
sensors

Article

Integration with 3D Visualization and IoT-Based Sensors for
Real-Time Structural Health Monitoring

Hung-Fu Chang * and Mohammad Shokrolah Shirazi

����������
�������

Citation: Chang, H.-F.; Shokrolah

Shirazi, M. Integration with 3D

Visualization and IoT-Based Sensors

for Real-Time Structural Health

Monitoring. Sensors 2021, 21, 6988.

https://doi.org/10.3390/s21216988

Academic Editor: Dimitrios

Chronopoulos

Received: 29 August 2021

Accepted: 15 October 2021

Published: 21 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

R. B. Annis School of Engineering, University of Indianapolis, Indianapolis, IN 46227, USA; shirazim@uindy.edu
* Correspondence: hchang@uindy.edu; Tel.: +1-317-788-5018

Abstract: Real-time monitoring on displacement and acceleration of a structure provides vital
information for people in different applications such as active control and damage warning systems.
Recent developments of the Internet of Things (IoT) and client-side web technologies enable a wireless
microcontroller board with sensors to process structural-related data in real-time and to interact
with servers so that end-users can view the final processed results of the servers through a browser
in a computer or a mobile phone. Unlike traditional structural health monitoring (SHM) systems
that deliver warnings based on peak acceleration of earthquake, we built a real-time SHM system
that converts raw sensor results into movements and rotations on the monitored structure’s three-
dimensional (3D) model. This unique approach displays the overall structural dynamic movements
directly from measured displacement data, rather than using force analysis, such as finite element
analysis, to predict the displacement statically. As an application to our research outcomes, patterns
of movements related to its structure type can be collected for further cross-validating the results
derived from the traditional stress-strain analysis. In this work, we overcome several challenges
that exist in displaying the 3D effects in real-time. From our proposed algorithm that converts
the global displacements into element’s local movements, our system can calculate each element’s
(e.g., column’s, beam’s, and floor’s) rotation and displacement at its local coordinate while the
sensor’s monitoring result only provides displacements at the global coordinate. While we consider
minimizing the overall sensor usage costs and displaying the essential 3D movements at the same
time, a sensor deployment method is suggested. To achieve the need of processing the enormous
amount of sensor data in real-time, we designed a novel structure for saving sensor data, where
relationships among multiple sensor devices and sensor’s spatial and unique identifier can be
presented. Moreover, we built a sensor device that can send the monitoring data via wireless network
to the local server or cloud so that the SHM web can integrate what we develop altogether to show
the real-time 3D movements. In this paper, a 3D model is created according to a two-story structure
to demonstrate the SHM system functionality and validate our proposed algorithm.

Keywords: structural health monitoring; Internet of Things; 3D modeling; real-time system

1. Introduction

Important civil structures, such as bridges, energy utilities, nuclear power plants, and
dams, require regular monitoring of their behaviors to support management decisions,
reduce the loss of lives under natural disasters. Moreover, as a result of monitoring
behaviors, necessary maintenance can be handled in time to minimize hazardous impacts
on a large number of resources that are commonly employed within the constructions [1].
Structural health monitoring (SHM) aims to develop a system that can continuously
check a structure, deliver current structural responses, and even alert when the structure
exceeds the design limit. A structure’s behaviors often vary according to its age, usage, or
environmental factors. SHM systems in the past research are designed with pre-assigned
or specific types of sensor deployments due to the pre-defined calculation or in-device
computations. Some SHM studies examined the monitoring approaches by evaluating

Sensors 2021, 21, 6988. https://doi.org/10.3390/s21216988 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2913-4419
https://doi.org/10.3390/s21216988
https://doi.org/10.3390/s21216988
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21216988
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21216988?type=check_update&version=2

Sensors 2021, 21, 6988 2 of 16

the result afterward without investigating the possible application in real-time. However,
when a natural disaster happens (e.g., earthquakes or gusty wind), an immediate reaction
according to the observation on structural behaviors is critical. These rapid responses
rely on real-time structural monitoring. Hence, a more effective SHM should intuitively
visualize the structural real-time behaviors from the monitoring results across platforms
and equip the flexibilities to adjust the computation with responding to the change in
the sensor deployment, such as adjusting the number of devices or adapting the sensor
location or sensor replacement. With the advancement of the micro-electro mechanical
system (MEMS), wireless and computing technologies, combining sensors, micro-controller
boards, client-side scripts, and internet servers to build a real-time cross-platform access-
anywhere SHM system becomes more feasible.

A typical SHM system includes sensors, data processing components, and health
evaluation units [2]. Recent technology development in these three areas has been shifted
to utilize the latest standards and software libraries. For example, In the area of sensors or
sensor networks, the traditional wireless sensor network within a local and close network
(i.e., intranet) has been moved to the internet [3]. Various sensors attached to the micro-
controller board, called the Internet of Things (IoT), can be easily programmed to interact
with the servers on the internet. This new wireless sensor network based on the Internet
of Things often involves web and database servers or even more complex computing
infrastructure, such as the edge or cloud. The communication between IoT devices and
servers often uses standard communication protocols, such as Hypertext Transfer Protocol
(HTTP) or Message Queue Telemetry Transport (MQTT), to interact with each other and
to communicate server systems across platforms over the internet [4,5]. IoT devices are
referred to smart objects or things since they commonly offer a webpage-like user interface,
which is implemented during the development phase, for their users to interact with them
via mobile applications or internet browsers. These new wired and wireless sensor devices
can also cooperate with multiple devices and different servers, unlike those in the past
SHM research, which only focused on the computation and warning mechanism of a single
device [6–9]. Instead of studying the monitoring and warning mechanism on a single IoT
device, we would like to further include the consideration of the complex interactions
among sensor devices, servers on the internet, and the user’s clients in the SHM system.
Then, the SHM system migrates from a single server or personal computer within a local
network to one that can integrate local computing servers, edge computing nodes, and
various types of servers distributed across multiple regions on the cloud. At the same
time, the design and development of this new SHM system also bring many challenges
to node-to-node communication, data processing, algorithm, sensor deployment, and
system architecture.

To show visualized structural behaviors and movements that can be used in design
or study in the future, we built up a sensor device similar to other IoT smart things to
collect monitoring data in our SHM system development. Our sensor device embeds a
website-like user interface that can allow users to directly access the device and configure
its device-server connection, deployment location at global coordinate, and sampling rate.
Then, every sensor delivers real-time three-dimensional linear acceleration which will be
translated to the displacement at global coordinate by the server in real-time. To display
the actual movement of each part of the structure in a 3D model, the global displacement
data at each sensor location need to be converted to each structural element’s displacement
and rotation at its local coordinate. To incorporate a plug-and-play feature for sensor
devices in our SHM, we create a key-value data format for keeping a generic element-to-
element relationship. An algorithm is invented for handling this conversion. To process the
enormous amount of data generated by the devices, we design a system architecture that
can deal with this in real-time. This paper is an initial study, which continues our previous
work related to IoT sensor research, toward our ultimate goal: a real-time SHM system that
handles big data and heterogeneous sensors in an edge-cloud computing environment.

Sensors 2021, 21, 6988 3 of 16

2. Related Works

Earlier SHM research studied a method or a sensor device to issue an early warning
when the external force exceeded the design capacity of the structure or the implementation
of the closed sensor network for monitoring [2,3,10–15]. Recent works focused on structural
damage detections. Aloisio et al. [16] conducted a variance-based sensitivity analysis of
various damage indicators to understand their possible usage limits. Zhoi and Wahab [17]
incorporated the cosine measure and modal assurance criterion (MAC) indicators in the
application of transmissibility-based structural damage detection. Sony and Sadhu [18]
used various numerical simulations to validate the synchrosqueezing transform (SST) for
progressive damage assessment. In applying IoT in the SHM, Muttillo et al. [19] built
an IoT sensor system that integrated ADXL355 sensors, a Same3X8E ARM Cortex-M3
microcontroller, and a personal computer via a RS485 communication bus. Their suggested
system evaluated the damage indicator but does not send monitoring data wirelessly to
a server on the internet. Abdelgawad and Yelamarthi [20] used a USB Wi-Fi module, a
Raspberry Pi 2 board, buffers, ADCs, DACs, and PZTs to build an IoT platform. The results
will be sent to the server hosted in ThingWorx. Martinez et al. [21] created an IoT-based
prototype that uses a Raspberry Pi 3 board, a USB wireless card, and accelerometer sensors
to show the acceleration values in a x-y chart on a server. Aba et al. [22] developed an
IoT-based sensor device that could monitor petroleum pipelines and showed the results in
real-time on the ThingSpeak website.

