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Head motion during PET scans causes image quality degradation, decreased concentration in
regions with high uptake and incorrect outcome measures from kinetic analysis of dynamic
datasets. Previously, we proposed a data-driven method, center of tracer distribution (COD), to
detect head motion without an external motion tracking device. There, motion was detected using
one dimension of the COD trace with a semiautomatic detection algorithm, requiring multiple user
defined parameters and manual intervention. In this study, we developed a new data-driven motion
detection algorithm, which is automatic, self-adaptive to noise level, does not require user-defined
parameters and uses all three dimensions of the COD trace (3DCOD). 3DCOD was first validated
and tested using 30 simulation studies (18F-FDG, N = 15; 11C-raclopride (RAC), NV= 15) with
large motion. The proposed motion correction method was tested on 22 real human datasets,

with 20 acquired from a high resolution research tomograph (HRRT) scanner (18F-FDG, N/ = 10;
11c.RAC, N=10) and 2 acquired from the Siemens Biograph mCT scanner. Real-time hardware-
based motion tracking information (Vicra) was available for all real studies and was used as the
gold standard. 3DCOD was compared to Vicra, no motion correction (NMC), one-direction COD
(our previous method called 1DCOD) and two conventional frame-based image registration (FIR)
algorithms, i.e., FIR1 (based on predefined frames reconstructed with attenuation correction) and
FIR2 (without attenuation correction) for both simulation and real studies. For the simulation
studies, 3DCOD vyielded —2.3 + 1.4% (mean + standard deviation across all subjects and 11 brain
regions) error in region of interest (ROI) uptake for 18F-FDG (-3.4 + 1.7% for 11C-RAC across
all subjects and 2 regions) as compared to Vicra (perfect correction) while NMC, FIR1, FIR2 and
1DCOD yielded —25.4 + 11.1% (-34.5 + 16.1% for 11C-RAC), -13.4 + 3.5% (-16.1 * 4.6%),
—-5.7 £ 3.6% (-8.0 £ 4.5%) and -2.6 + 1.5% (-5.1 + 2.7%), respectively. For real HRRT studies,
3DCOD yielded —0.3 + 2.8% difference for 18F-FDG (-0.4 + 3.2% for 11C-RAC) as compared

to Vicra while NMC, FIR1, FIR2 and 1DCOD vyielded -14.9 + 9.0% (-24.5 + 14.6%), -3.6 £
4.9% (-13.4 £ 14.3%), —0.6 + 3.4% (—6.7 £ 5.3%) and -1.5 + 4.2% (-2.2 + 4.1%), respectively.
In summary, the proposed motion correction method yielded comparable performance to the
hardware-based motion tracking method for multiple tracers, including very challenging cases
with large frequent head motion, in studies performed on a non-TOF scanner.

Keywords

PET; Head motion; Data-driven; Motion detection; Motion correction; COD

Introduction

Head movement is a major limitation in brain positron emission tomography (PET)

imaging, reducing image resolution, lowering apparent concentration in high-uptake regions,
introducing attenuation-emission mismatch artifacts, and causing bias in parameter estimates
fit by tracer kinetic modeling (Keller et al., 2012). In the past, many methods have

been proposed to correct head motion, including frame-based image-registration (FIR) and
correction using real-time hardware-based motion tracking (HMT) information (Rahmim et
al., 2007; Fulton et al., 2002; Montgomery et al., 2006; Bloomfield et al., 2003; Herzog et
al., 2005; Picard and Thompson, 1997; Costes et al., 2009). However, FIR cannot correct for
motion within one predefined scan period (intra-frame) while HMT is not routinely used in
the clinic, as setup and calibration of the tracking device can be complicated and attaching
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markers to each patient increases the logistical burden of the scan. Markerless motion
tracking using structured light does not require any physical attachment to the patient, but
its performance can be impacted by non-rigid changes in facial expression and different skin
colors. Additionally, structured light approaches have not yet been fully validated (Kyme et
al., 2018; Olesen et al., 2013).

Recently, several data-driven motion correction approaches (i.e., based on PET raw data
itself) have been proposed. Schleyer et al. used a principal component analysis (PCA)-based
method, which was first proposed in (Thielemans et al., 2013), to detect head motion with
the aid of time-of-flight (TOF) information (Schleyer et al., 2015; Thielemans et al., 2013).
Lu et al. proposed another data-driven algorithm, Centroid Of Distribution (COD), to detect
patient motion (Lu et al., 2020; 2019b). Both PCA-based and COD-based methods used a
one dimensional (1-D) PCA or COD trace, where motion detection was treated as an edge
detection problem on the 1-D trace. PCA and COD traces are intrinsically noisy due to the
limited count-statistics of the PET raw data. Motion detection also requires tuning multiple
user-defined parameters, including the size of a median filter used to smooth the trace

and a threshold for detecting motion. Therefore, these parameters control the sensitivity of
motion detection, and were empirically set, rather than statistics-based, in both (Schleyer
etal., 2015) and (Lu et al., 2020). Thus, these detection algorithms are tracer-distribution
and count-level dependent. Note that count-level in the raw data is subject-dependent, and
within the same scan, the count-level can vary greatly due to the tracer distribution change
as well as the radioactive decay. Optimization of the user-defined parameters is, therefore,
non-trivial. Thus, it is of interest to develop a robust data-driven motion detection approach,
which does not require subject-dependent or count level-dependent parameter tuning. In
(Spangler-Bickell et al., 2021), Sprangler-Bickell et al. recently performed an investigation,
which focused on the proper frame duration for data-driven rigid motion estimation. Their
proposed method utilized ultra-short frames for rigid motion estimation and correction.
Comparably, we incorporated both short and long frames for motion estimation and
correction. However, in Spangler-Bickell et al. (2021), only static data was used where
tracer distribution change over time is insignificant while dynamic data sets were used in this
paper. Moreover, the impact of motion correction on the accuracy of absolute quantification
was not investigated.

