kinetic modeling (Keller et al., 2012). In the past, many methods have 

been proposed to correct head motion, including frame-based image-registration (FIR) and 

correction using real-time hardware-based motion tracking (HMT) information (Rahmim et 

al., 2007; Fulton et al., 2002; Montgomery et al., 2006; Bloomfield et al., 2003; Herzog et 

al., 2005; Picard and Thompson, 1997; Costes et al., 2009). However, FIR cannot correct for 

motion within one predefined scan period (intra-frame) while HMT is not routinely used in 

the clinic, as setup and calibration of the tracking device can be complicated and attaching 
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markers to each patient increases the logistical burden of the scan. Markerless motion 

tracking using structured light does not require any physical attachment to the patient, but 

its performance can be impacted by non-rigid changes in facial expression and different skin 

colors. Additionally, structured light approaches have not yet been fully validated (Kyme et 

al., 2018; Olesen et al., 2013).

Recently, several data-driven motion correction approaches (i.e., based on PET raw data 

itself) have been proposed. Schleyer et al. used a principal component analysis (PCA)-based 

method, which was first proposed in (Thielemans et al., 2013), to detect head motion with 

the aid of time-of-flight (TOF) information (Schleyer et al., 2015; Thielemans et al., 2013). 

Lu et al. proposed another data-driven algorithm, Centroid Of Distribution (COD), to detect 

patient motion (Lu et al., 2020; 2019b). Both PCA-based and COD-based methods used a 

one dimensional (1-D) PCA or COD trace, where motion detection was treated as an edge 

detection problem on the 1-D trace. PCA and COD traces are intrinsically noisy due to the 

limited count-statistics of the PET raw data. Motion detection also requires tuning multiple 

user-defined parameters, including the size of a median filter used to smooth the trace 

and a threshold for detecting motion. Therefore, these parameters control the sensitivity of 

motion detection, and were empirically set, rather than statistics-based, in both (Schleyer 

et al., 2015) and (Lu et al., 2020). Thus, these detection algorithms are tracer-distribution 

and count-level dependent. Note that count-level in the raw data is subject-dependent, and 

within the same scan, the count-level can vary greatly due to the tracer distribution change 

as well as the radioactive decay. Optimization of the user-defined parameters is, therefore, 

non-trivial. Thus, it is of interest to develop a robust data-driven motion detection approach, 

which does not require subject-dependent or count level-dependent parameter tuning. In 

(Spangler-Bickell et al., 2021), Sprangler-Bickell et al. recently performed an investigation, 

which focused on the proper frame duration for data-driven rigid motion estimation. Their 

proposed method utilized ultra-short frames for rigid motion estimation and correction. 

Comparably, we incorporated both short and long frames for motion estimation and 

correction. However, in Spangler-Bickell et al. (2021), only static data was used where 

tracer distribution change over time is insignificant while dynamic data sets were used in this 

paper. Moreover, the impact of motion correction on the accuracy of absolute quantification 

was not investigated.

In this study, we propose a new count statistics-based data-driven motion detection 

algorithm, which does not require user-parameter tuning and uses all three dimensions of the 

COD trace. We validated the proposed motion detection algorithm using 30 simulated 4-D 

(3-D + time) dynamic PET studies with large motion for both 18F-FDG and 11C-raclopride 

(11C-RAC) tracers. For the simulation studies, the proposed motion correction method was 

compared to two types of FIR algorithms and perfect motion correction, i.e., the same 

motion used for simulation was also used for correction (Costes et al., 2009). For real 

studies, the proposed motion correction method was evaluated for human dynamic scans 

with 18F-FDG (N = 10), 11C-RAC (N = 10), 11C-PBR28 (N = 1), and 11C-MRB (N = 1); 

and was compared to HMT with the Polaris Vicra tracking system (NDI Systems, Waterloo, 

Canada) (referred to as Vicra), which provides continuous head motion monitoring at 20 Hz 

and was considered as the “gold standard” (Jin et al., 2013).
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2. Methods

2.1. Dynamic 4D PET simulation

2.1.1. 4D digital phantom—Fifteen digital phantoms were generated based on real 

human PET studies, which were previously performed at the Yale PET Center. Each of 

the 15 subjects underwent separate PET scans with 18F-FDG and 11C-RAC. An individual 

attenuation map was obtained through a transmission scan before each PET scan. Each 

subject underwent MR scans and the individual T1-weighted MR images were segmented 

into 109 regions of interest (ROIs) using FreeSurfer (Fischl et al., 2004; 2002). The ROIs 

were resliced to the individual PET space based on the MR-PET rigid registration, which 

was performed using FLIRT with mutual information as the similarity metric (Jenkinson and 

Smith, 2001). Each individual phantom consists of 109 ROI labels in PET space (256 × 256 

× 207 voxels with 1.219 × 1.219 × 1.231 mm3/voxel).

Motion was tracked by the Vicra system. Individual motion information, recorded at 20 

Hz by the Vicra system during each real scan, was used in the simulation for the same 

individual phantom. The 15 subjects who underwent the largest motion magnitude were 

selected out of 57 examined cases for 18F-FDG and 143 for 11C-RAC. The head motion 

magnitude of any frame within the field-of-view (FOV) was determined from the Vicra 

data as twice the standard deviation of the location of eight points that were selected as 

the vertices of a 10-cm side-length cube centered in the scanner FOV. The final motion 

magnitude was the average of the values from the eight points (Jin et al., 2013).

We simulated 18F-FDG and 11C-RAC studies using the estimated kinetic parameters from 

two real datasets. Specifically, paired MR scans of the two real studies were segmented 

using FreeSurfer. For each FreeSurfer ROI, a compartmental model (the two -tissue 

compartment model for 18F-FDG, and the simplified reference tissue model for 11C-RAC) 

was used to fit the time-activity curve to generate the tracer kinetic parameters (Gallezot 

et al., 2020). The kinetic parameters were then used to generate noise-free time-activity 

curves for each ROI. The same time-activity curves were finally used for each ROI of all 15 

subjects for each tracer, i.e., different brains with different motions but with the same tracer 

dynamics were simulated.