3. Materials and Methods
3.1. Sensor Device

Our design choice emphasizes a device that can easily be installed in the existing
structure and built with inexpensive costs. Hence, we selected the NodeMCU (a microcon-
troller board with a 32-bit ESP8266 chip), the ADXL345 accelerometer sensor [23], and a
MicroSD board (see Figure 1). This integration almost occupied all the general purpose
input/output (GPIOs) that NodeMCU provides (i.e., ten 3.3 voltage digital GPIOs and
one 1.8 voltage analog input GPIO). In addition to the inexpensive cost for accelerometer
sensors, the ADXL345 provides a better detection range and preciseness among MMA7455,
MMA8451, MPU6060, MMA7660, and ADXL335 chips. The micro-SD board is not essential
but it saves the monitoring results locally as backup, and the backup data can be analyzed
offline if needed.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 16

system that handles big data and heterogeneous sensors in an edge-cloud computing en-
vironment.

2. Related Works
Earlier SHM research studied a method or a sensor device to issue an early warning

when the external force exceeded the design capacity of the structure or the implementa-
tion of the closed sensor network for monitoring [2,3,10–15]. Recent works focused on
structural damage detections. Aloisio et al. [16] conducted a variance-based sensitivity
analysis of various damage indicators to understand their possible usage limits. Zhoi and
Wahab [17] incorporated the cosine measure and modal assurance criterion (MAC) indi-
cators in the application of transmissibility-based structural damage detection. Sony and
Sadhu [18] used various numerical simulations to validate the synchrosqueezing trans-
form (SST) for progressive damage assessment. In applying IoT in the SHM, Muttillo et
al. [19] built an IoT sensor system that integrated ADXL355 sensors, a Same3X8E ARM
Cortex-M3 microcontroller, and a personal computer via a RS485 communication bus.
Their suggested system evaluated the damage indicator but does not send monitoring
data wirelessly to a server on the internet. Abdelgawad and Yelamarthi [20] used a USB
Wi-Fi module, a Raspberry Pi 2 board, buffers, ADCs, DACs, and PZTs to build an IoT
platform. The results will be sent to the server hosted in ThingWorx. Martinez et al. [21]
created an IoT-based prototype that uses a Raspberry Pi 3 board, a USB wireless card, and
accelerometer sensors to show the acceleration values in a x-y chart on a server. Aba et al.
[22] developed an IoT-based sensor device that could monitor petroleum pipelines and
showed the results in real-time on the ThingSpeak website.

3. Materials and Methods
3.1. Sensor Device

Our design choice emphasizes a device that can easily be installed in the existing
structure and built with inexpensive costs. Hence, we selected the NodeMCU (a micro-
controller board with a 32-bit ESP8266 chip), the ADXL345 accelerometer sensor [23], and
a MicroSD board (see Figure 1). This integration almost occupied all the general purpose
input/output (GPIOs) that NodeMCU provides (i.e., ten 3.3 voltage digital GPIOs and one
1.8 voltage analog input GPIO). In addition to the inexpensive cost for accelerometer sen-
sors, the ADXL345 provides a better detection range and preciseness among MMA7455,
MMA8451, MPU6060, MMA7660, and ADXL335 chips. The micro-SD board is not essen-
tial but it saves the monitoring results locally as backup, and the backup data can be ana-
lyzed offline if needed.

Figure 1. Schematic design and circuit board of the sensor device.

The wireless capability is provided by the ESP8266 chip. A small amount of data can
be saved in its flash memory. The ESP8266 has a station infrastructure (STA) mode that

Figure 1. Schematic design and circuit board of the sensor device.

The wireless capability is provided by the ESP8266 chip. A small amount of data
can be saved in its flash memory. The ESP8266 has a station infrastructure (STA) mode
that sets a service set identifier (SSID) to allow other computers to connect to its wireless
network; this means that the device links to the wireless network and obtains a local IP
address during STA mode. Inside the device, we stored several web pages in the ESP8266
chip‘s built-in flash memory, letting users save configuration variables inside the flash
memory. Because the user interface is a web page, the users can use a browser to set

Sensors 2021, 21, 6988 4 of 16

the key variables (e.g., the wireless network’s SSID, account and password, server host,
etc.). During the initialization stage of the device, a universal unique identifier (UUID) is
generated and saved in the flash memory. The server uses this UUID to associate with its
deployed location, the relation with other devices, and the moving point in the 3D model.
When real-time monitoring records associated with the device’s identification number
are received by the server, the overall movement of the 3D structural model is calculated
according to our algorithm and shown to the client.

It is critical to ensure sufficient power to a sensor device to monitor the structure
in real-time. The micro USB port in the NodeMCU provides the entire device power.
Using the micro USB port extends the sensor device’s power source options (e.g., using
a replaceable high-capacity battery) and increases the device’s portability. On the other
hand, the device buffers the monitoring data in the built-in flash memory and then pushes
the data via the network to an internet server. All the computations are performed in the
server. Decreasing the number of data transmission times to the server and shifting the
computation from the sensor device to the server should reduce the power consumption.

3.2. System Architecture

Modern software widely applies various web technologies to facilitate inter-operability
between programs or to exchange data among servers. Due to the recent advance of
Javascript technology, particularly in the server-side run-time environment (i.e., Node.js)
and client-side framework and libraries, software can enjoy the benefits from the Javascript;
that is, its scalability, high-performance, and asynchronous non-blocking executions. Hence,
our server software integrates various Javascript server-side and user interface libraries—
Node.js, SocketIO, Three.js, and C3.js (see Figure 2). All the server-side Javascript com-
ponents run on the Node.js environment. The SocketIO is for real-time communication,
which sends bi-directional messages according to the pre-defined events, between the
client side (i.e., user’s browser) and the server side. So, each axis’ displacement values as
well as the transformation and movement data of each 3D element are embedded in the
server-to-client message sent via the protocol created by the SocketIO on both sides. The
Three.js on the client-side page uses WebGL to provide application programming interfaces
(APIs) for users to create and render the 3D model. We create an online 3D model editor
and a real-time display based on the Three.js. Since Three.js can run on any browser for
online 3D model rendering and editing, the 3D model can be displayed in any client [24].
The C3.js is the chart library to show real-time acceleration values on the X-Y line chart.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 16

sets a service set identifier (SSID) to allow other computers to connect to its wireless net-
work; this means that the device links to the wireless network and obtains a local IP ad-
dress during STA mode. Inside the device, we stored several web pages in the ESP8266
chip‘s built-in flash memory, letting users save configuration variables inside the flash
memory. Because the user interface is a web page, the users can use a browser to set the
key variables (e.g., the wireless network’s SSID, account and password, server host, etc.).
During the initialization stage of the device, a universal unique identifier (UUID) is gen-
erated and saved in the flash memory. The server uses this UUID to associate with its
deployed location, the relation with other devices, and the moving point in the 3D model.
When real-time monitoring records associated with the device’s identification number are
received by the server, the overall movement of the 3D structural model is calculated ac-
cording to our algorithm and shown to the client.

It is critical to ensure sufficient power to a sensor device to monitor the structure in
real-time. The micro USB port in the NodeMCU provides the entire device power. Using
the micro USB port extends the sensor device’s power source options (e.g., using a re-
placeable high-capacity battery) and increases the device’s portability. On the other hand,
the device buffers the monitoring data in the built-in flash memory and then pushes the
data via the network to an internet server. All the computations are performed in the
server. Decreasing the number of data transmission times to the server and shifting the
computation from the sensor device to the server should reduce the power consumption.

3.2. System Architecture
Modern software widely applies various web technologies to facilitate inter-opera-

bility between programs or to exchange data among servers. Due to the recent advance of
Javascript technology, particularly in the server-side run-time environment (i.e., Node.js)
and client-side framework and libraries, software can enjoy the benefits from the Javas-
cript; that is, its scalability, high-performance, and asynchronous non-blocking execu-
tions. Hence, our server software integrates various Javascript server-side and user inter-
face libraries—Node.js, SocketIO, Three.js, and C3.js (see Figure 2). All the server-side Ja-
vascript components run on the Node.js environment. The SocketIO is for real-time com-
munication, which sends bi-directional messages according to the pre-defined events, be-
tween the client side (i.e., user’s browser) and the server side. So, each axis’ displacement
values as well as the transformation and movement data of each 3D element are embed-
ded in the server-to-client message sent via the protocol created by the SocketIO on both
sides. The Three.js on the client-side page uses WebGL to provide application program-
ming interfaces (APIs) for users to create and render the 3D model. We create an online
3D model editor and a real-time display based on the Three.js. Since Three.js can run on
any browser for online 3D model rendering and editing, the 3D model can be displayed
in any client [24]. The C3.js is the chart library to show real-time acceleration values on the
X-Y line chart.

