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Abstract: In the present work, a thermal treatment technique is applied for the synthesis of CexSn1−xO2

nanoparticles. Using this method has developed understanding of how lower and higher precur-
sor values affect the morphology, structure, and optical properties of CexSn1−xO2 nanoparticles.
CexSn1−xO2 nanoparticle synthesis involves a reaction between cerium and tin sources, namely,
cerium nitrate hexahydrate and tin (II) chloride dihydrate, respectively, and the capping agent,
polyvinylpyrrolidone (PVP). The findings indicate that lower x values yield smaller particle size with
a higher energy band gap, while higher x values yield a larger particle size with a smaller energy
band gap. Thus, products with lower x values may be suitable for antibacterial activity applications
as smaller particles can diffuse through the cell wall faster, while products with higher x values may
be suitable for solar cell energy applications as more electrons can be generated at larger particle
sizes. The synthesized samples were profiled via a number of methods, such as scanning electron
microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier
transform infrared spectroscopy (FT-IR). As revealed by the XRD pattern analysis, the CexSn1−xO2
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nanoparticles formed after calcination reflect the cubic fluorite structure and cassiterite-type tetrago-
nal structure of CexSn1−xO2 nanoparticles. Meanwhile, using FT-IR analysis, Ce-O and Sn-O were
confirmed as the primary bonds of ready CexSn1−xO2 nanoparticle samples, whilst TEM analysis
highlighted that the average particle size was in the range 6−21 nm as the precursor concentration
(Ce(NO3)3·6H2O) increased from 0.00 to 1.00. Moreover, the diffuse UV-visible reflectance spectra
used to determine the optical band gap based on the Kubelka–Munk equation showed that an
increase in x value has caused a decrease in the energy band gap and vice versa.

Keywords: CexSn1−xO2 nanoparticles; thermal treatment technique; polyvinylpyrrolidone; energy
band gap

1. Introduction

Recently, nanomaterials have been the focus of extensive research studies, with their
unique physiochemical properties attracting particular attention [1–6]. As a result of such
studies, new systems, nanoplatforms, devices, and structures applicable to various do-
mains have been developed [7–10]. The proliferation of related work makes nanomaterial
applications demonstrating biodegradability, biocompatibility, and functionalization espe-
cially advantageous [11,12]. Empirical research has been significantly concerned with the
use of cubic fluorite structures (CeO2) and cassiterite-type tetragonal structures of (SnO2)
semiconductors nanomaterials [4,13,14]. Both group II and group IV elements are included
in the CeO2 cubic fluorite structure, since it is classified as II-IV composite semiconduc-
tor [14]. There are various applications intended to exploit the singular structural features
of nanomaterials on the basis of the useful chemical and physical properties [15]. It has a
notable structure with a cubic fluorite structure crystalline, along with energy band gaps
amounting to 3.0–3.6 eV [16]. CeO2 semiconductor nanostructures have wide applications,
such as in photovoltaic and solar cells [17,18]. Further significant applications include
diodes, clear electrodes, gas sensors, as well as antibacterial activity [19]. CeO2 nanostruc-
tures have been prepared in different shapes, such as nanoparticles [16], nanocrystals [20],
nanoclusters [21], nanowires [22], nanotubes [23], and nanoflowers.

Similarly, the composite semiconductor (II-VI) SnO2-type tetragonal structure is made
up of the metal Sn (II) and non-metallic elemental oxygen (VI) [4,13]. Important applications
have been devised based on the remarkable properties presented by various SnO2 semi-
conductor materials [24]. Used as the archetypal tetragonal crystal structure, this material
is categorized as an n-type semiconductor with 3.6 eV band gaps [25]. Research and appli-
cations have sought to exploit the characteristic properties of SnO2 nanomaterials rooted in
their singular crystal structure and nano-sized dimensions. Thus, applications are exempli-
fied by solar cells due to their tunable physical and chemical properties, with enhanced
performance over their bulk counterparts [26,27], and optoelectronic devices [28], with
applications geared towards leveraging the pellucidity occurring in the visible solar spec-
trum zone, as well as catalysis [29], diodes [30], gas sensors [31], and biomedical tools [32].
Furthermore, nanocrystals [33], nanoclusters [34], nanotubes [35], and nanorods [36] are
among the wide range of SnO2 nanomaterials produced via different approaches, such as
sonochemical [37], solvothermal [26], co-precipitation [38], microwave hydrothermal [39],
and sol-gel treatment [40] approaches.