In this study, we propose a new count statistics-based data-driven motion detection
algorithm, which does not require user-parameter tuning and uses all three dimensions of the
COD trace. We validated the proposed motion detection algorithm using 30 simulated 4-D
(3-D + time) dynamic PET studies with large motion for both 18F-FDG and 11C-raclopride
(11C-RAC) tracers. For the simulation studies, the proposed motion correction method was
compared to two types of FIR algorithms and perfect motion correction, i.e., the same
motion used for simulation was also used for correction (Costes et al., 2009). For real
studies, the proposed maotion correction method was evaluated for human dynamic scans
with 18F-FDG (V= 10), 11C-RAC (N = 10), 11C-PBR28 (N = 1), and 11C-MRB (N = 1);
and was compared to HMT with the Polaris Vicra tracking system (NDI Systems, Waterloo,
Canada) (referred to as Vicra), which provides continuous head motion monitoring at 20 Hz
and was considered as the “gold standard” (Jin et al., 2013).
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2.1.1. 4D digital phantom—Fifteen digital phantoms were generated based on real
human PET studies, which were previously performed at the Yale PET Center. Each of

the 15 subjects underwent separate PET scans with 18F-FDG and 11C-RAC. An individual
attenuation map was obtained through a transmission scan before each PET scan. Each
subject underwent MR scans and the individual T1-weighted MR images were segmented
into 109 regions of interest (ROISs) using FreeSurfer (Fischl et al., 2004; 2002). The ROIs
were resliced to the individual PET space based on the MR-PET rigid registration, which
was performed using FLIRT with mutual information as the similarity metric (Jenkinson and
Smith, 2001). Each individual phantom consists of 109 ROI labels in PET space (256 x 256
x 207 voxels with 1.219 x 1.219 x 1.231 mm3/voxel).

Motion was tracked by the Vicra system. Individual motion information, recorded at 20
Hz by the Vicra system during each real scan, was used in the simulation for the same
individual phantom. The 15 subjects who underwent the largest motion magnitude were
selected out of 57 examined cases for 18F-FDG and 143 for 11C-RAC. The head motion
magnitude of any frame within the field-of-view (FOV) was determined from the Vicra
data as twice the standard deviation of the location of eight points that were selected as
the vertices of a 10-cm side-length cube centered in the scanner FOV. The final motion
magnitude was the average of the values from the eight points (Jin et al., 2013).

We simulated 18F-FDG and 11C-RAC studies using the estimated kinetic parameters from
two real datasets. Specifically, paired MR scans of the two real studies were segmented
using FreeSurfer. For each FreeSurfer ROI, a compartmental model (the two -tissue
compartment model for 18F-FDG, and the simplified reference tissue model for 11C-RAC)
was used to fit the time-activity curve to generate the tracer kinetic parameters (Gallezot

et al., 2020). The Kinetic parameters were then used to generate noise-free time-activity
curves for each ROI. The same time-activity curves were finally used for each ROI of all 15
subjects for each tracer, i.e., different brains with different motions but with the same tracer
dynamics were simulated.

2.1.2. Data simulation—For every simulated study, a 4-D 0-90 min dynamic simulation
was performed for 18F-FDG (V= 15) and 0-60 min dynamic simulation for 11C-RAC (V=
15), in the presence of motion, to generate list-mode data. Simulations were performed for
both the non-TOF Siemens HRRT and the TOF Siemens Biograph mCT scanners (Schmand
et al., 1999; Jakoby et al., 2011). The list-mode TOF forward-projector model is part of

the MOLAR (Motion compensation OSEM List-mode Algorithm for Resolution-Recovery
Reconstruction) platform (Germino et al., 2017):

E(Y; . =D zci,t, jCit, 7, jLi 1A 1 Nidj t s )]

J

where the system matrix element c; ;;represents the contribution from voxel ;to the line-of-
response (LOR) 7at time tand accounts for scanner geometry, resolution, solid angle, and
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motion effects. ¢ . jis the TOF kernel, which defines the contribution of pixel jto TOF
bin zof LOR /attime £ L;,is the dimensionless product of decay factor at time ¢ live

time at time £ and the positron branching fraction. The sensitivity normalization factor A
in units of (counts/second) / (Ba/mL x mm), converts the forward projection of image A;;
(Ba/mL) to units of counts/second. A, is the dimensionless attenuation factor. £ Y;;,) is
the expected number of counts in the TOF bin zof LOR 7in time bin £ The total scan

time frame 7 (second) is divided into equal sub-bins of duration Dy (second) indexed by

¢ For non-TOF HRRT simulations, (;; . ,is setto 1 and the zindex is eliminated. Data
were simulated with and without motion. Compton scatter and randoms were not simulated.
Spatial resolution of 2.5 mm Full-Width-Half-Maximum (FWHM) was simulated for HRRT
and 4.0 mm was simulated for mCT. TOF resolution of 580 ps in FWHM was used in the
mCT simulations.

2.2. Real patient studies

Ten previously acquired human dynamic HRRT 18F-FDG (injected activity: 184 + 4 MBq)
and ten HRRT 11 C-RAC (699 + 66 MBq) studies were analyzed. A transmission scan was
used for attenuation correction. Individual T1-weighted MR images were segmented into
109 ROIs using FreeSurfer, which were registered and resliced to the individual PET space
based on the MR-PET rigid registration using mutual information (Fischl et al., 2004; 2002;
Jenkinson and Smith, 2001).

Two dynamic mCT scans using 11C-PBR28 (0-90 min post injection) and 11C-MRB (0-
120 min) were analyzed. 11C-PBR28, a PET radioligand that has high specificity for the
18-kDa translocator protein (TSPO) is used for /n vivo measurement of neuroinflammation
(Hillmer et al., 2020; Owen et al., 2014). 11C-MRB is used to measure brain norepinephrine
transporters (NET) (Ding et al., 2010). Vicra HMT was used for motion monitoring for all
the real scans for both scanners.

2.3. COD generation and previous detection algorithm

Head motion information was extracted from the PET list-mode data based on the COD
trace (Lu et al., 2020; 2019b). To generate COD for TOF raw data, for every event J, the
central spatial coordinate of the TOF bin, (X}, Y}, Z;), was calculated and recorded in mm
from the center of the scanner FOV. The (X}, Y, Z;) values for each event were averaged
over a short time interval, e.g., 1 s, to generate raw COD traces in three directions: Cy

for lateral, C, for anterior-posterior (AP), and C; for superior-inferior (SI) directions. For
non-TOF COD, (X;, Y, Z)) was the central coordinate of the entire LOR (Lu et al., 2020).
Note that the random component of COD in each direction follows a normal distribution
based on the central limit theorem.