Figure 2. Architecture of the SHM system. Figure 2. Architecture of the SHM system.

The software architecture of our server is layer style. The upmost layer is HTTP, re-
sponsible for the request and response between sensor device and server. All the IoT sensor
device monitoring results are pushed to this server according to its sampling frequency via
HTTP protocol. All the required computations are in between the HTTP and data storage
layers. Inside the computation part, each monitoring point’s global displacements are
calculated from monitored acceleration values and then the global displacements can be
converted into each 3D structural element’s rotation and shift. Regarding the data storage,
the system uses MongoDB, which is classified as a document-oriented (NoSQL) database.

Sensors 2021, 21, 6988 5 of 16

There will be two different kinds of usages of the SHM system (see Figure 3). Firstly,
the 3D model is formed according to the real-world civil structure and then all sensor
device details (e.g., locations and identification number) are scaled down to the model. All
the model and sensor details are saved in the database. When the monitoring starts, all
real-time monitoring results collected from IoT sensor devices are sent to the server via the
wireless network. To reduce the transmission data, the monitoring results are firstly sent to
the local server. The local server then sends replica and computation results to the cloud
server. During this monitoring phase, once the user’s client accesses any server, the user
can see the 3D model moving in real-time.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 16

The software architecture of our server is layer style. The upmost layer is HTTP, re-
sponsible for the request and response between sensor device and server. All the IoT sen-
sor device monitoring results are pushed to this server according to its sampling fre-
quency via HTTP protocol. All the required computations are in between the HTTP and
data storage layers. Inside the computation part, each monitoring point’s global displace-
ments are calculated from monitored acceleration values and then the global displace-
ments can be converted into each 3D structural element’s rotation and shift. Regarding
the data storage, the system uses MongoDB, which is classified as a document-oriented
(NoSQL) database.

There will be two different kinds of usages of the SHM system (see Figure 3). Firstly,
the 3D model is formed according to the real-world civil structure and then all sensor
device details (e.g., locations and identification number) are scaled down to the model.
All the model and sensor details are saved in the database. When the monitoring starts,
all real-time monitoring results collected from IoT sensor devices are sent to the server via
the wireless network. To reduce the transmission data, the monitoring results are firstly
sent to the local server. The local server then sends replica and computation results to the
cloud server. During this monitoring phase, once the user’s client accesses any server, the
user can see the 3D model moving in real-time.

Figure 3. Two different types of the SHM usages.

3.3. Three-Dimensional Structural Model Visualization
3.3.1. Challenges and Assumptions

The real-world structural displacement combines the deformation of each element
(e.g., bending or shrinking) and the ground movement. The actual deformation of the
structure depends on its material, shape, and force. After the structure is built, the com-
position of the material is often unknown. That is why most SHM sensor devices only
monitor acceleration and issues warnings when the monitoring acceleration is close to the
designed value. The nature of having many unknown factors of the to-be-monitor after-
built structure particularly brings tough challenges to our system for displaying each
structural element’s actual deformation and displacement on its 3D model according to
three-dimensional monitored displacements.

The overall displacements derived by the sensor’s monitoring results are the combi-
national effects of horizontal and vertical forces. Traditional systems use forces and mate-
rial stress and strain model to derive the displacements of the structural element. One
assumption has to be made to treat the monitored displacements as an aftereffect of com-
plex combinational forces and only use displacements to illustrate the structure’s 3D
model movement. We assume that every column section between two monitoring points
is a rigid body—no deformation. Therefore, the assumption overlooks the initial linear
and later non-linear behaviors of most construction materials. We attempt to overcome

Figure 3. Two different types of the SHM usages.

3.3. Three-Dimensional Structural Model Visualization
3.3.1. Challenges and Assumptions

The real-world structural displacement combines the deformation of each element (e.g.,
bending or shrinking) and the ground movement. The actual deformation of the structure
depends on its material, shape, and force. After the structure is built, the composition
of the material is often unknown. That is why most SHM sensor devices only monitor
acceleration and issues warnings when the monitoring acceleration is close to the designed
value. The nature of having many unknown factors of the to-be-monitor after-built structure
particularly brings tough challenges to our system for displaying each structural element’s
actual deformation and displacement on its 3D model according to three-dimensional
monitored displacements.

The overall displacements derived by the sensor’s monitoring results are the com-
binational effects of horizontal and vertical forces. Traditional systems use forces and
material stress and strain model to derive the displacements of the structural element.
One assumption has to be made to treat the monitored displacements as an aftereffect of
complex combinational forces and only use displacements to illustrate the structure’s 3D
model movement. We assume that every column section between two monitoring points is
a rigid body—no deformation. Therefore, the assumption overlooks the initial linear and
later non-linear behaviors of most construction materials. We attempt to overcome this
weakness by putting more sensors on one column. If four corners of a floor are monitoring
points that are supported by columns, the deformation of the floor can be decided by the
displacements of the column at each corner.

Our primary focus is on horizontal displacements. We limit our problem to horizontal
measurements, which implies that the vertical (i.e., z-axis) measurement is neglected and
is regarded as a shift to the entire structure. Because horizontal forces mainly cause a
structure’s horizontal displacement, the contribution of the vertical force on the horizontal
displacement can be neglected.

Sensors 2021, 21, 6988 6 of 16

3.3.2. Structural Global Displacement

The displacement can be derived from the numerical integration of the accelera-
tion. In other words, the area under the graph of the velocity curve over time is the
displacement. Previous studies [25–28] have suggested methods to calculate it from the
accelerometer so we applied those integration equations to get the global displacement at
each sensor location.

Getting global displacement at each monitoring point is the first step to visualize the
3D model movements. However, the global displacement is insufficient to understand
how each connected structural element moves (e.g., how floor and column moves) because
elements in the 3D model rotate and move at their local coordinate. As a result, we must
figure out a way to translate the global displacements into each element’s rotation and
displacement at its local coordination system.

3.3.3. Conversion from Global Displacement to Element’s Local Rotation
and Displacement

Earthquakes produce three-dimensional ground forces. The displacements and ro-
tations of the structure can be viewed as the result of these three ground forces. Figure 4
shows that the movements of the two connected columns (i.e., Column01 and Column12)
are caused by the horizontal forces from the position at time t0 to another one at t1. Every
Pij point is a sensor monitoring location, and signals the point at the i-th position at the j-th
step. To illustrate how to derive global-to-local conversion equations under this situation,
we divide the movement between these two timestamps into six steps. The first three
steps are displacements along with the YG, XG, and ZG axes, and the latter three steps are
rotations at XL, YL, and ZL axis. Since all six steps are caused by forces along with XG and
YG, there is not any rotation at ZL axis.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 16

𝑑௭௡ = 𝐿௡(1 − 𝑐𝑜𝑠 𝑐𝑜𝑠 𝑟௬௡ିଵ 𝑐𝑜𝑠 𝑐𝑜𝑠 𝑟௫௡ିଵ) (7)𝑍௡(𝑡௜) = 𝐿௡ 𝑐𝑜𝑠 𝑐𝑜𝑠 𝑟௬௡ିଵ 𝑐𝑜𝑠 𝑐𝑜𝑠 𝑟௫௡ିଵ (8)

where Ln is the length of the n-th column, Xn(ti) and Yn(ti) are coordinates of the top point
of the n-th column at time t1, Xn−1(ti) and Yn−1(ti) are coordinates of the bottom point of the
n-th column at time ti, ryn−1 is the angle at YL axis, and rxn−1 is the angle at XL axis.

Figure 4. Movements caused by X-Y forces.