The complementary features are indicated by the distinguishing composition of
CexSn1−xO2 with regard to the bandgaps and sizes that grow from both oxide semi-
conductors. It is also probable that it has characteristics that set it apart from singular
semiconductor constituents. The use of CexSn1−xO2 for various purposes, including bio-
cides and disinfectants is a matter that warrants attention in relation to the particular
CexSn1−xO2 nanocomposite composition. The composition displays better stability and
a lengthier life than organic-based materials, not to mention the fact that it has been the
focus of more extensive study with regard to biological activity [41,42]. Precipitation meth-
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ods [43], co-precipitation methods [44], and the hydrothermal strategies [45] are among the
techniques through which it is possible to produce CexSn1−xO2 nanostructures. Neverthe-
less, due to the complexity of the process of synthesis, which involves extensive reaction
times, toxic reagents, and effluent byproducts, such techniques are not highly effective for
the industrial-scale production of CexSn1−xO2 nanoparticles. Moreover, the synthesis of
CexSn1−xO2 nanoparticles at various x values has not been investigated. More specifically,
an uncomplicated heat treatment technique may be adopted to avoid waste CexSn1−xO2
nanoparticle products. The significance of this work stems from the fact that it proposes
a production method compatible with industrial applications that is capable of yielding
products defined by basic handling, particle size regulation (smaller and larger sizes are
respectively suitable for antibacterial activity due to the smaller particle can diffuse through
the cell wall faster, and energy applications due to more electrons can be generated at
the bigger particle size [6]), inexpensiveness, high quality, high adaptability, a powdered
form, and effective band gap. The chosen approach is also advantageous because it does
not generate toxic byproducts and does not require extra chemical reagents. On the basis
of this approach, this work seeks to determine how precursor values affect CexSn1−xO2
nanoparticles.

CexSn1−xO2 samples have been synthesized in this work utilizing a thermal-based
treatment process and the effects of Ce and Sn contents on the morphological, structural,
and optical properties of CexSn1−xO2 nanoparticles have also been analyzed. The approach
has involved the use of a solution with a content of metal ions and polyvinylpyrrolidone
acting as precursor and capping agents, respectively. Furthermore, to obtain the desired
pure nanoparticles, a calcination technique has been adopted, while various methods are
applied to investigate morphology and crystallinity. The effect of x value variation is
investigated as well.

2. Materials and Methods
2.1. Materials

Cerium nitrate hexahydrate with a purity of more than 99% (Ce(NO3)3·6H2O) and tin
(II) chloride dihydrate (SnCl2·2H2O), both in concentrations of 0.00, 0.20, 0.40, 0.60, 0.80,
and 1.00 mmol, were employed as the metal precursors, while polyvinylpyrrolidone and
deionized water served as a capping agent, which mediated the spread of particles, and
as solvent, respectively. All the chemicals were acquired from Sigma-Aldrich (US), their
quality was research-grade, and none were purified further.

2.2. Synthesis of Samples

The preparation of the CexSn1−xO2 nanoparticle product involved the dissolution
of 4.5 g of polyvinylpyrrolidone into 100 mL of deionized water, followed by energetic
stirring for 120 min at a temperature of 70 ◦C. The next step was the dissolution of Ce
(NO3)3·6H2O into amounts of 0.00, 0.20, 0.40, 0.60, 0.80, and 1.00 mmol. A homogeneous
solution was obtained by adding and energetically mixing SnCl2·2H2O in amounts of 1.00,
0.80, 0.60, 0.40, 0.20, and 0.00 mmol. The combined solution was placed on a petri dish and
subjected to drying in an oven for one day at 80 ◦C. In this way, a solid was attained which
was then rendered into a powdered form through crushing for half an hour in a mortar. A
box furnace was subsequently employed to subject the powder to calcination at 650 ◦C for
an hour and a half. Once the synthesized and calcined oxide nanoparticle samples were
obtained, their profiling could be initiated.