2.1.2. Data simulation—For every simulated study, a 4-D 0–90 min dynamic simulation 

was performed for 18F-FDG (N = 15) and 0–60 min dynamic simulation for 11C-RAC (N = 

15), in the presence of motion, to generate list-mode data. Simulations were performed for 

both the non-TOF Siemens HRRT and the TOF Siemens Biograph mCT scanners (Schmand 

et al., 1999; Jakoby et al., 2011). The list-mode TOF forward-projector model is part of 

the MOLAR (Motion compensation OSEM List-mode Algorithm for Resolution-Recovery 

Reconstruction) platform (Germino et al., 2017):

E Y i, t, τ = Dt ∑
j

ci, t, jζi, t, τ, jLi, tAi, tNiλj, t , (1)

where the system matrix element ci,t,j represents the contribution from voxel j to the line-of-

response (LOR) i at time t and accounts for scanner geometry, resolution, solid angle, and 
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motion effects. ζi,t,τ,j is the TOF kernel, which defines the contribution of pixel j to TOF 

bin τ of LOR i at time t. Li,t is the dimensionless product of decay factor at time t, live 

time at time t, and the positron branching fraction. The sensitivity normalization factor Ni, 

in units of (counts/second) / (Bq/mL × mm), converts the forward projection of image λj,t 

(Bq/mL) to units of counts/second. Ai,t is the dimensionless attenuation factor. E(Yi,t,τ) is 

the expected number of counts in the TOF bin τ of LOR i in time bin t. The total scan 

time frame T (second) is divided into equal sub-bins of duration Dt (second) indexed by 

t. For non-TOF HRRT simulations, ζi,t,τ,j is set to 1 and the τ index is eliminated. Data 

were simulated with and without motion. Compton scatter and randoms were not simulated. 

Spatial resolution of 2.5 mm Full-Width-Half-Maximum (FWHM) was simulated for HRRT 

and 4.0 mm was simulated for mCT. TOF resolution of 580 ps in FWHM was used in the 

mCT simulations.

2.2. Real patient studies

Ten previously acquired human dynamic HRRT 18F-FDG (injected activity: 184 ± 4 MBq) 

and ten HRRT 11C-RAC (699 ± 66 MBq) studies were analyzed. A transmission scan was 

used for attenuation correction. Individual T1-weighted MR images were segmented into 

109 ROIs using FreeSurfer, which were registered and resliced to the individual PET space 

based on the MR-PET rigid registration using mutual information (Fischl et al., 2004; 2002; 

Jenkinson and Smith, 2001).

Two dynamic mCT scans using 11C-PBR28 (0–90 min post injection) and 11C-MRB (0–

120 min) were analyzed. 11C-PBR28, a PET radioligand that has high specificity for the 

18-kDa translocator protein (TSPO) is used for in vivo measurement of neuroinflammation 

(Hillmer et al., 2020; Owen et al., 2014). 11C-MRB is used to measure brain norepinephrine 

transporters (NET) (Ding et al., 2010). Vicra HMT was used for motion monitoring for all 

the real scans for both scanners.

2.3. COD generation and previous detection algorithm

Head motion information was extracted from the PET list-mode data based on the COD 

trace (Lu et al., 2020; 2019b). To generate COD for TOF raw data, for every event i, the 

central spatial coordinate of the TOF bin, (Xi, Yi, Zi), was calculated and recorded in mm 

from the center of the scanner FOV. The (Xi, Yi, Zi) values for each event were averaged 

over a short time interval, e.g., 1 s, to generate raw COD traces in three directions: Cx 

for lateral, Cy for anterior-posterior (AP), and Cz for superior-inferior (SI) directions. For 

non-TOF COD, (Xi, Yi, Zi) was the central coordinate of the entire LOR (Lu et al., 2020). 

Note that the random component of COD in each direction follows a normal distribution 

based on the central limit theorem.

Previously, we developed a semiautomatic algorithm to detect motion based on the COD 

trace, which required multiple user-defined parameters that are tracer- and noise-level 

dependent (Lu et al., 2020; 2019b) such as: (1) length of the median filter applied to the 

COD trace, which was adjusted based on empirical observation; (2) the minimum duration 

of the motion-free frames (MFF), which was set to 30 s (the length of the shortest dynamic 

frame); (3) the 5-min maximum length of an MFF as a tradeoff among the sensitivity 
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to slow motion, the computational cost and registration accuracy and (4) the smoothing 

kernel for MFF reconstructions. Note that these user-defined parameters are related to 

motion-thresholding only. The dependency on tracer- and noise-level is further explained 

under the limitations in the Discussion section. After motion detection, MFF separated by 

detected motion time points (MTP) were reconstructed without attenuation correction (AC) 

and rigidly registered to a reference frame to estimate motion between each MFF and the 

reference frame.

2.4. New adaptive data-driven motion detection algorithm

In this study, we propose a new motion detection algorithm, which automatically detects 

motion based on the COD trace and is adaptive to different tracers and noise levels without 

user-defined parameters. First, we provide an overview of the new algorithm (Fig. 1). All the 

symbols used in the detection algorithm are summarized in Table 1.

Let n be a possible number of MTPs on the COD trace. For a given n, (e.g., n = 10) in Fig. 

1A, the proposed motion detection algorithm finds the positions of all n MTPs that minimize 

an estimate of total variability within-MFF, i.e., error Fig. 1.B and C show the scenarios of 

n = 20 and 30 for the same study, respectively. The algorithm will finally choose the n by 

directly estimating the error level from the COD itself, and the corresponding MTPs are the 

motion detection results. We will now describe the new algorithm in detail.