However, 3D models are designed to rotate at the center of the object, unlike the
above scenario—rotating at the bottom of each column. To translate the rotation in Figure
5 to the rotation at the bottom, the 3D model element must include a shift after it rotates
at the same required angle. Given that there are multiple columns connected, at the n-th
column, we have to consider two types of shifts. The first one is from the displacement at
its bottom point, which is caused by the (n−1)-th element’s shift. The bottom point’s shift
is measured at time ti to ti−1 and its movement is in three directions so each direction’s
displacement can be calculated by the difference of coordinate value at each axis. There-
fore, the bottom point displacement at the x-axis is Xn−1(ti) − Xn−1(ti−1) and the same principle
can be applied to the y and z-axis. The second type of movement caused by the rotation is
illustrated in Figure 6. For the n-th column rotating around the x and y-axis, the total dis-
placements are shown as follows: 𝑑௖௬௡ି௧௢௧௔௟ = (𝐿௡/2)(1 −𝑠𝑖𝑛 𝑠𝑖𝑛 𝑟௫௡ିଵ) ൅ (𝑌௡ିଵ(𝑡௜)– 𝑌௡ିଵ(𝑡௜ିଵ)) (9)𝑑௖௫௡ି௧௢௧௔௟ = (𝐿௡/2)(1 −𝑠𝑖𝑛 𝑠𝑖𝑛 𝑟௬௡ିଵ) ൅ (𝑋௡ିଵ(𝑡௜)– 𝑋௡ିଵ(𝑡௜ିଵ)) (10)

The displacement at the z-axis is the sum of the center point declining introduced by
both rotations (i.e., dczn + dczn’) and also the bottom point’s movement. 𝑑௖௬௡ି௧௢௧௔௟ = 𝑑௖௭௡ ൅ 𝑑௖௭௡ᇱ= (𝐿௡/2)((1 −𝑐𝑜𝑠 𝑐𝑜𝑠 𝑟௫௡ିଵ) ൅ (1 −𝑐𝑜𝑠 𝑐𝑜𝑠 𝑟௬௡ିଵ))൅ (𝑍௡ିଵ(𝑡௜)– 𝑍௡ିଵ(𝑡௜ିଵ))

(11)

The global coordinate of the center point measured at the time ti is in the following
equation. (𝑋, 𝑌, 𝑍) = (𝑋௡(𝑡௜) ൅ 𝑋௡ିଵ(𝑡௜)2 , 𝑌௡(𝑡௜) ൅ 𝑌௡ିଵ(𝑡௜)2 , 𝑍௡(𝑡௜) ൅ 𝑍௡ିଵ(𝑡௜)2) (12)

We can apply the same idea to derivate the conversion from global displacement to
the local beam element’s rotation and displacement. For a beam parallel to the y-axis, its
rotations can be at the z- or x-axis (see Figure 7).

Figure 4. Movements caused by X-Y forces.

From Figures 4 and 5, we can derive Equations (1) and (2) where L1 is the length of
the Column01, X1(t1) and Y1(t1) are coordinates of the top point of the Column01 at time
t1, X0 (t1) and Y0 (t1) are coordinates of the bottom point at Column01 at time t1, ry0 is the
angle at YL axis, and rx0 is the angle at XL axis.

ry0 = ((X1(t1)–X0(t1))/L1) (1)

rx0 =
(
(Y1(t1)–Y0(t1))/(L1cos cos ry0

))
(2)

Sensors 2021, 21, 6988 7 of 16
Sensors 2021, 21, x FOR PEER REVIEW 8 of 16

Figure 5. The rotation rx0 and ry0 at the Column01.

Figure 6. Shifts after two rotations.

Figure 7. Two rotations of the beam.

Figure 5. The rotation rx0 and ry0 at the Column01.

Both rotations will also contribute z-axis displacement dz1. The value at time t1 can be
established after ry0 and rx0 are computed.

dz1 = L1
(
1− cos cos ry0 cos cos rx0

)
(3)

Z1(t1) = L1cos cos ry0 cos cos rx0 (4)

When we have multiple connected columns and two rotations are applied at a partic-
ular column n, its two rotation angles and z-axis displacement can be calculated from the
generalized equations as follows:

ryn−1 = ((Xn(ti)–Xn−1(ti))/Ln) (5)

rxn−1 =
(
(Yn(ti)–Yn−1(ti))/(Lncos cos ryn−1

))
(6)

dzn = Ln
(
1− cos cos ryn−1 cos cos rxn−1

)
(7)

Zn(ti) = Lncos cos ryn−1 cos cos rxn−1 (8)

where Ln is the length of the n-th column, Xn(ti) and Yn(ti) are coordinates of the top point
of the n-th column at time t1, Xn−1(ti) and Yn−1(ti) are coordinates of the bottom point of
the n-th column at time ti, ryn−1 is the angle at YL axis, and rxn−1 is the angle at XL axis.

However, 3D models are designed to rotate at the center of the object, unlike the above
scenario—rotating at the bottom of each column. To translate the rotation in Figure 5 to
the rotation at the bottom, the 3D model element must include a shift after it rotates at
the same required angle. Given that there are multiple columns connected, at the n-th
column, we have to consider two types of shifts. The first one is from the displacement at
its bottom point, which is caused by the (n−1)-th element’s shift. The bottom point’s shift
is measured at time ti to ti−1 and its movement is in three directions so each direction’s
displacement can be calculated by the difference of coordinate value at each axis. Therefore,
the bottom point displacement at the x-axis is Xn−1(ti) − Xn−1(ti−1) and the same principle
can be applied to the y and z-axis. The second type of movement caused by the rotation
is illustrated in Figure 6. For the n-th column rotating around the and y-axis, the total
displacements are shown as follows:

dcyn−total = (Ln/2)(1− sin sin rxn−1) + (Yn−1(ti)–Yn−1(ti−1)) (9)

dcxn−total = (Ln/2)
(
1− sin sin ryn−1

)
+ (Xn−1(ti)–Xn−1(ti−1)) (10)

Sensors 2021, 21, 6988 8 of 16

Sensors 2021, 21, x FOR PEER REVIEW 8 of 16

Figure 5. The rotation rx0 and ry0 at the Column01.

Figure 6. Shifts after two rotations.

Figure 7. Two rotations of the beam.

Figure 6. Shifts after two rotations.

The displacement at the z-axis is the sum of the center point declining introduced by
both rotations (i.e., dczn + dczn’) and also the bottom point’s movement.

dcyn−total = dczn + d′czn
= (Ln/2)

(
(1− cos cos rxn−1) +

(
1− cos cos ryn−1

))
+(Zn−1(ti)–Zn−1(ti−1))

(11)

The global coordinate of the center point measured at the time ti is in the following equation.

(X, Y, Z) = (
Xn(ti) + Xn−1(ti)

2
,

Yn(ti) + Yn−1(ti)

2
,

Zn(ti) + Zn−1(ti)

2
) (12)

We can apply the same idea to derivate the conversion from global displacement to
the local beam element’s rotation and displacement. For a beam parallel to the y-axis, its
rotations can be at the z- or x-axis (see Figure 7).

rxn−1 = ((Xn(ti)–Xn−1(ti))/Ln) (13)

rzn−1 = ((Zn(ti)–Zn−1(ti))/(Lncos cos rxn−1)) (14)

dyn = Ln(1− cos cos rxn−1 cos cos rzn−1) (15)

Sensors 2021, 21, x FOR PEER REVIEW 8 of 16

Figure 5. The rotation rx0 and ry0 at the Column01.

Figure 6. Shifts after two rotations.

Figure 7. Two rotations of the beam.

Figure 7. Two rotations of the beam.

Sensors 2021, 21, 6988 9 of 16

Similarly, for a beam parallel to the x-axis, when its rotations are in the z- or y-axis, the
equations for getting the angles are Equation (16) and Equation (14), respectively.

ryn−1 = ((Yn(ti)–Yn−1(ti))/Ln) (16)

dxn = Ln
(
1− cos cos ryn−1 cos cos rzn−1

)
(17)

3.3.4. Sensor Deployment

Past research [29–31] already discussed the importance of IoT device deployment. In
our system, the sensor location is particularly critical because it determines the details of
the overall monitored structure’s transformation and movement. Sensors are installed at
the monitoring points. The sections between two sensor devices are treated as connected
columns or beams. As a result, when a structure is modeled, its model must compose of
separated elements, where both ends of the element are the monitoring points. Adding
sensors to columns and joints must happen before attaching them to beams. By adding
more sensor devices to each structural element (i.e., beam or column), the non-linear
deformation can be shown. Figure 8 shows that the more detailed deformation can be
displayed while the number of sensors increases. We must know that the minimum sensor
installations are at the joints on the columns. Otherwise, our above equations cannot be
adequately applied for displaying movements in our SHM system.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 16

𝑟௫௡ିଵ = ((𝑋௡(𝑡௜)– 𝑋௡ିଵ(𝑡௜))/𝐿௡) (13) 𝑟௭௡ିଵ = ((𝑍௡(𝑡௜)– 𝑍௡ିଵ(𝑡௜))/(𝐿௡ 𝑐𝑜𝑠 𝑐𝑜𝑠 𝑟௫௡ିଵ)) (14) 𝑑௬௡ = 𝐿௡(1 − 𝑐𝑜𝑠 𝑐𝑜𝑠 𝑟௫௡ିଵ 𝑐𝑜𝑠 𝑐𝑜𝑠 𝑟௭௡ିଵ) (15)

Similarly, for a beam parallel to the x-axis, when its rotations are in the z- or y-axis,
the equations for getting the angles are Equation (16) and Equation (14), respectively. 𝑟௬௡ିଵ = ((𝑌௡(𝑡௜)– 𝑌௡ିଵ(𝑡௜))/𝐿௡) (16) 𝑑௫௡ = 𝐿௡(1 − 𝑐𝑜𝑠 𝑐𝑜𝑠 𝑟௬௡ିଵ 𝑐𝑜𝑠 𝑐𝑜𝑠 𝑟௭௡ିଵ) (17)

3.3.4. Sensor Deployment
Past research [29–31] already discussed the importance of IoT device deployment. In

our system, the sensor location is particularly critical because it determines the details of
the overall monitored structure’s transformation and movement. Sensors are installed at
the monitoring points. The sections between two sensor devices are treated as connected
columns or beams. As a result, when a structure is modeled, its model must compose of
separated elements, where both ends of the element are the monitoring points. Adding
sensors to columns and joints must happen before attaching them to beams. By adding
more sensor devices to each structural element (i.e., beam or column), the non-linear de-
formation can be shown. Figure 8 shows that the more detailed deformation can be dis-
played while the number of sensors increases. We must know that the minimum sensor
installations are at the joints on the columns. Otherwise, our above equations cannot be
adequately applied for displaying movements in our SHM system.