3. Results and Discussion
3.1. Mechanism of the Formation of the Nanoparticle

Figure 1a presents the chemical structure of the amphiphilic PVP, in which the head
group is the pyrrolidone part (hydrophilic) while the tail group is the polyvinyl part (hy-
drophobic); however, when the PVP molecules are in an aqueous solution, the structure
may transform to a resonance structure as illustrated in Figure 1b [46]. Figure 2 schemati-
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cally shows the process of interaction between the capping agent PVP and the metal ions.
The cerium and tin are bound by strong ionic bonds between the metallic ions and the
amide groups of the polymer chains. At the same time, cerium and tin ions are already
bound to nitrate ions (NO3

−) and the propane-2-olate ions (OC3H7
−), respectively, via

a strong ionic bond. Eventually, the metal cations are immobile in the cavities of the
polymer chains, which leads to the formation of uniformly distributed metal oxides in a
solid solution in the drying and calcination process [47].
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PVP’s main role in the employed method is to control the growth of the particles by
forming passivation layers around the metal. In addition, the functions of PVP during
the preparation of CexSn1−xO2 nanoparticles are to regulate the expansion nucleation of
nanoparticles, limit the accretion of the nanoparticles, improve the degree of crystallinity
of the nanoparticles, create a restricted environment around the CexSn1−xO2 nanoparticles,
and facilitate the development of nanoparticles with a homogenous dispersal of both size
and form [47,48]. The drying process may decompose the PVP partly to feature shorter
polymer chains [49,50]. The shortening of polymer chains causes the metallic ions to be well
dispersed throughout the PVP cavities and a reduction in the number of metal ions that
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are being capped. The effect of PVP is not restricted only to the solution and drying steps,
but also the formation of CexSn1−xO2 nanoparticles in the calcination process through the
nucleation, solid-state reaction, and the oxidization of Ce3+ and Sn2+ ions. In addition,
during the calcination process, organic materials (PVP) are being eliminated, which causes
steric hindrance disruption.

3.2. TEM Analysis

Transmission electron microscopy (TEM) was the basis for profiling the nanoparticle
samples. This method is particularly useful because it ensures that the generated nanopar-
ticles have a homogeneous round shape and size. Samples typically display uniformity in
term of morphological features (x0.00–x1.00). CexSn1−xO2 nanoparticles were subjected to
calcination at 650 ◦C and their TEM images and particle size distributions are illustrated
in Figures 3 and 4, respectively. These images indicate that the existence of direct propor-
tionality between the x values and particle size, with the increase in particle size being
determined by contiguous particle aggregation, which in turn is caused by surface melting
at elevated calcination temperature and x values.
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Figure 3. TEM images of (x0.00) Ce0.00Sn1.00O2, (x0.20) Ce0.20Sn0.80O2, (x0.40) Ce0.40Sn0.60O2, (x0.06) Ce0.60Sn0.40O2, (x0.08)
Ce0.80Sn0.20O2 and (x1.00) Ce1.00Sn0.00O2) nanoparticles calcined at 650 ◦C.

The size uniformity and round shape of the CexSn1−xO2 nanoparticles were confirmed
by the results obtained. The standard process of nanoparticle sample production was
established to be effective, with the sizes of the nanoparticles being influenced by the
presence of PVP in a considerable amount based on the agglomeration and suppression
mechanism [51]. The outcomes of the XRD and TEM analyses, obtained from the differently
sized nanoparticles (from 6 nm to 21 nm), synthesized at 650 ◦C by increasing the x
value, are outlined in Table 1. PVP is used as a stabilizer for particles and mediates
nanoparticle nucleation and formation while also contributing to homogeneity [52–55]. As
such, it is useful for restricting nanoparticle size, as well as for preventing nanoparticle
aggregation [13,56–59]. Consequently, the particles increased in size when CeO2 was
used in the sample (x = 0.20–1.00) due to the intensified agglomeration. Meanwhile, the
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reduction trend could be attributed to the fact that Ce3+ and Sn2+ have different ionic
crystal radii.
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Table 1. XRD and TEM results for CexSn1−xO2 nanoparticles of various x values when synthesized at 650 ◦C.