2.4.1. RSS error within an MFF—We will evaluate a range of n, and the MTPs/MFFs 

as follows: for a given detection result, i.e., a set of MTPs and corresponding MFFs for a 

given n, we calculate the mean of the COD trace in one direction, i.e., C, within each MFF, 

and compute the residual sum of squares (RSS) of the fitting. We use Cm to denote the 

COD segment within the mth MFF. Note that the notation applies to any of the three COD 

directions. RSS of the mth MFF is computed as:

RSSm = ∑
k

Nm
Cm(k) − Cm

2, and Cm = 1
Nm

∑
k

Nm
Cm(k), (2)

where k indexes the sampling interval, e.g., 1 s, within Cm. m indexes the MFF. Nm is the 

total number of sampling intervals within the mth MFF Eq. (2). is repeated for all m. By 

taking a sum of RSS over all the MFFs, we obtain the total residual error, i.e., E, of one 
detection scenario:

E = ∑
m

RSSm . (3)

2.4.2. Choosing the MTPs for a given n using the pruned exact linear 
time algorithm—Here, we describe how to use Pruned Exact Linear Time (PELT), a 

changepoint detection algorithm, to find the n MTPs locations in the COD trace that yields 

the lowest total residual error, i.e., Emin (n) (Killick et al., 2012). Note that PELT guarantees 

finding Emin (n) on the condition that the noise in the COD trace is normally distributed. 

PELT was established based on an optimal partitioning (OP) approach, where OP belongs 
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to one research branch in the changepoint detection literature (Jackson et al., 2005). By 

adding a pruning phase to the original OP algorithm, Killick et al. (2012), Jackson et al. 

(2005) reduced the computational cost from O(T2) to O(T), i.e., the computational cost 

linearly increases with the total data points T. As shown in (Killick et al., 2012), Emin (n) 

is a monotonically decreasing function of n (see Fig. 2A for example). Naturally, n(•) is 

a monotonically decreasing function of Emin as well. This characteristic of PELT allows 

us to convert the motion detection problem, i.e., finding the proper choice of n (and its 

corresponding MTPs/MFFs), to a problem of finding the proper Emin, since each Emin 

uniquely corresponds to a set of n MTPs yielded by the PELT. The locations of the n MTPs 

are the motion detection results for a given Emin. Note that under an extreme scenario, i.e., n 
equals the number of sampling time points in the COD trace, Emin reduces to zero. This is, 

of course, a meaningless detection result.

So far, we have introduced PELT, which chooses the optimal MTPs for a given n. Next, we 

will describe how to choose the desired n.

2.4.3. Determining n—First, we apply PELT for a range of n, which generates an Emin 

vs. n plot (Fig. 2A), up to a predefined maximum nmax, which should be higher than the 

most times of motion one would like to detect. In this study, we set the default nmax to 

300 for a 90-min study and 200 for a 60-min study. We refer to this step as Emin scouting. 

Next, we find the n that corresponds to a target detection (ntar), which matches a unique E 
value, Etar. Ideally, ntar and its corresponding MTPs represent the correctly detected motions 

based on C. Here, we hypothesized that the value of Emin at which head motion is accurately 

detected (Etar) should be approximately equal to the error for a comparable hypothetical scan 

where no motion occurred (ENM), i.e., same subject with the same injection but without 

motion. Note that, if no motion occurred, the variation in a COD trace would only be caused 

by the data noise and tracer distribution change. Of course, for a real study, it is impossible 

to directly obtain the ENM, since head motion will almost always occur.

Next, we show how to estimate ENM based on the COD trace (with motion) itself, i.e., C. 

Essentially, we used partial data (without or with minimal motion) of the COD trace to 

estimate the total RSS contribution from data noise as well as tracer distribution change. We 

first divide the entire scan into several equal-duration partitions, e.g., 5 min per partition, 

indexed by s. The use of partitions makes the algorithm adaptive to the COD noise change 

due to isotope decay and tracer clearance. Based on the PELT detection results using nmax, 

we use the RSS (RSSLONG) from the longest P MFFs (indexed by p) within partition s to 

estimate the no motion RSS for partition s:

RSSNM, s ≈ NPART, s ⋅ ∑pRSSLONG, p
∑pNLONG, p

, (4)

where NLONG,p and NPART,s are the total numbers of sampling intervals of the pth MFF 

among the longest P MFFs and the total numbers of sampling intervals of the sth partition, 

respectively (Fig. 2B). The same process is repeated for every partition. RSSNM,s from all 

the partitions are summed and used as the ENM estimate for the entire scan:
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ENM ≈ ∑sRSSNM, s . (5)

Note that if there are less than P MFFs in one partition, then all the MFFs inside the partition 

are used to estimate ENM. If an MFF m extends beyond one partition (s), the portion of the 

MFF m within the partition is used to compute RSSNM,s, i.e., RSSNM, s = NPART, s ⋅
RSSm
Nm

. In 

this study, we set P equal to 2 (see Discussion).

We use the Emin vs. n plot to find the n which yields the error level Etar, and the results of 

PELT with ntar shall be the final motion detection MTP set. We repeat the above detection 

process for all three COD directions, and a union of the MTPs from all the three directions 

is taken and is used as the final detection results. Note that motion detection in each 

direction was performed independently, so different ntar will be different for each direction. 

In the validation studies (Supplementary Material), we found that there is approximately 

a multiplicative constant between the measured ENM based on simulation studies and the 

estimated ENM using Eq. (5). Since the measured ENM, which is referred as Etar, is what we 

are interested in, we introduce a constant α ≥ 1 to calculate the final Etar:

Etar ≈ αENM = α∑sRSSNM,s, α ≥ 1 (6)

To determine α, we performed comparable simulations as in the Data simulation section 

but without motion, i.e., data were simulated using the same subjects but without motion. 