Previously, we developed a semiautomatic algorithm to detect motion based on the COD
trace, which required multiple user-defined parameters that are tracer- and noise-level
dependent (Lu et al., 2020; 2019b) such as: (1) length of the median filter applied to the
COD trace, which was adjusted based on empirical observation; (2) the minimum duration
of the motion-free frames (MFF), which was set to 30 s (the length of the shortest dynamic
frame); (3) the 5-min maximum length of an MFF as a tradeoff among the sensitivity
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to slow motion, the computational cost and registration accuracy and (4) the smoothing
kernel for MFF reconstructions. Note that these user-defined parameters are related to
motion-thresholding only. The dependency on tracer- and noise-level is further explained
under the limitations in the Discussion section. After motion detection, MFF separated by
detected motion time points (MTP) were reconstructed without attenuation correction (AC)
and rigidly registered to a reference frame to estimate motion between each MFF and the
reference frame.

2.4. New adaptive data-driven motion detection algorithm

In this study, we propose a new motion detection algorithm, which automatically detects
motion based on the COD trace and is adaptive to different tracers and noise levels without
user-defined parameters. First, we provide an overview of the new algorithm (Fig. 1). All the
symbols used in the detection algorithm are summarized in Table 1.

Let n7be a possible number of MTPs on the COD trace. For a given 7, (e.g., 7= 10) in Fig.
1A, the proposed motion detection algorithm finds the positions of all 7# MTPs that minimize
an estimate of total variability within-MFF, i.e., error Fig. 1.B and C show the scenarios of
n=20 and 30 for the same study, respectively. The algorithm will finally choose the n by
directly estimating the error level from the COD itself, and the corresponding MTPs are the
motion detection results. We will now describe the new algorithm in detail.

2.4.1. RSS error within an MFF—We will evaluate a range of », and the MTPs/MFFs
as follows: for a given detection result, i.e., a set of MTPs and corresponding MFFs for a
given n, we calculate the mean of the COD trace in one direction, i.e., C, withineach MFF,
and compute the residual sum of squares (RSS) of the fitting. We use Cj,to denote the
COD segment within the 72" MFF. Note that the notation applies to any of the three COD
directions. RSS of the 720 MFF is computed as:

Nm 1 Nm
RSS,, = Z(Cm(k) - ém)z’ and ém = N—mZCm(k), )
k k

where kindexes the sampling interval, e.g., 1 s, within Cp,. mindexes the MFF. A/ is the
total number of sampling intervals within the 770 MFF Eq. (2). is repeated for all /7. By
taking a sum of RSS over all the MFFs, we obtain the total residual error, i.e., £, of one
detection scenario:

E= ) RSS,. @

2.4.2. Choosing the MTPs for a given n using the pruned exact linear

time algorithm—Here, we describe how to use Pruned Exact Linear Time (PELT), a
changepoint detection algorithm, to find the 7 MTPs locations in the COD trace that yields
the Jowesttotal residual error, i.e., Emin (17) (Killick et al., 2012). Note that PELT guarantees
finding Enin (17) on the condition that the noise in the COD trace is normally distributed.
PELT was established based on an optimal partitioning (OP) approach, where OP belongs
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to one research branch in the changepoint detection literature (Jackson et al., 2005). By
adding a pruning phase to the original OP algorithm, Killick et al. (2012), Jackson et al.
(2005) reduced the computational cost from O(72) to O(7), i.e., the computational cost
linearly increases with the total data points 7. As shown in (Killick et al., 2012), Enin (1)

is a monotonically decreasing function of 77 (see Fig. 2A for example). Naturally, 7(e) is

a monotonically decreasing function of £y, as well. This characteristic of PELT allows

us to convert the motion detection problem, i.e., finding the proper choice of 7 (and its
corresponding MTPs/MFFs), to a problem of finding the proper Emin, since each Eqnin
uniquely corresponds to a set of 7 MTPs yielded by the PELT. The locations of the 7# MTPs
are the motion detection results for a given Eqin. Note that under an extreme scenario, i.e., 7
equals the number of sampling time points in the COD trace, Epin reduces to zero. This is,
of course, a meaningless detection result.

So far, we have introduced PELT, which chooses the optimal MTPs for a given n. Next, we
will describe how to choose the desired .

2.4.3. Determining n—First, we apply PELT for a range of /7, which generates an Enin
vs. nplot (Fig. 2A), up to a predefined maximum /imax, Which should be higher than the
most times of motion one would like to detect. In this study, we set the default /4 to

300 for a 90-min study and 200 for a 60-min study. We refer to this step as Epin Scouting.
Next, we find the nthat corresponds to a target detection (rx,,), which matches a unique £
value, K. Ideally, iz, and its corresponding MTPs represent the correctly detected motions
based on C. Here, we hypothesized that the value of £, at which head motion is accurately
detected (&) should be approximately equal to the error for a comparable Aypothetical scan
where no motion occurred (Ennm), i.€., same subject with the same injection but without
motion. Note that, if no motion occurred, the variation in a COD trace would only be caused
by the data noise and tracer distribution change. Of course, for a real study, it is impossible
to directly obtain the Exm, since head motion will almost always occur.