Figure 8. Sensor deployment.

3.3.5. Timestamp
Timestamp or time is critical to the real-time system. The sensor device only contains

a timer that measures time in milliseconds starting from zero when it boots. The
timestamp keeps increasing until it shuts down. Our way to get time is to map the
timestamp from its timer to the server’s clock time by sending a request and receiving the
server’s response for inquiry and recording the time. Figure 9 shows that the timestamp
x1 should be mapped to the server’s clock time t1. Due to latency, when the server records
the clock time tr1 associated with x1, the time already passed dtr1. Hence, the mapped
server time cannot be accurate.

Figure 8. Sensor deployment.

3.3.5. Timestamp

Timestamp or time is critical to the real-time system. The sensor device only contains
a timer that measures time in milliseconds starting from zero when it boots. The timestamp
keeps increasing until it shuts down. Our way to get time is to map the timestamp from its
timer to the server’s clock time by sending a request and receiving the server’s response for
inquiry and recording the time. Figure 9 shows that the timestamp x1 should be mapped
to the server’s clock time t1. Due to latency, when the server records the clock time tr1
associated with x1, the time already passed dtr1. Hence, the mapped server time cannot
be accurate.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 16

Figure 9. Mapping between sensor device local timestamp and server clock time.

We try to calculate the average latency and use it to adjust the clock time so we can
get the recorded mapping time closer to the one that should be mapped. The following
equations show how we map timer x1 and x2 to clock time t1 and t2, respectively. 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑑𝑡ଵ = ((𝑥ଶ − 𝑥ଵ) − (𝑡𝑠ଵ − 𝑡𝑟ଵ))/2 (18) 𝑥ଵ → 𝑡ଵ ≅ 𝑡𝑟ଵ − 𝑑𝑡ଵ (19) 𝑥ଶ → 𝑡ଶ ≅ 𝑡𝑠ଵ ൅ 𝑑𝑡ଵ (20)

According to the equations above, mapped clock time in each sensor device is an
approximate value. Therefore, it is not easy for all devices to get the acceleration at the
same clock time. What is worse is that multiple devices receive different network laten-
cies. So, the best strategy is to reduce the latency. As a result, having a local server to
communicate with all the servers becomes a better solution.

3.3.6. Data Format
To use our suggested method to display the overall movement of the structure in its

3D model, the SHM system needs to save more than measurement data. Sensor deploy-
ment information and relation between different types of structural elements, such as
floors, columns, and beams, are also required. For example, to calculate the displacement
of a column, all the monitoring points at both ends of the connected parts are needed.

All the relations are organized in key-value pairs and arrays in the JavaScript Object
Notation (JSON) format. Figure 10 shows an example of how the data are saved.

Figure 10. Example of sensor and sensor relation data.

The structural 3D model is created after the user edits it on the website. The model
data saved in the JSON format contain camera information, geometries, materials, and

Figure 9. Mapping between sensor device local timestamp and server clock time.

Sensors 2021, 21, 6988 10 of 16

We try to calculate the average latency and use it to adjust the clock time so we can
get the recorded mapping time closer to the one that should be mapped. The following
equations show how we map timer x1 and x2 to clock time t1 and t2, respectively.

Average Latency dt1 = ((x2 − x1)− (ts1 − tr1))/2 (18)

x1 → t1
∼= tr1 − dt1 (19)

x2 → t2 ∼= ts1 + dt1 (20)

According to the equations above, mapped clock time in each sensor device is an
approximate value. Therefore, it is not easy for all devices to get the acceleration at the same
clock time. What is worse is that multiple devices receive different network latencies. So,
the best strategy is to reduce the latency. As a result, having a local server to communicate
with all the servers becomes a better solution.

3.3.6. Data Format

To use our suggested method to display the overall movement of the structure in its 3D
model, the SHM system needs to save more than measurement data. Sensor deployment
information and relation between different types of structural elements, such as floors,
columns, and beams, are also required. For example, to calculate the displacement of a
column, all the monitoring points at both ends of the connected parts are needed.

All the relations are organized in key-value pairs and arrays in the JavaScript Object
Notation (JSON) format. Figure 10 shows an example of how the data are saved.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 16

Figure 9. Mapping between sensor device local timestamp and server clock time.

We try to calculate the average latency and use it to adjust the clock time so we can
get the recorded mapping time closer to the one that should be mapped. The following
equations show how we map timer x1 and x2 to clock time t1 and t2, respectively. 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 𝑑𝑡ଵ = ((𝑥ଶ − 𝑥ଵ) − (𝑡𝑠ଵ − 𝑡𝑟ଵ))/2 (18) 𝑥ଵ → 𝑡ଵ ≅ 𝑡𝑟ଵ − 𝑑𝑡ଵ (19) 𝑥ଶ → 𝑡ଶ ≅ 𝑡𝑠ଵ ൅ 𝑑𝑡ଵ (20)

According to the equations above, mapped clock time in each sensor device is an
approximate value. Therefore, it is not easy for all devices to get the acceleration at the
same clock time. What is worse is that multiple devices receive different network laten-
cies. So, the best strategy is to reduce the latency. As a result, having a local server to
communicate with all the servers becomes a better solution.

3.3.6. Data Format
To use our suggested method to display the overall movement of the structure in its

3D model, the SHM system needs to save more than measurement data. Sensor deploy-
ment information and relation between different types of structural elements, such as
floors, columns, and beams, are also required. For example, to calculate the displacement
of a column, all the monitoring points at both ends of the connected parts are needed.

All the relations are organized in key-value pairs and arrays in the JavaScript Object
Notation (JSON) format. Figure 10 shows an example of how the data are saved.

Figure 10. Example of sensor and sensor relation data.

The structural 3D model is created after the user edits it on the website. The model
data saved in the JSON format contain camera information, geometries, materials, and

Figure 10. Example of sensor and sensor relation data.

The structural 3D model is created after the user edits it on the website. The model
data saved in the JSON format contain camera information, geometries, materials, and
objects. After the monitoring data are converted into each object’s rotation, displacement,
or even transformation, the dynamic behaviors under external forces can be shown in its
3D model.

4. Implementation and Validation
4.1. Implementation
4.1.1. Sensor Device Software

The sensor device’s user interface is a tab-like web page (see Figure 11). The “Setup”
tab allows users to connect to a wireless network so that the device can acquire an IP
address from the router (see Figure 12). Users configure the server IP and hostname in the
“Cloud” Table After all the required information is set, the “Home” tab shows its IP and
identification number. The “Home” tab provides the real-time acceleration measurements
at x, y, and z directions after the enable button is clicked. Users can also select a different

Sensors 2021, 21, 6988 11 of 16

sample rate. The buffer size input is used to specify the internal memory buffer for caching
the monitoring data. As for the “Setup” tab, user account and password can be set in
order to protect illegal access to this user interface of this sensor box. In this way, saved
configurations will not be altered.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 16

objects. After the monitoring data are converted into each object’s rotation, displacement,
or even transformation, the dynamic behaviors under external forces can be shown in its
3D model.

4. Implementation and Validation
4.1. Implementation
4.1.1. Sensor Device Software

The sensor device’s user interface is a tab-like web page (see Figure 11). The “Setup”
tab allows users to connect to a wireless network so that the device can acquire an IP
address from the router (see Figure 12). Users configure the server IP and hostname in the
“Cloud” Table After all the required information is set, the “Home” tab shows its IP and
identification number. The “Home” tab provides the real-time acceleration measurements
at x, y, and z directions after the enable button is clicked. Users can also select a different
sample rate. The buffer size input is used to specify the internal memory buffer for caching
the monitoring data. As for the “Setup” tab, user account and password can be set in order
to protect illegal access to this user interface of this sensor box. In this way, saved config-
urations will not be altered.