Based on the COD trace without motion, for each study, we measured the ENM, i.e., Etar, 

based on the MFFs, which were determined during the detection using the COD with motion 

in the motion detection process. In other words, we applied the motion detection results, 

i.e., the MFFs, from COD with motion to the COD without motion, to obtain Etar. We 

examined different values of α and found that the difference (average over three directions) 

between estimated ENM (Eq. (5)) and the Etar was the smallest when α = 1.0 and 1.6 for 
18F-FDG and 11C-RAC, respectively. Supplemental Table 1 shows the results of Etar and 

ENM for different scanners and tracers at different directions across 15 subjects. A detailed 

comparison of Etar and ENM for 5 representative studies is shown in Supplemental Table 

2 for 18F-FDG and Supplemental Table 3 for 11C-RAC. Simulation studies (see Fig. 5 and 

Supplemental Tables 1–3) showed that α equals 1.0 for 18F-FDG, and α equals 1.6 for 
11C-RAC; these values were used as the default values in the rest of the paper.

Fig. 2B shows an example of motion detection in one direction for a simulated 18F-FDG 

scan. Supplemental Fig. 1 shows the pseudo code of the entire adaptive motion detection 

process.

2.5. Final MFF determination

We observed that, after motion detection, the COD of some MFFs still contain large 

variations, which represent intra-frame motions and may cause inaccurate downstream 

motion estimation. Here, we discarded the MFFs with large intra-frame motions. 

Specifically, we consider an MFF to contain substantial intra-frame motions if the standard 
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deviation of the COD trace within the MFF is larger than two times the predicted standard 

deviation of the partition, i.e., 2 RSSNM, s/NPART, s, in which the MFF resides Fig. 3.A 

shows an example of raw COD traces in three directions: Cx for lateral, Cy for anterior-

posterior and Cz for superior-inferior directions Fig. 3.B shows the detection result on Cx. 

The green vertical lines indicate the detected MTPs. The horizontal line segments at the 

top of the graph indicate a preserved motion-free frame and the short line segments at 

the bottom of the graph indicate discarded frames due to intra-frame motions. Here, we 

only discard frames with large intra-frame motions while in Sec. III.B, we will show that 

frames with too few counts will also be discarded, since motion usually cannot be robustly 

estimated for those frames.

2.6. Optimized motion estimation and event-by-event corrected reconstruction

Motion between MFFs was estimated and corrected as follows: (1) each MFF was 

reconstructed using OSEM without attenuation correction; (2) the MFF image was smoothed 

by a w-mm FWHM Gaussian filter (see below for w), followed by a rigid registration to 

a 10-min post-injection reference frame; (3) a motion file consisting of all the registration 

transformation matrices, i.e., motion information, was built and events within one MFF 

were corrected using the same motion information; (4) MOLAR was used to perform 

event-by-event motion compensated OSEM reconstruction (2 iterations × 30 subsets for 

HRRT and 3 iterations × 21 subsets for mCT) with attenuation correction. Note that the final 

MOLAR reconstruction can be performed for any frame duration, which does not depend 

on the MFF timing, given its event-by-event correction nature. The discarded frames were 

excluded through the gating function in MOLAR. MFF registration was performed using the 

BioImage Suite image analysis software (Joshi et al., 2011). Details about the registration 

parameters can be found in the Supplemental Materials.

To quantitatively evaluate the motion estimation accuracy, we used the mean distance error 

(MDE, mm) for simulation studies, which is defined as follows: we first computed the 

center-of-mass (COM) of each FreeSurfer segmented ROI (binary map in PET space, see 

Supplemental Fig. 2). Ground-truth COM, i.e., COMgt, of each ROI was computed based on 

the Vicra motion information. Since Vicra motion information was used in the simulation, 

it provides the ground-truth motion information. The estimated location of each COM, i.e., 

COMest, based on the registration between each MFF and the reference frame for the entire 

scan was also computed. MDE is defined as the mean of the Euclidian distance between 

COMgt and COMest across all ROIs and over all time as:

MDE

=

∑t
NALL ∑i

NROI COMi, t, x
gt − COMi, t, xest 2

+ COMi, t, y
gt − COMi, t, yest 2

+ COMi, t, z
gt − COMi, t, zest 2

NROI

NALL

(7)

NROI represents the number of ROI, i indexes the ROI; NALL represents the number of 

sampling time points of the entire scan and t indexes the sampling time point. Here, the 
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COM of each ROI is moved with the ground-truth motion information as well as the 

estimated motion information, and MDE measures the mean distance between the two.

2.7. Motion correction methods for comparison

Reconstruction results based on the proposed COD-based adaptive motion detection 

framework (referred as “3DCOD”) were compared with two conventional FIR methods, 

i.e., FIR1 and FIR2 (see below), and the Vicra-based event-by-event correction. Details 

regarding Vicra attachment and set-up can be found in Section 2.B in (Jin et al., 2013).

In FIR1, predefined 5-min dynamic frames are first reconstructed using OSEM (2 iterations 

× 30 subsets) with AC. The same transmission-scan attenuation map is used for attenuation 

correction for every frame. Each frame reconstruction is smoothed by a 5-mm FWHM 

Gaussian filter and registered to the reference frame (10 min post injection). As a result, 

FIR1 suffers from both AC mismatch artifacts and intra-frame motion within each dynamic 

frame.

FIR2 method is similar to the 3DCOD method, but with the motion information estimated 

based on the predefined 5-min frames which are reconstructed without attenuation 

correction (NAC). In other words, FIR2 is the same as the 3DCOD method but with 

MFFs predefined as the consecutive 5-min frames. After the motion file is obtained from 

registration, MOLAR was used to perform motion compensated OSEM reconstruction 

(same MOLAR parameters as Section 2.6.) with attenuation correction. As compared to 

FIR1, FIR2 suffers less from the AC mismatch artifacts but still suffers from intra-frame 

motions. Furthermore, there would still be some misalignment from missing motion.