Next, we show how to estimate £xp based on the COD trace (with motion) itself, i.e., C.
Essentially, we used partial data (without or with minimal motion) of the COD trace to
estimate the total RSS contribution from data noise as well as tracer distribution change. We
first divide the entire scan into several equal-duration partitions, e.g., 5 min per partition,
indexed by s. The use of partitions makes the algorithm adaptive to the COD noise change
due to isotope decay and tracer clearance. Based on the PELT detection results using /nax.
we use the RSS (RSS| ong) from the Jongest PMFFs (indexed by p) within partition sto
estimate the no motion RSS for partition s:

ZpRSSioG.p

, 4
2 »NLoNG, p @

RSSNM, s ® NPART, s -
where M_ong,p and NparT,s are the total numbers of sampling intervals of the " MFF
among the longest 2 MFFs and the total numbers of sampling intervals of the s partition,
respectively (Fig. 2B). The same process is repeated for every partition. RSSyy s from all
the partitions are summed and used as the £y estimate for the entire scan:
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Exm~ ) RSSnus- ©)

Note that if there are less than ZMFFs in one partition, then all the MFFs inside the partition

are used to estimate Eyp. If an MFF mextends beyond one partition (), the portion of the
RSS,

N, N

MFF mwithin the partition is used to compute RSSywm s i.6., RSSNM, s = NPART. s -

this study, we set Pequal to 2 (see Discussion).

We use the Epjn vs. n7plot to find the 7which yields the error level E;r, and the results of
PELT with r,, shall be the final motion detection MTP set. We repeat the above detection
process for all three COD directions, and a union of the MTPs from all the three directions
is taken and is used as the final detection results. Note that motion detection in each
direction was performed independently, so different rz, will be different for each direction.
In the validation studies (Supplementary Material), we found that there is approximately

a multiplicative constant between the measured £xp based on simulation studies and the
estimated Enp using Eq. (5). Since the measured £ynp, Which is referred as Ay, is What we
are interested in, we introduce a constant a = 1 to calculate the final £

Er ~ aBxy = @ ) RSSnysa > 1 ©

To determine a, we performed comparable simulations as in the Data simulation section
but without motion, i.e., data were simulated using the same subjects but without motion.
Based on the COD trace without motion, for each study, we measured the Exwm, 1-€., Ears
based on the MFFs, which were determined during the detection using the COD wiit/ motion
in the motion detection process. In other words, we applied the motion detection results,
i.e., the MFFs, from COD with motion to the COD without motion, to obtain A, We
examined different values of a and found that the difference (average over three directions)
between estimated Exm (EQ. (5)) and the £, was the smallest when a = 1.0 and 1.6 for
18F_FDG and 11C-RAC, respectively. Supplemental Table 1 shows the results of £, and
Enwm for different scanners and tracers at different directions across 15 subjects. A detailed
comparison of Ei,r and Enyp for 5 representative studies is shown in Supplemental Table

2 for 18F-FDG and Supplemental Table 3 for 11C-RAC. Simulation studies (see Fig. 5 and
Supplemental Tables 1-3) showed that a equals 1.0 for 8F-FDG, and a equals 1.6 for
11C-RAC; these values were used as the default values in the rest of the paper.

Fig. 2B shows an example of motion detection in one direction for a simulated 18F-FDG
scan. Supplemental Fig. 1 shows the pseudo code of the entire adaptive motion detection
process.

Final MFF determination

We observed that, after motion detection, the COD of some MFFs still contain large
variations, which represent intra-frame motions and may cause inaccurate downstream
motion estimation. Here, we discarded the MFFs with large intra-frame motions.
Specifically, we consider an MFF to contain substantial intra-frame motions if the standard
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deviation of the COD trace within the MFF is larger than two times the predicted standard
deviation of the partition, i.e., 2,/RSSxm, s/ NPART, s» IN Which the MFF resides Fig. 3.A

shows an example of raw COD traces in three directions: C for lateral, C, for anterior-
posterior and G, for superior-inferior directions Fig. 3.B shows the detection result on C.
The green vertical lines indicate the detected MTPs. The horizontal line segments at the
top of the graph indicate a preserved motion-free frame and the short line segments at

the bottom of the graph indicate discarded frames due to intra-frame motions. Here, we
only discard frames with large intra-frame motions while in Sec. I11.B, we will show that
frames with too few counts will also be discarded, since motion usually cannot be robustly
estimated for those frames.

2.6. Optimized motion estimation and event-by-event corrected reconstruction

Motion between MFFs was estimated and corrected as follows: (1) each MFF was
reconstructed using OSEM without attenuation correction; (2) the MFF image was smoothed
by a m-mm FWHM Gaussian filter (see below for w), followed by a rigid registration to

a 10-min post-injection reference frame; (3) a motion file consisting of all the registration
transformation matrices, i.e., motion information, was built and events within one MFF
were corrected using the same motion information; (4) MOLAR was used to perform
event-by-event motion compensated OSEM reconstruction (2 iterations x 30 subsets for
HRRT and 3 iterations x 21 subsets for mCT) with attenuation correction. Note that the final
MOLAR reconstruction can be performed for any frame duration, which does not depend

on the MFF timing, given its event-by-event correction nature. The discarded frames were
excluded through the gating function in MOLAR. MFF registration was performed using the
Biolmage Suite image analysis software (Joshi et al., 2011). Details about the registration
parameters can be found in the Supplemental Materials.

To quantitatively evaluate the motion estimation accuracy, we used the mean distance error
(MDE, mm) for simulation studies, which is defined as follows: we first computed the
center-of-mass (COM) of each FreeSurfer segmented ROI (binary map in PET space, see
Supplemental Fig. 2). Ground-truth COM, i.e., COM9t, of each ROI was computed based on
the Vicra motion information. Since Vicra motion information was used in the simulation,

it provides the ground-truth motion information. The estimated location of each COM, i.e.,
COM®St, based on the registration between each MFF and the reference frame for the entire
scan was also computed. MDE is defined as the mean of the Euclidian distance between
COMYt and COM®st across all ROIs and over all time as:

MDE
N 2 Ry 2
NarL| Zi ROI\/(COM‘?[’ «— COMPSL X) + (COM[g,‘L g~ COMEY, y) + (COMIg’t,’ , - COMESt Z)
t NROL (7
B NaLL

NRro represents the number of ROI, 7indexes the ROI; Ay | represents the number of
sampling time points of the entire scan and ¢indexes the sampling time point. Here, the
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COM of each ROI is moved with the ground-truth motion information as well as the
estimated motion information, and MDE measures the mean distance between the two.

2.7. Motion correction methods for comparison

Reconstruction results based on the proposed COD-based adaptive motion detection
framework (referred as “3DCOD”) were compared with two conventional FIR methods,
i.e., FIR1 and FIR2 (see below), and the Vicra-based event-by-event correction. Details
regarding Vicra attachment and set-up can be found in Section 2.B in (Jin et al., 2013).