Figure 11. Home tab of sensor device user interface.

Figure 12. Cloud and setup tabs of sensor device user interface.

4.1.2. Server Software
The implementation contains three major parts: (1) project, structural model, and sen-

sor information; (2) 3D model building tool; and (3) 3D model real-time movement dis-
play. Users can create a project that includes various structures. Sensor device locations
and identifications are saved in the server. After the user creates a 3D model in our appli-
cation, the model data will automatically be saved in the server for later display. The last

Figure 11. Home tab of sensor device user interface.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 16

objects. After the monitoring data are converted into each object’s rotation, displacement,
or even transformation, the dynamic behaviors under external forces can be shown in its
3D model.

4. Implementation and Validation
4.1. Implementation
4.1.1. Sensor Device Software

The sensor device’s user interface is a tab-like web page (see Figure 11). The “Setup”
tab allows users to connect to a wireless network so that the device can acquire an IP
address from the router (see Figure 12). Users configure the server IP and hostname in the
“Cloud” Table After all the required information is set, the “Home” tab shows its IP and
identification number. The “Home” tab provides the real-time acceleration measurements
at x, y, and z directions after the enable button is clicked. Users can also select a different
sample rate. The buffer size input is used to specify the internal memory buffer for caching
the monitoring data. As for the “Setup” tab, user account and password can be set in order
to protect illegal access to this user interface of this sensor box. In this way, saved config-
urations will not be altered.

Figure 11. Home tab of sensor device user interface.

Figure 12. Cloud and setup tabs of sensor device user interface.

4.1.2. Server Software
The implementation contains three major parts: (1) project, structural model, and sen-

sor information; (2) 3D model building tool; and (3) 3D model real-time movement dis-
play. Users can create a project that includes various structures. Sensor device locations
and identifications are saved in the server. After the user creates a 3D model in our appli-
cation, the model data will automatically be saved in the server for later display. The last

Figure 12. Cloud and setup tabs of sensor device user interface.

4.1.2. Server Software

The implementation contains three major parts: (1) project, structural model, and
sensor information; (2) 3D model building tool; and (3) 3D model real-time movement
display. Users can create a project that includes various structures. Sensor device locations
and identifications are saved in the server. After the user creates a 3D model in our
application, the model data will automatically be saved in the server for later display. The
last part is the real-time view for 3D model movement. The user can move the camera
position or zoom in/out the view to see the movement from different angles.

Figure 13 shows the 3D model editor in our server application inside our SHM system.
All the structural elements are built by using the “box” object. The Three.js client-side
component can allow users to use any browser to edit their 3D models according to the
to-be monitored structure. Because of using a browser, the feature of editing anywhere
is realized. We also want to emphasize why global to local conversion is necessary in
real-time display. In Figure 14, the local coordinate on each structural element is at its
center. It is important to note that the displacement, rotation, and transformation are all at
their local coordination system instead of the global coordinate system. Each element’s
local coordination system will change after its local rotation or shift. It introduces the
challenges of global to local conversion.

Sensors 2021, 21, 6988 12 of 16

Sensors 2021, 21, x FOR PEER REVIEW 12 of 16

part is the real-time view for 3D model movement. The user can move the camera position
or zoom in/out the view to see the movement from different angles.

Figure 13 shows the 3D model editor in our server application inside our SHM sys-
tem. All the structural elements are built by using the “box” object. The Three.js client-
side component can allow users to use any browser to edit their 3D models according to
the to-be monitored structure. Because of using a browser, the feature of editing anywhere
is realized. We also want to emphasize why global to local conversion is necessary in real-
time display. In Figure 14, the local coordinate on each structural element is at its center.
It is important to note that the displacement, rotation, and transformation are all at their
local coordination system instead of the global coordinate system. Each element’s local
coordination system will change after its local rotation or shift. It introduces the challenges
of global to local conversion.

Figure 13. Two-story structure on 3D model editor of the SHM system.

Figure 14. Local coordination at each element.

4.2. Validation
Our validation targets correctly display real-time 3D movements according to the

structural monitoring data sent by multiple sensor devices. Unsynchronized monitoring
timestamps across different sensor devices or inaccurate global and local conversion equa-
tions will cause the detached structural model parts (e.g., a beam disconnects with a col-
umn) or unreasonable movement of elements (e.g., a clockwise rotation becomes an in-
correct counterclockwise rotation).

There are two parts in the validation. First, we test the time adjustment in the sensor
device. Four devices are put on the small-scale shaking table and shook with a maximum
acceleration of 0.2 g. The monitored acceleration values will be examined at each
timestamp. The second part is a simulation for investigating our conversion approach,
which is a step before we later conduct a scaled structure experiment on a shaking table.
We build a two-story 3D model for displaying the movement. On the model, the locations
of the sensors are at each joint so we use eight sensor devices to send the simulation data
to the server on the local network. The movements of the 3D model will be checked via a

Figure 13. Two-story structure on 3D model editor of the SHM system.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 16

part is the real-time view for 3D model movement. The user can move the camera position
or zoom in/out the view to see the movement from different angles.

Figure 13 shows the 3D model editor in our server application inside our SHM sys-
tem. All the structural elements are built by using the “box” object. The Three.js client-
side component can allow users to use any browser to edit their 3D models according to
the to-be monitored structure. Because of using a browser, the feature of editing anywhere
is realized. We also want to emphasize why global to local conversion is necessary in real-
time display. In Figure 14, the local coordinate on each structural element is at its center.
It is important to note that the displacement, rotation, and transformation are all at their
local coordination system instead of the global coordinate system. Each element’s local
coordination system will change after its local rotation or shift. It introduces the challenges
of global to local conversion.

Figure 13. Two-story structure on 3D model editor of the SHM system.

Figure 14. Local coordination at each element.

4.2. Validation
Our validation targets correctly display real-time 3D movements according to the

structural monitoring data sent by multiple sensor devices. Unsynchronized monitoring
timestamps across different sensor devices or inaccurate global and local conversion equa-
tions will cause the detached structural model parts (e.g., a beam disconnects with a col-
umn) or unreasonable movement of elements (e.g., a clockwise rotation becomes an in-
correct counterclockwise rotation).

There are two parts in the validation. First, we test the time adjustment in the sensor
device. Four devices are put on the small-scale shaking table and shook with a maximum
acceleration of 0.2 g. The monitored acceleration values will be examined at each
timestamp. The second part is a simulation for investigating our conversion approach,
which is a step before we later conduct a scaled structure experiment on a shaking table.
We build a two-story 3D model for displaying the movement. On the model, the locations
of the sensors are at each joint so we use eight sensor devices to send the simulation data
to the server on the local network. The movements of the 3D model will be checked via a

Figure 14. Local coordination at each element.

4.2. Validation

Our validation targets correctly display real-time 3D movements according to the
structural monitoring data sent by multiple sensor devices. Unsynchronized monitor-
ing timestamps across different sensor devices or inaccurate global and local conversion
equations will cause the detached structural model parts (e.g., a beam disconnects with
a column) or unreasonable movement of elements (e.g., a clockwise rotation becomes an
incorrect counterclockwise rotation).

There are two parts in the validation. First, we test the time adjustment in the sensor
device. Four devices are put on the small-scale shaking table and shook with a maximum
acceleration of 0.2 g. The monitored acceleration values will be examined at each timestamp.
The second part is a simulation for investigating our conversion approach, which is a step
before we later conduct a scaled structure experiment on a shaking table. We build a
two-story 3D model for displaying the movement. On the model, the locations of the
sensors are at each joint so we use eight sensor devices to send the simulation data to the
server on the local network. The movements of the 3D model will be checked via a browser
that accesses the server. Figure 15 shows the procedure of how we deal with the conversion
equation validation.

4.2.1. Time and Latency

Since four devices are moved at the same acceleration, after our time adjustment for
each device, all of them are expected to get the same acceleration value at the same times-
tamp. This implies that their wave pattern should be very close to each other. According
to Figure 16, the time adjustment is accurate because it shows four monitoring curves are
very close. Table 1 shows the standard deviation of the acceleration values of the four
devices at each timestamp. A very low maximum standard deviation also validates our
time adjustment method.

Sensors 2021, 21, 6988 13 of 16

Sensors 2021, 21, x FOR PEER REVIEW 13 of 16

browser that accesses the server. Figure 15 shows the procedure of how we deal with the
conversion equation validation.

Figure 15. Global to local conversion validation procedure.