2.8. Quantitative analysis

For the simulation studies, motion detection performance was evaluated using detectability, 

which is defined as the ratio between the total number of correctly detected MTPs in 

all the simulated studies and the total number of ground-truth MTPs (based on the Vicra 

motion information) in all the simulated studies. The ground-truth MTPs were generated as 

follows: for each study, FreeSurfer was used to segment the paired MR into 109 ROIs (see 

Supplemental Fig. 2 for example), which were resliced into the individual PET space. At 

every time t (20 Hz), the brain location coordinate vector lt, which is defined as the average 

coordinate of the COMs of 8 ROIs, i.e., (left and right) frontal, occipital, hippocampus and 

cerebellum, was computed. lt was resampled at 1 Hz by averaging over each 20 samples. 

Euclidian distance (Δlt) between lt and lt+1 was computed at all resampled t. Any t that 

yielded Δlt above a threshold (in mm) was registered as a ground-truth MTP at a given 

threshold. In this study, nine thresholds were evaluated: 0.5, 1, 2, 3, 4, 5, 6, 7, and 8 mm. 

If the detection algorithm found a MTP within 1 s before or after a ground-truth MTP, it 

was registered as a correctly detected MTP. Since 1 s was selected as the minimal interval 

for generating COD trace, we empirically allow 1 s as the threshold for accepting an MTP 

match to be selected. Detectability for all three COD directions, as well as using individual 

Cx, Cy, and Cz, were reported.

Mean and standard deviation of the tracer uptake or standardized uptake value (SUV) 

percent differences compared with Vicra were computed across all the subjects for eleven 
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FreeSurfer segmented gray-matter ROIs for 18F-FDG: amygdala, caudate, cerebellum 

cortex, frontal, hippocampus, insula, occipital, parietal, putamen, temporal and thalamus. 

For 11C-RAC, the caudate and putamen regions were used. For simulation and real studies, 

the proposed 3DCOD approach was compared to no motion correction (NMC), FIR1, 

FIR2 and Vicra. For each correction approach, the MR was registered to the 0–10 min 

post-injection frame of the individual method.

All the motion detection source code is available on GitHub (https://github.com/

enetterevilla/COD_MotionDetection). Detailed information about the software used and 

computation cost can be found in the Supplemental Materials.

3. Results

3.1. Detection performance

Fig. 4 shows the motion detectability results and false positive rates using HRRT simulation 

studies (18F-FDG studies (top) and 11C-RAC (bottom)) to compare motion detection based 

on one direction of the COD (1DCOD) trace vs. 3DCOD. The detectability was above 95% 

for motion above 2 mm for 18F-FDG and 3 mm for 11C-RAC, using all three directions of 

COD information (3DCOD, red lines). In comparison, the detectability using only one-COD 

direction was substantially lower for both scanners. As an example, for motion above 5 

mm, the detectability of 11C-RAC in Cy only reached approximately 80% for HRRT. The 

detectability was lower and the false positive rate was higher for 11C-RAC relative to 18F-

FDG, which was expected since 11C-RAC yielded noisier COD and contained more spatially 

centralized tracer distribution (see Supplemental Fig. 3 for example and see Discussion for 

details). As expected, the false positive rate decreases as the motion threshold increases. 

However, our proposed motion detection method showed higher false positive rate than 

1DCOD since it incorporates all MTPs from all three COD directions.

Fig. 5 shows the motion detectability and false positive rates at different inflation factor 

α values (up to 2.0) for simulated HRRT 18F-FDG studies (top row) and 11C-RAC 

(bottom row). Practically, α controls the tradeoff between the motion detectability and the 

registration accuracy. Lower α leads to a more sensitive detection but also yields many short 

MFFs, which may hurt motion estimation accuracy due to higher noise since the motion 

estimation is performed by the registration between MFFs and a reference frame. In other 

words, we may be able to detect all the motion, but we may not be able to robustly estimate 

all of them. Similar to the results shown in Fig. 4, the false positive rate decreases as the α 
and the motion threshold increase.

Detectability results and false positive rates for the mCT scanner can be found in 

Supplemental Fig. 4 while the results at different α values can be found in Supplemental 

Fig. 5. Note that COD with TOF used the center of the TOF bin instead of the center 

of the LOR, which therefore provided better localization information than non-TOF (see 

Supplemental Fig. 6 for example). Nevertheless, the motion detection performance and false 

positive rate of the proposed algorithm was found to be similar between HRRT non-TOF and 

mCT TOF scanners.
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For each tracer, we found that α is consistent across different subjects/scans and is also 

consistent between mCT and HRRT (see Supplemental Table 1). As empirically validated, 

α was set to 1.0 for 18F-FDG and 1.6 for 11C-RAC as the default in the rest of the paper. 

Interestingly, we found that α has very minimal to no effect on the PET quantification. 

To demonstrate this, we performed additional simulation studies by setting α = 2.0 for 
18F-FDG and 3.2 for 11C-RAC. Supplemental Fig. 7 and Supplemental Table 4 show the 

reconstructed results and ROI quantification error, respectively with different α for FDG 

studies. Supplemental Fig. 8 and Supplemental Table 5 display the results for 11C-RAC. 

Results showed that there was minimal change across all regions and tracers.

3.2. Motion compensated reconstruction

3.2.1. Simulation—Motion estimation was performed by rigid image registration using 

the BioImage Suite. Two similarity metrics, i.e., sum of squared differences (SSD) and 

mutual information (MI), were compared. Detailed results can be found in the Supplemental 

Materials.

In Fig. 6A, an example of reconstructed HRRT 18F-FDG images are shown. NMC shows 

very large motion which was largely corrected by 1DCOD while FIR1 and FIR2 failed 

to yield effective correction. 3DCOD results are slightly better than 1DCOD, with both 

methods restoring contrast and resolution when compared to ground truth. Quantitatively, 

with Vicra as the reference, the uptake error mean and standard deviation across the 11 

composite brain regions (see Supplemental Table 6 and Supplemental Table 7) for this 

subject is −4.9 ± 3.4% for the 3DCOD method. Averaging regional errors over the 15 

subjects, as shown in Table 2, NMC yielded largest mean error −25.4 % while FIR1 reduced 

the error to −13.4 %. FIR2 (−5.7%) provided large improvement from FIR1 whereas the 

1DCOD method yielded −2.6 % mean error. The 3DCOD method produced the smallest 

mean error at −2.4 %, only slightly better than 1DCOD. The inter-subject variation (Average 

SD in Table 2), averaged over ROIs, was found to be the smallest for 3DCOD (1.4%) 

and 1DCOD (1.5%) as compared with FIR1 (3.5%), FIR2 (3.6%), and NMC (11.1%). 