In FIR1, predefined 5-min dynamic frames are first reconstructed using OSEM (2 iterations
x 30 subsets) with AC. The same transmission-scan attenuation map is used for attenuation
correction for every frame. Each frame reconstruction is smoothed by a 5-mm FWHM
Gaussian filter and registered to the reference frame (10 min post injection). As a result,
FIR1 suffers from both AC mismatch artifacts and intra-frame motion within each dynamic
frame.

FIR2 method is similar to the 3DCOD method, but with the motion information estimated
based on the predefined 5-min frames which are reconstructed without attenuation
correction (NAC). In other words, FIR2 is the same as the 3DCOD method but with
MFFs predefined as the consecutive 5-min frames. After the motion file is obtained from
registration, MOLAR was used to perform motion compensated OSEM reconstruction
(same MOLAR parameters as Section 2.6.) with attenuation correction. As compared to
FIR1, FIR2 suffers less from the AC mismatch artifacts but still suffers from intra-frame
motions. Furthermore, there would still be some misalignment from missing motion.

2.8. Quantitative analysis

For the simulation studies, motion detection performance was evaluated using detectability,
which is defined as the ratio between the total number of correctly detected MTPs in

all the simulated studies and the total number of ground-truth MTPs (based on the Vicra
motion information) in all the simulated studies. The ground-truth MTPs were generated as
follows: for each study, FreeSurfer was used to segment the paired MR into 109 ROIs (see
Supplemental Fig. 2 for example), which were resliced into the individual PET space. At
every time (20 Hz), the brain location coordinate vector /; which is defined as the average
coordinate of the COMs of 8 ROls, i.e., (left and right) frontal, occipital, hippocampus and
cerebellum, was computed. /;was resampled at 1 Hz by averaging over each 20 samples.
Euclidian distance (A/) between /;and /41 was computed at all resampled £ Any #that
yielded A/;above a threshold (in mm) was registered as a ground-truth MTP at a given
threshold. In this study, nine thresholds were evaluated: 0.5, 1, 2, 3, 4, 5, 6, 7, and 8 mm.

If the detection algorithm found a MTP within 1 s before or after a ground-truth MTP, it
was registered as a correctly detected MTP. Since 1 s was selected as the minimal interval
for generating COD trace, we empirically allow 1 s as the threshold for accepting an MTP
match to be selected. Detectability for all three COD directions, as well as using individual
Cx Gy, and G, were reported.

Mean and standard deviation of the tracer uptake or standardized uptake value (SUV)
percent differences compared with Vicra were computed across all the subjects for eleven
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FreeSurfer segmented gray-matter ROIs for 18F-FDG: amygdala, caudate, cerebellum
cortex, frontal, hippocampus, insula, occipital, parietal, putamen, temporal and thalamus.
For 11C-RAC, the caudate and putamen regions were used. For simulation and real studies,
the proposed 3DCOD approach was compared to no motion correction (NMC), FIR1,
FIR2 and Vicra. For each correction approach, the MR was registered to the 0-10 min
post-injection frame of the individual method.

All the motion detection source code is available on GitHub (https://github.com/
enetterevilla/COD_MotionDetection). Detailed information about the software used and
computation cost can be found in the Supplemental Materials.

3. Results

3.1.

Detection performance

Fig. 4 shows the motion detectability results and false positive rates using HRRT simulation
studies (8F-FDG studies (top) and 11C-RAC (bottom)) to compare motion detection based
on one direction of the COD (1DCOD) trace vs. 3DCOD. The detectability was above 95%
for motion above 2 mm for 18F-FDG and 3 mm for 11C-RAC, using all three directions of
COD information (3DCOD, red lines). In comparison, the detectability using only one-COD
direction was substantially lower for both scanners. As an example, for motion above 5

mm, the detectability of 11C-RAC in Cy only reached approximately 80% for HRRT. The
detectability was lower and the false positive rate was higher for 11C-RAC relative to 18F-
FDG, which was expected since 11C-RAC yielded noisier COD and contained more spatially
centralized tracer distribution (see Supplemental Fig. 3 for example and see Discussion for
details). As expected, the false positive rate decreases as the motion threshold increases.
However, our proposed motion detection method showed higher false positive rate than
1DCOD since it incorporates all MTPs from all three COD directions.

Fig. 5 shows the motion detectability and false positive rates at different inflation factor

a values (up to 2.0) for simulated HRRT 8F-FDG studies (top row) and 11C-RAC

(bottom row). Practically, a controls the tradeoff between the motion detectability and the
registration accuracy. Lower a leads to a more sensitive detection but also yields many short
MFFs, which may hurt motion estimation accuracy due to higher noise since the motion
estimation is performed by the registration between MFFs and a reference frame. In other
words, we may be able to detect all the motion, but we may not be able to robustly estimate
all of them. Similar to the results shown in Fig. 4, the false positive rate decreases as the a
and the motion threshold increase.

Detectability results and false positive rates for the mCT scanner can be found in
Supplemental Fig. 4 while the results at different a values can be found in Supplemental

Fig. 5. Note that COD with TOF used the center of the TOF bin instead of the center

of the LOR, which therefore provided better localization information than non-TOF (see
Supplemental Fig. 6 for example). Nevertheless, the motion detection performance and false
positive rate of the proposed algorithm was found to be similar between HRRT non-TOF and
mCT TOF scanners.
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For each tracer, we found that a is consistent across different subjects/scans and is also
consistent between mCT and HRRT (see Supplemental Table 1). As empirically validated,
a was set to 1.0 for 18F-FDG and 1.6 for 11C-RAC as the default in the rest of the paper.
Interestingly, we found that a has very minimal to no effect on the PET quantification.

To demonstrate this, we performed additional simulation studies by setting a = 2.0 for
18F_FDG and 3.2 for 11C-RAC. Supplemental Fig. 7 and Supplemental Table 4 show the
reconstructed results and ROI quantification error, respectively with different a for FDG
studies. Supplemental Fig. 8 and Supplemental Table 5 display the results for 11C-RAC.
Results showed that there was minimal change across all regions and tracers.