4.2.1. Time and Latency
Since four devices are moved at the same acceleration, after our time adjustment for

each device, all of them are expected to get the same acceleration value at the same
timestamp. This implies that their wave pattern should be very close to each other. Ac-
cording to Figure 16, the time adjustment is accurate because it shows four monitoring
curves are very close. Table 1 shows the standard deviation of the acceleration values of
the four devices at each timestamp. A very low maximum standard deviation also vali-
dates our time adjustment method.

Figure 16. Acceleration monitoring of four sensor devices.

Table 1. Standard deviation of accelerations at each timestamp.

Maximum Standard Deviation Minimum Standard Deviation
0.0950045 0

4.2.2. 3D Movement Calculation
Our server for hosting the real-time SHM system is implemented in the one core

CPU, 512MB ram, and Ubuntu OS machine on the local network. The two-story structural
3D model (see Figure 13) is built to validate our proposed global to local conversion. Every
sensor is assigned at each joint so eight devices are used in the simulation. The acceleration
data pushed by the sensors continuously contribute the displacements at the sampling
rate of 20 Hz to the server. It is noteworthy that the monitoring sample time interval is
different from the display time interval. In our validation, we use one second. This can

Figure 15. Global to local conversion validation procedure.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 16

browser that accesses the server. Figure 15 shows the procedure of how we deal with the
conversion equation validation.

Figure 15. Global to local conversion validation procedure.

4.2.1. Time and Latency
Since four devices are moved at the same acceleration, after our time adjustment for

each device, all of them are expected to get the same acceleration value at the same
timestamp. This implies that their wave pattern should be very close to each other. Ac-
cording to Figure 16, the time adjustment is accurate because it shows four monitoring
curves are very close. Table 1 shows the standard deviation of the acceleration values of
the four devices at each timestamp. A very low maximum standard deviation also vali-
dates our time adjustment method.

Figure 16. Acceleration monitoring of four sensor devices.

Table 1. Standard deviation of accelerations at each timestamp.

Maximum Standard Deviation Minimum Standard Deviation
0.0950045 0

4.2.2. 3D Movement Calculation
Our server for hosting the real-time SHM system is implemented in the one core

CPU, 512MB ram, and Ubuntu OS machine on the local network. The two-story structural
3D model (see Figure 13) is built to validate our proposed global to local conversion. Every
sensor is assigned at each joint so eight devices are used in the simulation. The acceleration
data pushed by the sensors continuously contribute the displacements at the sampling
rate of 20 Hz to the server. It is noteworthy that the monitoring sample time interval is
different from the display time interval. In our validation, we use one second. This can

Figure 16. Acceleration monitoring of four sensor devices.

Table 1. Standard deviation of accelerations at each timestamp.

Maximum Standard Deviation Minimum Standard Deviation

0.0950045 0

4.2.2. 3D Movement Calculation

Our server for hosting the real-time SHM system is implemented in the one core CPU,
512MB ram, and Ubuntu OS machine on the local network. The two-story structural 3D
model (see Figure 13) is built to validate our proposed global to local conversion. Every
sensor is assigned at each joint so eight devices are used in the simulation. The acceleration
data pushed by the sensors continuously contribute the displacements at the sampling
rate of 20 Hz to the server. It is noteworthy that the monitoring sample time interval is
different from the display time interval. In our validation, we use one second. This can
avoid a display lag on the client’s browser, which is caused by too frequent updates and
heavy client-server data traffic.

Two criteria were used to validate the global to local conversation. At each joint,
connected elements cannot detach during every movement because our conversion equa-
tions are under the assumption that there are no broken joints and rigid body rotations
and displacements. The other criterion examines rotations or displacements in the correct
direction. Three people inspected the movements by using their browser at the same
time, checked the model movements from various angles by moving the camera, and then
made observation notes for each movement. Figure 17 shows that eight movements repeat
the same sequence continuously because the sensor devices keep delivering a series of
pre-defined acceleration values. Throughout the whole simulation, no disjoints between
elements or wrong rotations were seen by the inspectors. This indicated that the system

Sensors 2021, 21, 6988 14 of 16

displayed movements correctly and validated our conversion equations. Because a suc-
cessful 3D model movement also relies on synchronous monitoring time and accurate
movement interpolation, correct 3D model movements also indirectly validate our time
synchronization and interpolation methods. These validations are performed through the
simulation, which prepares our SHM system to reproduce the actual movements of the
to-be-monitored structure.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 16

avoid a display lag on the client’s browser, which is caused by too frequent updates and
heavy client-server data traffic.

Two criteria were used to validate the global to local conversation. At each joint, con-
nected elements cannot detach during every movement because our conversion equations
are under the assumption that there are no broken joints and rigid body rotations and
displacements. The other criterion examines rotations or displacements in the correct di-
rection. Three people inspected the movements by using their browser at the same time,
checked the model movements from various angles by moving the camera, and then made
observation notes for each movement. Figure 17 shows that eight movements repeat the
same sequence continuously because the sensor devices keep delivering a series of pre-
defined acceleration values. Throughout the whole simulation, no disjoints between ele-
ments or wrong rotations were seen by the inspectors. This indicated that the system dis-
played movements correctly and validated our conversion equations. Because a success-
ful 3D model movement also relies on synchronous monitoring time and accurate move-
ment interpolation, correct 3D model movements also indirectly validate our time syn-
chronization and interpolation methods. These validations are performed through the
simulation, which prepares our SHM system to reproduce the actual movements of the
to-be-monitored structure.

Figure 17. Two-story model movements.

5. Discussion and Conclusions
In this paper, we proposed a SHM system that can demonstrate real-time structural

movements in a 3D model on the website so that users can view monitoring results by
using any client device that has browsers. In our SHM system, the users can build up their
structural 3D model according to the real-world structure and save all the sensor infor-
mation. With the model and sensor data, once the real-world structure moves under the
external force, the user can see the real-time movements on the display webpage.

Our validation results showed that our conversion method, monitoring time syn-
chronization approach, and displacement adjustment equation could display the overall
behaviors correctly. Our current result is the initial step for accurately displaying real-
world structural monitoring results in a 3D model. That means, we have to consider elastic
and non-linear behaviors of the structural element. We understand that our conversion
equations have limitations due to our rigid body assumptions. Real-world structural be-
haviors under external forces do not merely act as a rigid body. Although we can use more
sensors to display bent structural elements approximately, we will need to study a 3D
deformation equation to show the non-linear behaviors of every structural element in the
future. We also know that using acceleration values to get displacements might not be
ideal. However, we argue that this deficiency does not impact our proposed approach. In

Figure 17. Two-story model movements.

5. Discussion and Conclusions

In this paper, we proposed a SHM system that can demonstrate real-time structural
movements in a 3D model on the website so that users can view monitoring results by
using any client device that has browsers. In our SHM system, the users can build up
their structural 3D model according to the real-world structure and save all the sensor
information. With the model and sensor data, once the real-world structure moves under
the external force, the user can see the real-time movements on the display webpage.

Our validation results showed that our conversion method, monitoring time syn-
chronization approach, and displacement adjustment equation could display the overall
behaviors correctly. Our current result is the initial step for accurately displaying real-world
structural monitoring results in a 3D model. That means, we have to consider elastic and
non-linear behaviors of the structural element. We understand that our conversion equa-
tions have limitations due to our rigid body assumptions. Real-world structural behaviors
under external forces do not merely act as a rigid body. Although we can use more sensors
to display bent structural elements approximately, we will need to study a 3D deformation
equation to show the non-linear behaviors of every structural element in the future. We
also know that using acceleration values to get displacements might not be ideal. However,
we argue that this deficiency does not impact our proposed approach. In other words, once
we can apply a more accurate displacement measurement technique, our SHM can display
more realistic 3D movements of the to-be monitored structure.

Author Contributions: Conceptualization, H.-F.C.; methodology, H.-F.C.; software, H.-F.C.; valida-
tion and analysis, H.-F.C.; writing—original draft preparation, H.-F.C.; writing—revise, review and
editing, M.S.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2021, 21, 6988 15 of 16

References
1. Chong, K.P. Health Monitoring of Civil Structures. J. Intell. Mater. Syst. Struct. 1998, 9, 892–898. [CrossRef]
2. Sun, M.; Staszewski, W.J.; Swamy, R.N. Smart sensing technologies for structural health monitoring of civil engineering structures.

Adv. Civ. Eng. 2010, 2010, 724962. [CrossRef]
3. Mainetti, L.; Patrono, L.; Vilei, A. Evolution of Wireless Sensor Networks towards the Internet of Things: A Survey. J. Comput.