The proposed method outperformed 1DCOD, specifically in the frontal region. The mean 

absolute error is shown in Supplemental Table 8.

In Fig. 6B, an example of 11C-RAC images are shown, ranking 15/15 (−6.6 ± 2.2%) in 

the 3DCOD method in terms of mean percent error compared to Vicra in caudate and 

putamen. NMC demonstrated the largest error (−34.5%), followed by the FIR1 (−16.1%), 

FIR2 (−8.0%) and 1DCOD (−5.1%), and the 3DCOD method provided the best result with 

−3.4 % error averaged over 15 subjects and both ROIs. The ROI-level mean of inter-subject 

deviation was smallest for 3DCOD (1.7%) as compared with the FIR1 (4.6%), FIR2 (4.5%), 

1DCOD (2.7%) and NMC (16.1%) Table 3. summarizes these error results. The mean 

absolute error is shown in Supplemental Table 9.

For the simulated mCT studies, representatives of reconstructed 18F-FDG images are shown 

in the Supplemental Fig. 10 and quantitative results can be found in Supplemental Table 10. 

Both 1DCOD and 3DCOD method performed the best with −2.0 % mean error as compared 

with Vicra in mCT studies, followed by FIR2 (−5.8%), FIR1 (−16.7%), and NMC (−27.9%). 

The mean of inter-subject variation in the ROI-level showed similar trend as compared 
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to HRRT, with the proposed motion correction method showing the least change (2.0%) 

compared with other methods (1DCOD: 2.1%, FIR1: 4.2%, FIR2: 3.5%, NMC: 11.5%). 

Two representatives of reconstructed mCT 11C-RAC images and quantitative results are 

shown in Supplemental Fig. 11 and Supplemental Table 11, respectively.

3.2.2. Real patient results—In Fig. 7A, an example of 60–90 min 18F-FDG 

reconstructed images are shown. Mean uptake error of 2.6 ± 4.0% (ranked 10/10, worst 

case), as compared to Vicra, was found for 3DCOD. The NMC image shows large head 

motion in the lateral direction, which was mostly corrected by the 1DCOD method. The 

proposed 3DCOD method further improved the results, specifically in regions like the 

frontal cortex and caudate. Even for the worst case scenario, the motion detection algorithm 

still worked robustly as shown in Table 4, which detailed the quantitative results. The 

proposed 3DCOD yielded minimal mean error (−0.3%) as compared with FIR1 (−3.6%), 

FIR2(−0.6%), 1DCOD (−1.5%) and NMC (−14.9%) across the 10 subjects, using Vicra as 

the reference. The ROI-level mean of inter-subject deviation was 2.8% for 3DCOD, 4.2% 

for 1DCOD, 4.9% for FIR1, 3.4% for FIR2 and 9.0% for NMC. For large ROIs which are 

prone to more motion, e.g., parietal and frontal, the 3DCOD method substantially decreased 

the percentage error. The mean absolute error is shown in Supplemental Table 12.

Coronal 30–60 min 11C-RAC reconstructed images are shown in Fig. 7B for the worst 

case (10/10) in the 3DCOD method in terms of mean uptake difference compared to Vicra. 

Quantitative results are shown in Table 5 for caudate and putamen. Across 10 subjects, 

NMC showed the largest difference (−24.5%) across all subjects and regions compared with 

FIR1 (−13.4%), FIR2 (−6.7%), 1DCOD (−2.2%) and 3DCOD (−0.4%). Additionally, the 

ROI-level mean of inter-subject variation with respect to Vicra was smallest for 3DCOD 

(3.2%) compared with FIR1 (14.3%), FIR2 (5.3%), 1DCOD (4.1%) and NMC (14.6%). At 

the caudate, 3DCOD reduced the error from −28.1 % (NMC) to −1.8 %. The mean absolute 

error is shown in Supplemental Table 13. The best cases (ranked 1/10) for both tracers can 

be found in Supplemental Fig. 12.

We also evaluated two studies performed in the mCT scanner to demonstrate that 

our proposed motion detection and correction method can work in a different scanner. 

Supplemental Fig. 13A shows coronal 60–90 min SUV images for an mCT 11C-MRB study. 

Detailed SUV difference results compared to Vicra are shown in Supplemental Table 14. 

The proposed 3DCOD method yielded smaller mean difference across all regions (2.1%), 

outperforming NMC (−5.1%). Supplemental Fig. 14 shows the COD traces for this subject, 

with large motion starting 75 min post injection in the z direction.

Supplemental Fig. 13B (11C-PBR28, mCT) shows coronal 0–90 min reconstructed images. 

The COD trace for this study, as shown in the Supplemental Fig. 15, indicates the subject 

underwent large motions in the X and Y directions for the entire scan. 3DCOD restored 

the image resolution. Visually, 3DCOD and Vicra yielded comparable corrected images. 

Quantitative results are shown in Supplemental Table 15.
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4. Discussion

In this study, we proposed a data-driven head motion detection method that is automated and 

does not require user-parameter tuning (see Supplemental Table 16 for the recommended 

default parameters). The new algorithm automatically adapted to the noise changes in the 

COD for different tracers and was fast to compute (~15 s per study). Registration parameters 

in the motion estimation process were optimized and the motion correction was performed 

using event-by-event motion compensated reconstruction. The proposed motion correction 

method was compared with the hardware-based Vicra method, which was treated as the gold 

standard for real studies and ground-truth for simulations. The proposed motion correction 

method was also compared with two conventional frame-based image registration methods.