3.2. Motion compensated reconstruction

3.2.1. Simulation—Motion estimation was performed by rigid image registration using
the Biolmage Suite. Two similarity metrics, i.e., sum of squared differences (SSD) and
mutual information (MI), were compared. Detailed results can be found in the Supplemental
Materials.

In Fig. 6A, an example of reconstructed HRRT 18F-FDG images are shown. NMC shows
very large motion which was largely corrected by 1DCOD while FIR1 and FIR2 failed

to yield effective correction. 3DCOD results are slightly better than 1DCOD, with both
methods restoring contrast and resolution when compared to ground truth. Quantitatively,
with Vicra as the reference, the uptake error mean and standard deviation across the 11
composite brain regions (see Supplemental Table 6 and Supplemental Table 7) for this
subject is —4.9 + 3.4% for the 3DCOD method. Averaging regional errors over the 15
subjects, as shown in Table 2, NMC yielded largest mean error —25.4 % while FIR1 reduced
the error to —=13.4 %. FIR2 (=5.7%) provided large improvement from FIR1 whereas the
1DCOD method yielded —2.6 % mean error. The 3DCOD method produced the smallest
mean error at —2.4 %, only slightly better than 1DCOD. The inter-subject variation (Average
SD in Table 2), averaged over ROIs, was found to be the smallest for 3DCOD (1.4%)

and 1DCOD (1.5%) as compared with FIR1 (3.5%), FIR2 (3.6%), and NMC (11.1%).

The proposed method outperformed 1DCOD, specifically in the frontal region. The mean
absolute error is shown in Supplemental Table 8.

In Fig. 6B, an example of 11C-RAC images are shown, ranking 15/15 (-6.6 % 2.2%) in

the 3DCOD method in terms of mean percent error compared to Vicra in caudate and
putamen. NMC demonstrated the largest error (—34.5%), followed by the FIR1 (-16.1%),
FIR2 (-8.0%) and 1DCOD (-5.1%), and the 3DCOD method provided the best result with
-3.4 % error averaged over 15 subjects and both ROIs. The ROI-level mean of inter-subject
deviation was smallest for 3DCOD (1.7%) as compared with the FIR1 (4.6%), FIR2 (4.5%),
1DCOD (2.7%) and NMC (16.1%) Table 3. summarizes these error results. The mean
absolute error is shown in Supplemental Table 9.

For the simulated mCT studies, representatives of reconstructed 18F-FDG images are shown
in the Supplemental Fig. 10 and quantitative results can be found in Supplemental Table 10.

Both 1DCOD and 3DCOD method performed the best with —2.0 % mean error as compared
with Vicra in mCT studies, followed by FIR2 (-5.8%), FIR1 (-16.7%), and NMC (-27.9%).
The mean of inter-subject variation in the ROI-level showed similar trend as compared
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to HRRT, with the proposed motion correction method showing the least change (2.0%)
compared with other methods (1DCOD: 2.1%, FIR1: 4.2%, FIR2: 3.5%, NMC: 11.5%).
Two representatives of reconstructed mCT 11C-RAC images and quantitative results are
shown in Supplemental Fig. 11 and Supplemental Table 11, respectively.

3.2.2. Real patient results—In Fig. 7A, an example of 60-90 min 18F-FDG
reconstructed images are shown. Mean uptake error of 2.6 + 4.0% (ranked 10/10, worst
case), as compared to Vicra, was found for 3DCOD. The NMC image shows large head
motion in the lateral direction, which was mostly corrected by the 1DCOD method. The
proposed 3DCOD method further improved the results, specifically in regions like the
frontal cortex and caudate. Even for the worst case scenario, the motion detection algorithm
still worked robustly as shown in Table 4, which detailed the quantitative results. The
proposed 3DCOD yielded minimal mean error (-0.3%) as compared with FIR1 (—3.6%),
FIR2(-0.6%), 1DCOD (-1.5%) and NMC (—14.9%) across the 10 subjects, using Vicra as
the reference. The ROI-level mean of inter-subject deviation was 2.8% for 3DCOD, 4.2%
for 1DCOD, 4.9% for FIR1, 3.4% for FIR2 and 9.0% for NMC. For large ROIs which are
prone to more motion, e.g., parietal and frontal, the 3DCOD method substantially decreased
the percentage error. The mean absolute error is shown in Supplemental Table 12.

Coronal 30-60 min 11C-RAC reconstructed images are shown in Fig. 7B for the worst

case (10/10) in the 3DCOD method in terms of mean uptake difference compared to Vicra.
Quantitative results are shown in Table 5 for caudate and putamen. Across 10 subjects,
NMC showed the largest difference (—24.5%) across all subjects and regions compared with
FIR1 (-13.4%), FIR2 (-6.7%), 1DCOD (-2.2%) and 3DCOD (-0.4%). Additionally, the
ROI-level mean of inter-subject variation with respect to Vicra was smallest for 3DCOD
(3.2%) compared with FIR1 (14.3%), FIR2 (5.3%), 1DCOD (4.1%) and NMC (14.6%). At
the caudate, 3DCOD reduced the error from —28.1 % (NMC) to —1.8 %. The mean absolute
error is shown in Supplemental Table 13. The best cases (ranked 1/10) for both tracers can
be found in Supplemental Fig. 12.

We also evaluated two studies performed in the mCT scanner to demonstrate that

our proposed motion detection and correction method can work in a different scanner.
Supplemental Fig. 13A shows coronal 60-90 min SUV images for an mCT 11C-MRB study.
Detailed SUV difference results compared to Vicra are shown in Supplemental Table 14.
The proposed 3DCOD method yielded smaller mean difference across all regions (2.1%),
outperforming NMC (=5.1%). Supplemental Fig. 14 shows the COD traces for this subject,
with large motion starting 75 min post injection in the zdirection.