Des. Eng. 2015, 2, 148–156.
4. Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A Survey. Comput. Netw. 2010, 54, 2787–2805. [CrossRef]
5. Sundmaeker, H.; Guillemin, P.; Friess, P.; Woelfflé, S. (Eds.) Vision and Challenges for Realising the Internet of Things; European

Comission-Information Society and Media DG: Brussels, Belgium, 2010.
6. Krishnamurthi, R.; Kumar, A.; Gopinathan, D.; Nayyar, A.; Qureshi, B. An Overview of IoT Sensor Data Processing, Fusion, and

Analysis Techniques. Sensors 2020, 20, 6076. [CrossRef] [PubMed]
7. Buratti, C.; Conti, A.; Dardari, D.; Verdone, R. An overview on wireless sensor networks technology and evolution. Sensors 2009,

9, 6869–6896. [CrossRef]
8. Mattern, F.; Floerkemeier, C. From the Internet of Computers to the Internet of Things. J. Univers. Something 2005, 11, 11–111.
9. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions.

J. Comput. Des. Eng. 2013, 29, 1645–1660. [CrossRef]
10. Masri, S.; Sheng, L.; Caffrey, J.; Nigbor, R.; Wahbeh, M.; Abdel-Ghaffar, A. Application of a web-enabled realtime structural health

monitoring system for civil infrastructure systems. Smart Mater. Struct. 2004, 13, 1269–1283. [CrossRef]
11. Xu, N.; Rangwala, S.; Chintalapudi, K.; Ganesan, D.; Broad, A.; Govindan, R.; Estrin, D. A wireless sensor network for structural

monitoring. In Proceedings of the ACM Conference on Embedded Networked Sensor Systems, Baltimore, MD, USA, 3–5
November 2004.

12. Kim, S.; Pakzad, S.; Culler, D.; Demmel, J.; Fenves, G.; Glaser, S.; Turon, M. Health monitoring of civil infrastructures using
wireless sensor networks. In Proceedings of the 6th International Conference on Information Processing in Sensor Networks
(IPSN), Cambridge, MA, USA, 25–27 April 2007.

13. Ceriotti, M.; Mottola, L.; Picco, G.P.; Murphy, A.L.; Guna, S.; Corra, M.; Pozzi, M.; Zonta, D.; Zanon, P. Monitoring Heritage
Buildings with Wireless Sensor Networks: The Torre Aquila Deployment. In Proceedings of the 2009 International Conference on
Information Processing in Sensor Networks, San Francisco, CA, USA, 13–16 April 2009.

14. Rice, J.; Mechitov, K.; Sim, S.; Spencer, B.; Agha, G. Enabling Framework for Structural Health Monitoring using Smart Sensors.
Struct. Control Health Monit. 2011, 18, 574–587. [CrossRef]

15. Paek, J.; Chintalapudi, K.; Govindan, R.; Caffrey, J.; Masri, S. A Wireless Sensor Network for Structural Health Monitoring:
Performance and Evaluation. In Proceedings of the Second IEEE Workshop on Embedded Networked Sensors, Sydney, NSW,
Australia, 30 April–1 May 2005; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2005; pp. 1–10.

16. Aloisio, A.; Di Battista, L.; Alaggio, R.; Fragiacomo, M. Sensitivity analysis of subspace-based damage indicators under changes
in ambient excitation covariance, severity and location of damage. Eng. Struct. 2020, 208, 110235. [CrossRef]

17. Zhou, Y.L.; Wahab, M.A. Cosine based and extended transmissibility damage indicators for structural damage detection. Eng.
Struct. 2017, 141, 175–183. [CrossRef]

18. Sony, S.; Sadhu, A. Identification of progressive damage in structures using time-frequency analysis. In Proceedings of the CSCE
Annual Conference, Montreal, BC, Canada, 12–15 June 2019.

19. Muttillo, M.; Stornelli, V.; Alaggio, R.; Paolucci, R.; Di Battista, L.; Rubeis, T.; Ferri, G. Structural Health Monitoring: An IoT
Sensor System for Structural Damage Indicator Evaluation. Sensors 2020, 20, 4908. [CrossRef] [PubMed]

20. Abdelgawad, A.; Yelamarthi, K. Internet of Things (IoT) Platform for Structure Health Monitoring. Wirel. Commun. Mob. Comput.
2017, 2017, 6560797. [CrossRef]

21. Martinez, S.; Jiménez, J.; Baculima, R.; Serrano, I. IoT-based Microseismic Monitoring System for the Evaluation of Struc-
tural Health in Smart Cities. In Proceedings of the First Ibero-American Congress, ICSC—CITIES 2018, Soria, Spain,
26–27 September 2018.

22. Aba, E.N.; Olugboji, O.A.; Nasir, A.; Olutoye, M.A.; Adedipe, O. Petroleum pipeline monitoring using an internet of things (IoT)
platform. SN Appl. Sci. 2021, 3, 180. [CrossRef] [PubMed]

23. Analog Devices; ADXL 345 Datasheet Rev E. 2013. Available online: https://www.analog.com/media/en/technical-
documentation/data-sheets/ADXL345.pdf (accessed on 1 July 2021).

24. Nyamsuren, P.; Lee, S.; Hwang, H.; Kim, T. A web-based collaborative framework for facilitating decision making on a 3D design
developing process. J. Comput. Des. Eng. 2015, 2, 148–156. [CrossRef]

25. Seifert, K.; Camacho, O. Implementing Positioning Algorithms Using Accelerometers; Application Note; Freescale Semiconductor:
Tempe, AZ, USA, 2007.

26. Martin, A.; Manfred, P. Calculation of displacements of measured accelerations, analysis of two accelerometers and application in
road engineering. In Proceedings of the 6th Swiss Transport Research Conference, Ascona, Switzerland, 15–17 March 2006.

27. Wei-Meng, N.; Fang, L.; Zi-Yuan, Q.; De-Qing, G. Small Displacement Measuring System Based on MEMS Accelerometer. Math.
Probl. Eng. 2019, 2019, 3470604. [CrossRef]

28. Andrew, B.; Graham, W.; William, W. Deriving Displacement from 3-Axis Accelerometers. In Proceedings of the Computer
Games, Multimedia & Allied Technology, Singapore, 11–12 May 2009.

http://doi.org/10.1177/1045389X9800901104
http://doi.org/10.1155/2010/724962
http://doi.org/10.1016/j.comnet.2010.05.010
http://doi.org/10.3390/s20216076
http://www.ncbi.nlm.nih.gov/pubmed/33114594
http://doi.org/10.3390/s90906869
http://doi.org/10.1016/j.future.2013.01.010
http://doi.org/10.1088/0964-1726/13/6/001
http://doi.org/10.1002/stc.386
http://doi.org/10.1016/j.engstruct.2020.110235
http://doi.org/10.1016/j.engstruct.2017.03.030
http://doi.org/10.3390/s20174908
http://www.ncbi.nlm.nih.gov/pubmed/32877996
http://doi.org/10.1155/2017/6560797
http://doi.org/10.1007/s42452-021-04225-z
http://www.ncbi.nlm.nih.gov/pubmed/33521560
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf
http://doi.org/10.1016/j.jcde.2015.02.001
http://doi.org/10.1155/2019/3470604

Sensors 2021, 21, 6988 16 of 16

29. Alablani, I.; Alenazi, M. EDTD-SC: An IoT Sensor Deployment Strategy for Smart Cities. Sensors 2020, 20, 7191. [CrossRef]
30. Burhanuddin, M.A.; Mohammed, A.A.-J.; Ismail, R.; Hameed, M.E.; Kareem, A.N.; Basiron, H. A Review on Security Challenges

and Features in Wireless Sensor Networks: IoT Perspective. J. Telecommun. Electron. Comput. Eng. 2018, 10, 17–21.
31. Garrido-Hidalgo, C.; Hortelano, D.; Roda-Sanchez, L.; Olivares, T.; Ruiz, M.C.; Lopez, V. IoT Heterogeneous Mesh Network

Deployment for Human-in-the-Loop Challenges Towards a Social and Sustainable Industry 4.0. IEEE Access 2018, 6, 28417–28437.
[CrossRef]

http://doi.org/10.3390/s20247191
http://doi.org/10.1109/ACCESS.2018.2836677

	Introduction
	Related Works
	Materials and Methods
	Sensor Device
	System Architecture
	Three-Dimensional Structural Model Visualization
	Challenges and Assumptions
	Structural Global Displacement
	Conversion from Global Displacement to Element’s Local Rotation and Displacement
	Sensor Deployment
	Timestamp
	Data Format

	Implementation and Validation
	Implementation
	Sensor Device Software
	Server Software

	Validation
	Time and Latency
	3D Movement Calculation

	Discussion and Conclusions
	References