For both simulation and real studies, 18F-FDG and 11C-RAC were chosen to demonstrate 

the utility of the algorithm with respect to different tracer distributions and isotopes with 

different half-lives. Specifically, 18F-FDG is broadly distributed in the brain gray matter with 

longer decay time while 11C-RAC only contains high uptake in the subcortical region with 

a much shorter half-life. Image registration for 18F-FDG was found to be more accurate 

than 11C-RAC, as expected, since 11C-RAC yielded more focal distribution in the central 

region of the brain which provides fewer image features for image registration, as shown 

in the registration optimization results (Supplemental Figs. 16, 19). Note that, here, we 

applied a simple Gaussian filtering, albeit optimized in filter size, to reduce the noise in the 

MFFs before registration. In the future, we will investigate the use of deep learning-based 

methods (Lu et al., 2019a) to de-noise the MFFs which may improve the image registration 

performance.

In the simulation studies for 18F-FDG, parietal and frontal regions yielded relatively larger 

errors (~5%) for 3DCOD than other regions since both regions usually contain more motion 

being farther from the rotation axis of the head and are also more prone to attenuation 

mismatch artifacts for being adjacent to the skull. Overall, in the real studies, the 3DCOD 

method resulted in slightly better results, i.e., lower mean error, than the simulation studies 

as compared to Vicra, i.e., 18F-FDG (real: −0.3 ± 2.8% error, simulation: −2.4 ± 1.4%) and 
11C-RAC (real: −0.4 ± 3.2%, simulation: −3.4 ± 1.7%). We provide three possible reasons 

for the differences: 1) the studies used for simulation and real studies were different, which 

exhibited different motion during the scans; 2) simulation is the perfect scenario but our 

proposed motion correction method is imperfect and still has room for improvement and 

3) the real-time hardware-based motion tracking, via Vicra, may be less accurate due to 

large head motion and fixation issues introducing imperfect motion tracking. Vicra was 

used as the gold standard motion measure in the real studies, which assumed the Vicra 

light-reflecting tool to be firmly attached to the subject’s head. However, in practice, the tool 

attachment may fail, e.g., due to hair style, which causes non-rigid motion between the tool 

and patient head. For example, Fig. 8A shows an example of a Vicra failure case (not used 

in this study). After applying the Vicra-based motion correction, the mismatch between the 

early (black and white, 0–10 min) and the late (hot metal, 60–90 min) frames is still evident 

(Fig. 8A), which suggested that Vicra failed to provide reliable motion information for this 

study. In contrast, the proposed 3DCOD method, as shown Fig. 8B, outperformed Vicra and 
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fixed the mismatch between the early and late frames. Note that we observed approximately 

2% obvious Vicra failure instances among ~500 studies.

In our previous work (Lu et al., 2020), we used one dimension of the COD trace to detect 

and correct the motion. Across 10 subjects, the average number of MTPs using the old 

motion detection method is 29.3 ± 6.7. After merging the three COD axes in the proposed 

motion detection algorithm, the average number of MTPs significantly increased to 211.2 

± 66.9 Fig. 9. shows a representative 18F-FDG HRRT reconstructed images (60–90 min), 

comparing our proposed 3DCOD approach with the results from the motion detection 

method with manually selected parameters (referred to as COD*). Detailed quantitative 

results are shown in Table 6. The mean absolute error is shown in Supplemental Table 

17. For regions like amygdala, insula, hippocampus and thalamus, approximately 5% 

improvement was observed for 3DCOD approach compared with COD*. For caudate, 

the error was reduced from −12.2 % to −2.2 % for the representative case. One of the 

advantages of the new approach is the utilization of three COD directions which considers 

all possible motions, resulting into lower mean uptake error.

As mentioned earlier, there was a significant increase in the average number of MTPs 

when using 3DCOD which resulted in higher false positive rates as shown in Fig. 4. False 

positives potentially lead to short-ened motion-free frames which can affect registration 

accuracy. However, undetected motion time points (false negatives) are much more likely to 

lead to motion artifacts in the final reconstructed images than short motion-free frames (false 

positives) are. Therefore, our approach is more tolerant of false positive MTPs than false 

negative MTPs.

The motion detection performance of the proposed algorithm was very similar for HRRT 

non-TOF and mCT TOF scanners. Supplemental Fig. 6 shows a COD trace for a simulated 

study using the same motion information and tracer but performed on different scanners. 

Supplemental Fig. 6B displays a somewhat noisier COD for mCT but larger separation when 

motion occurred. HRRT (Supplemental Fig. 6A) has a smaller separation but the motion is 

still distinguishable and its COD is less noisy. Note that the noise on each COD trace obeys 

a normal distribution when motion is absent.

A few limitations of the proposed data-driven motion detection and motion correction 

approach include: (1) tracer distribution change is rapid immediately after injection. As a 

result, COD changes quickly in response. Currently, 3DCOD approach is not reliable for 

motion in the early scan times, i.e., first 2 min post-injection; (2) with the increase of noise, 

e.g., lower dose, the motion detection accuracy will decrease and (3) our approach does not 

handle continuous motion perfectly. Therefore, if extremely slow motion occurs, our method 

may perform suboptimally.

In Spangler-Bickell et al. (2021), Sprangler-Bickell et al. recently performed a similar 

investigation focused on the proper frame duration for data-driven rigid motion estimation. 

They found that using 440 thousand true and scattered counts per frame will give a mesh 

error of 1 mm for 18F-FDG whereas we found that MFFs with more than two million 

counts (true coincidence) were found to provide acceptable registration accuracy, i.e., MDE 
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< 2 mm for 18F-FDG. They also investigated the FWHM for smoothing and found that 

4–6 mm is optimal, which is similar to our findings; 5-mm FWHM was found optimal 

for 18F-FDG while 7-mm was optimal for 11C-RAC for both scanners. Sprangler-Bickell 

et al. used two tracers with broad distribution throughout the whole brain (18F-FDG and 
18F-florbetaben) while we investigated two tracers (18F-FDG and 11C-RAC) with very 

different brain distributions. Lastly, Sprangler-Bickell et al. did not account for intra-frame 

motion, which can have an impact on the motion estimation process.