Supplemental Fig. 13B (11C-PBR28, mCT) shows coronal 0-90 min reconstructed images.
The COD trace for this study, as shown in the Supplemental Fig. 15, indicates the subject
underwent large motions in the X and Y directions for the entire scan. 3DCOD restored
the image resolution. Visually, 3DCOD and Vicra yielded comparable corrected images.
Quantitative results are shown in Supplemental Table 15.
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4. Discussion

In this study, we proposed a data-driven head motion detection method that is automated and
does not require user-parameter tuning (see Supplemental Table 16 for the recommended
default parameters). The new algorithm automatically adapted to the noise changes in the
COD for different tracers and was fast to compute (~15 s per study). Registration parameters
in the motion estimation process were optimized and the motion correction was performed
using event-by-event motion compensated reconstruction. The proposed maotion correction
method was compared with the hardware-based Vicra method, which was treated as the gold
standard for real studies and ground-truth for simulations. The proposed motion correction
method was also compared with two conventional frame-based image registration methods.

For both simulation and real studies, 18F-FDG and 11C-RAC were chosen to demonstrate
the utility of the algorithm with respect to different tracer distributions and isotopes with
different half-lives. Specifically, 18F-FDG is broadly distributed in the brain gray matter with
longer decay time while 11C-RAC only contains high uptake in the subcortical region with
a much shorter half-life. Image registration for 18F-FDG was found to be more accurate
than 11C-RAC, as expected, since 11C-RAC yielded more focal distribution in the central
region of the brain which provides fewer image features for image registration, as shown

in the registration optimization results (Supplemental Figs. 16, 19). Note that, here, we
applied a simple Gaussian filtering, albeit optimized in filter size, to reduce the noise in the
MFFs before registration. In the future, we will investigate the use of deep learning-based
methods (Lu et al., 2019a) to de-noise the MFFs which may improve the image registration
performance.

In the simulation studies for 18F-FDG, parietal and frontal regions yielded relatively larger
errors (~5%) for 3DCOD than other regions since both regions usually contain more motion
being farther from the rotation axis of the head and are also more prone to attenuation
mismatch artifacts for being adjacent to the skull. Overall, in the real studies, the 3DCOD
method resulted in slightly better results, i.e., lower mean error, than the simulation studies
as compared to Vicra, i.e., 18F-FDG (real: —0.3 + 2.8% error, simulation: —2.4 + 1.4%) and
11C-RAC (real: —0.4 + 3.2%, simulation: —3.4 + 1.7%). We provide three possible reasons
for the differences: 1) the studies used for simulation and real studies were different, which
exhibited different motion during the scans; 2) simulation is the perfect scenario but our
proposed motion correction method is imperfect and still has room for improvement and

3) the real-time hardware-based motion tracking, via Vicra, may be less accurate due to
large head motion and fixation issues introducing imperfect motion tracking. Vicra was
used as the gold standard motion measure in the real studies, which assumed the Vicra
light-reflecting tool to be firmly attached to the subject’s head. However, in practice, the tool
attachment may fail, e.g., due to hair style, which causes non-rigid motion between the tool
and patient head. For example, Fig. 8A shows an example of a Vicra failure case (not used
in this study). After applying the Vicra-based motion correction, the mismatch between the
early (black and white, 0-10 min) and the late (hot metal, 60-90 min) frames is still evident
(Fig. 8A), which suggested that Vicra failed to provide reliable motion information for this
study. In contrast, the proposed 3DCOD method, as shown Fig. 8B, outperformed Vicra and
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fixed the mismatch between the early and late frames. Note that we observed approximately
2% obvious Vicra failure instances among ~500 studies.

In our previous work (Lu et al., 2020), we used one dimension of the COD trace to detect
and correct the motion. Across 10 subjects, the average number of MTPs using the old
motion detection method is 29.3 £ 6.7. After merging the three COD axes in the proposed
motion detection algorithm, the average number of MTPs significantly increased to 211.2
+ 66.9 Fig. 9. shows a representative 18F-FDG HRRT reconstructed images (60-90 min),
comparing our proposed 3DCOD approach with the results from the motion detection
method with manually selected parameters (referred to as COD*). Detailed quantitative
results are shown in Table 6. The mean absolute error is shown in Supplemental Table

17. For regions like amygdala, insula, hippocampus and thalamus, approximately 5%
improvement was observed for 3DCOD approach compared with COD*. For caudate,

the error was reduced from -12.2 % to —2.2 % for the representative case. One of the
advantages of the new approach is the utilization of three COD directions which considers
all possible motions, resulting into lower mean uptake error.

As mentioned earlier, there was a significant increase in the average number of MTPs

when using 3DCOD which resulted in higher false positive rates as shown in Fig. 4. False
positives potentially lead to short-ened motion-free frames which can affect registration
accuracy. However, undetected motion time points (false negatives) are much more likely to
lead to motion artifacts in the final reconstructed images than short motion-free frames (false
positives) are. Therefore, our approach is more tolerant of false positive MTPs than false
negative MTPs.

The motion detection performance of the proposed algorithm was very similar for HRRT
non-TOF and mCT TOF scanners. Supplemental Fig. 6 shows a COD trace for a simulated
study using the same motion information and tracer but performed on different scanners.
Supplemental Fig. 6B displays a somewhat noisier COD for mCT but larger separation when
motion occurred. HRRT (Supplemental Fig. 6A) has a smaller separation but the motion is
still distinguishable and its COD is less noisy. Note that the noise on each COD trace obeys
a normal distribution when motion is absent.

A few limitations of the proposed data-driven motion detection and motion correction
approach include: (1) tracer distribution change is rapid immediately after injection. As a
result, COD changes quickly in response. Currently, 3DCOD approach is not reliable for
motion in the early scan times, i.e., first 2 min post-injection; (2) with the increase of noise,
e.g., lower dose, the motion detection accuracy will decrease and (3) our approach does not
handle continuous motion perfectly. Therefore, if extremely slow motion occurs, our method
may perform suboptimally.

In Spangler-Bickell et al. (2021), Sprangler-Bickell et al. recently performed a similar
investigation focused on the proper frame duration for data-driven rigid motion estimation.
They found that using 440 thousand true and scattered counts per frame will give a mesh
error of 1 mm for 18F-FDG whereas we found that MFFs with more than two million
counts (true coincidence) were found to provide acceptable registration accuracy, i.e., MDE
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< 2 mm for 18F-FDG. They also investigated the FWHM for smoothing and found that
4-6 mm is optimal, which is similar to our findings; 5-mm FWHM was found optimal

for 18F-FDG while 7-mm was optimal for 11C-RAC for both scanners. Sprangler-Bickell
et al. used two tracers with broad distribution throughout the whole brain (F-FDG and
18F_florbetaben) while we investigated two tracers (8F-FDG and 11C-RAC) with very
different brain distributions. Lastly, Sprangler-Bickell et al. did not account for intra-frame
motion, which can have an impact on the motion estimation process.

Different inflation factors (a) were used for 18F-FDG (1.0) and 11C-RAC (1.6) in this paper.
However, to further examine the robustness and the sensitivity of motion correction efficacy
to the value of a, we tested a=1.6 in real 18F-FDG studies (data not shown), and found

that the final motion correction performance, i.e., ROI quantification error, was minimally
affected. This is understandable since the detection performance between a=1.0 and 1.6 was
very small for motion larger than 1 mm (Fig. 5). Therefore, practically, for both 18F-FDG
and 11C-RAC using HRRT or mCT, the same a choice (1.6) can be used. Other tunable
parameters include P (number of MFFs used to predict the RSSym s) and the 7inax, which
were not thoroughly tested given the high detectability of the results with these values.
Although the paper only examined 18F-FDG and 11C-RAC, we also applied our motion
detection method without parameter turning, i.e., same set of parameter for all the tracers, to
many other tracers. Supplemental Fig. 20 shows examples of motion detection results for six
selected tracers with a same set of parameters. In the future, we will test the algorithms for a
broader range of PET tracers to further test the robustness of the algorithm.

5. Conclusion

We developed a new COD-based motion detection algorithm that is statistics-based,
automatic and uses information from all three COD directions; thus, the algorithm is
adaptive to different tracers and acquisition conditions. Preliminary results also indicate that
the proposed motion detection and correction method generalize well to other radiotracers
acquired with a TOF scanner. The proposed motion correction method yielded —0.3 + 2.8%
and —0.4 + 3.2% brain region error for 18F-FDG and 11C-RAC, respectively, across 10
subjects with large head motions for each tracer, using the hardware motion tracking as
reference.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

CgD example (in the lateral direction) with motion detection under (A) 10 detected motion
time points (MTPs, B) 20 MTPs and (C) 30 MTPs. Green vertical lines represent the
MTPs and the black horizontal lines represent the mean of the COD segment within each
motion-free frame (MFF), which is the period between two adjacent MTPs. AU: Arbitrary
Unit.
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Fig. 2.
(A) Enin vs number of MTPs (7). The intersection between the total residual error (Emin)

at different MTPs and £, corresponds to a set of 7 MTPs. (B) An example of detection

result in one COD direction (lateral) for a simulated 18F-FDG scan. Red vertical lines show

the equal-duration partitions. The unit for this measure is arbitrary, which we denote as
Avrbitrary Unit (AU).
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Fig. 3.

COD motion detection results for a real 18F-FDG study. (A) COD in lateral (Cy), anterior-
posterior (Cy) and superior-inferior (C,) directions. (B) Example of motion detection using
Cy. Green vertical lines indicate motion time points (MTPs). Top horizontal line segments
indicate a preserved motion-free frame (MFF) and short bottom line segments show
discarded frames, where 43 s (2.4%) of the entire 30 min were discarded. Red vertical lines
show the equal-duration partitions. (C) Example of a discarded frame (magnified version of
black box region in (B) at 65 min) with over-frequent motion.
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False Positives
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Comparison of detectability and false positive rate results between 1DCOD and 3DCOD
approaches for simulated 18F-FDG (top) and 11C-RAC (bottom) HRRT studies (without
TOF). Red line with stars indicates the 3DCOD method. The inflation factor a was set to 1.0
and 1.6 for 18F-FDG and 11C-RAC studies, respectively. Each data point in the detectability
figures is the ratio between the total number of correctly detected MTPs and the total
number of ground-truth MTPs in all the simulated studies at a given motion amplitude.
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Detectability and false positive rate results for 3DCOD as a function of a for 18F-FDG (top)
and 11C-RAC (bottom) simulated for the HRRT scanner.
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50

Fig. 6.
Sample slices of motion-corrected reconstructions of simulated HRRT (A) 18F-FDG study

(60-90 min) and (B) 11C-RAC study (30-60 min). Studies are ranked 15/15 (worst case)
based on mean difference for the 3DCOD-based approach. The best cases (1/15) can be
found in Supplemental Figure 9.
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Fig. 7.
Sample slices of motion-corrected reconstructions of real (A) 18F-FDG (60-90 min) and

(B) 11C-RAC (30-60 min) studies. Studies are ranked 10/10 (worst case) based on mean
difference for the 3DCOD-based approach.
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Fig. 8.
Sample slices of motion-corrected reconstructions of a HRRT 11C-RAC study (black and

white colormap: 0-10 min, hot metal: 60-90 min) using (A) Vicra and (B) 3DCOD
methods. Vicra shows a clear misalignment between the early and late frames while 3DCOD
shows a good alignment.
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Fig. 9.

Sample slices of motion-corrected reconstructions of a real 18F-FDG (60-90 min) HRRT
study showing the proposed 3DCOD approach compared with NMC, Vicra and COD*
(example result from our previous work).
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Mean uptake error (%) compared to Vicra for the real 1 F-FDG (60-90 min) study for 3DCOD and COD *.

ROI NMC COD* 3DCOD
Amygdala -134 81 3.9
Caudate -21.2 -122 -22
Cerebellum -142 33 -0.2
Frontal -16.3 -0.7 -11
Hippocampus -5.3 6.7 -2.6
Insula -5.8 -5.9 0.0
Occipital -19.7 -32 1.6
Parietal -124 -03 -3.4
Putamen -190 -04 -2.8
Temporal -184 -24 1.0
Thalamus -11.9 -5.9 -2.6
Ave difference (%) -14.3 -1.7 -0.8
Ave SD (%) 5.3 6.0 2.3
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