Different inflation factors (α) were used for 18F-FDG (1.0) and 11C-RAC (1.6) in this paper. 

However, to further examine the robustness and the sensitivity of motion correction efficacy 

to the value of α, we tested α=1.6 in real 18F-FDG studies (data not shown), and found 

that the final motion correction performance, i.e., ROI quantification error, was minimally 

affected. This is understandable since the detection performance between α=1.0 and 1.6 was 

very small for motion larger than 1 mm (Fig. 5). Therefore, practically, for both 18F-FDG 

and 11C-RAC using HRRT or mCT, the same α choice (1.6) can be used. Other tunable 

parameters include P (number of MFFs used to predict the RSSNM,s) and the nmax, which 

were not thoroughly tested given the high detectability of the results with these values. 

Although the paper only examined 18F-FDG and 11C-RAC, we also applied our motion 

detection method without parameter turning, i.e., same set of parameter for all the tracers, to 

many other tracers. Supplemental Fig. 20 shows examples of motion detection results for six 

selected tracers with a same set of parameters. In the future, we will test the algorithms for a 

broader range of PET tracers to further test the robustness of the algorithm.

5. Conclusion

We developed a new COD-based motion detection algorithm that is statistics-based, 

automatic and uses information from all three COD directions; thus, the algorithm is 

adaptive to different tracers and acquisition conditions. Preliminary results also indicate that 

the proposed motion detection and correction method generalize well to other radiotracers 

acquired with a TOF scanner. The proposed motion correction method yielded −0.3 ± 2.8% 

and −0.4 ± 3.2% brain region error for 18F-FDG and 11C-RAC, respectively, across 10 

subjects with large head motions for each tracer, using the hardware motion tracking as 

reference.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
COD example (in the lateral direction) with motion detection under (A) 10 detected motion 

time points (MTPs, B) 20 MTPs and (C) 30 MTPs. Green vertical lines represent the 

MTPs and the black horizontal lines represent the mean of the COD segment within each 

motion-free frame (MFF), which is the period between two adjacent MTPs. AU: Arbitrary 

Unit.
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Fig. 2. 
(A) Emin vs number of MTPs (n). The intersection between the total residual error (Emin) 

at different MTPs and Etar corresponds to a set of n MTPs. (B) An example of detection 

result in one COD direction (lateral) for a simulated 18F-FDG scan. Red vertical lines show 

the equal-duration partitions. The unit for this measure is arbitrary, which we denote as 

Arbitrary Unit (AU).
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Fig. 3. 
COD motion detection results for a real 18F-FDG study. (A) COD in lateral (Cx), anterior-

posterior (Cy) and superior-inferior (Cz) directions. (B) Example of motion detection using 

Cx. Green vertical lines indicate motion time points (MTPs). Top horizontal line segments 

indicate a preserved motion-free frame (MFF) and short bottom line segments show 

discarded frames, where 43 s (2.4%) of the entire 30 min were discarded. Red vertical lines 

show the equal-duration partitions. (C) Example of a discarded frame (magnified version of 

black box region in (B) at 65 min) with over-frequent motion.
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Fig. 4. 
Comparison of detectability and false positive rate results between 1DCOD and 3DCOD 

approaches for simulated 18F-FDG (top) and 11C-RAC (bottom) HRRT studies (without 

TOF). Red line with stars indicates the 3DCOD method. The inflation factor α was set to 1.0 

and 1.6 for 18F-FDG and 11C-RAC studies, respectively. Each data point in the detectability 

figures is the ratio between the total number of correctly detected MTPs and the total 

number of ground-truth MTPs in all the simulated studies at a given motion amplitude.
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Fig. 5. 
Detectability and false positive rate results for 3DCOD as a function of α for 18F-FDG (top) 

and 11C-RAC (bottom) simulated for the HRRT scanner.
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Fig. 6. 
Sample slices of motion-corrected reconstructions of simulated HRRT (A) 18F-FDG study 

(60–90 min) and (B) 11C-RAC study (30–60 min). Studies are ranked 15/15 (worst case) 

based on mean difference for the 3DCOD-based approach. The best cases (1/15) can be 

found in Supplemental Figure 9.

Revilla et al. Page 24

Neuroimage. Author manuscript; available in PMC 2022 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Sample slices of motion-corrected reconstructions of real (A) 18F-FDG (60–90 min) and 

(B) 11C-RAC (30–60 min) studies. Studies are ranked 10/10 (worst case) based on mean 

difference for the 3DCOD-based approach.
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Fig. 8. 
Sample slices of motion-corrected reconstructions of a HRRT 11C-RAC study (black and 

white colormap: 0–10 min, hot metal: 60–90 min) using (A) Vicra and (B) 3DCOD 

methods. Vicra shows a clear misalignment between the early and late frames while 3DCOD 

shows a good alignment.
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Fig. 9. 
Sample slices of motion-corrected reconstructions of a real 18F-FDG (60–90 min) HRRT 

study showing the proposed 3DCOD approach compared with NMC, Vicra and COD* 

(example result from our previous work).
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Table 6

Mean uptake error (%) compared to Vicra for the real 18 F-FDG (60–90 min) study for 3DCOD and COD *.

ROI NMC COD* 3DCOD

Amygdala −13.4 8.1 3.9

Caudate −21.2 −12.2 −2.2

Cerebellum −14.2 3.3 −0.2

Frontal −16.3 −0.7 −1.1

Hippocampus −5.3 6.7 −2.6

Insula −5.8 −5.9 0.0

Occipital −19.7 −3.2 1.6

Parietal −12.4 −0.3 −3.4

Putamen −19.0 −0.4 −2.8

Temporal −18.4 −2.4 1.0

Thalamus −11.9 −5.9 −2.6

Ave difference (%) −14.3 −1.7 −0.8

Ave SD (%) 5.3 6.0 2.3
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