x Values Sample Concentrations CexSn1−xO2 At
650 ◦C and 4.5 gm of PVP

Particle Size
by TEM (nm)

Crystallite Size
by XRD (nm)

Energy Bandgap
(eV)

0.00 Ce0.00Sn1.00 O2 6 ± 2 6 3.97
0.20 Ce0.20Sn0.80 O2 8 ± 3 7 3.86
0.40 Ce0.40Sn0.60 O2 10 ± 2 9 3.72
0.60 Ce0.60Sn0.40 O2 12 ± 4 10 3.64
0.80 Ce0.80Sn0.20 O2 16 ± 3 14 3.56
1.00 Ce1.00Sn0.00 O2 21 ± 2 19 3.40

3.3. SEM Analysis

The morphologies of CexSn1−xO2 nanoparticles have been analyzed using scan-
ning electron microscopy (SEM). Figure 5 illustrates micrographs associated with the
CexSn1−xO2 nanoparticles at every x value. The shapes of the prepared samples were
almost spherical with regularities at x = 1.00, while the samples featured small grains
and were spherical at x = 0.00. This finding was consistent with those reported in earlier
studies [13,60]. In Figure 5, the images for x = 0.20 and x = 0.80 show samples of clusters
formed with a round shape due to the fusion, breakdown, and overlapping of grains caused
by the reduction in x value. Small particles agglomerated on large particles as shown in
images where x = 0.60 and x = 0.80, due to the decreased amount of SnO2 that caused an
agglomeration of SnO2 on CeO2.
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Figure 5. SEM images of (x0.00) Ce0.00Sn1.00O2, (x0.20) Ce0.20Sn0.80O2, (x0.40) Ce0.40Sn0.60O2, (x0.06) Ce0.60Sn0.40O2, (x0.08)
Ce0.80Sn0.20O2 and (x1.00), Ce1.00Sn0.00O2) nanoparticles calcined at 650 ◦C.

3.4. XRD Analysis

The XRD patterns correlated with the CexSn1−xO2 nanoparticles after 180 min of
calcination at 650 ◦C are shown in Figure 6 (x0.00–x1.00), with the diffraction peak associated
with SnO2 nanoparticles being denoted by the plus symbol, while the diffraction peak for
the CeO2 nanoparticles is denoted by the star symbol. In the context of XRD patterns, the
diffraction peaks represent standard values equivalent to the SnO2 and CeO2 compounds
with tetragonal and cubic fluorite structures, respectively. The peaks associated with the
SnO2 nanoparticles correspond to the (110), (011), (020), (121), (220), (002), (130), (112), (031),
(022), and (231) planes, which is in agreement with JCPDS 00-041-1445 [4]. Meanwhile, the
peaks associated with the CeO2 nanoparticles correspond to the (1 1 1), (2 0 0), (2 2 0), (3
1 1), (2 2 2), (4 0 0), (3 3 1), and (4 2 0) planes, which is consistent with the PDF Card No:
34-0394 data [14]. Furthermore, a mixture of SnO2 nanoparticle tetragonal structures and
CeO2 nanoparticle cubic fluorite structures was exhibited by the generated CexSn1−xO2
nanoparticles [61,62]. It must be noted that the XRD patterns of the samples did not reveal
any contamination peak. Scherrer’s formula can be applied to determine the nanoparticle
crystal size (D), as demonstrated as follows [6]:

D = (0.9λ)/(βcosθ), (1)

where the X-ray wavelength (1.5406 Å), the full width at half maximum, and the diffraction
angle are respectively denoted by λ, β, and θ. Thus, an increase in the x value to 1.00 mmol
cerium nitrate hexahydrate determined an enlargement in crystallite size from 5 to 19 nm.
It can be deduced from the results that a rise in the x value yields a diffraction peak with
a greater intensity, as presented in Figure 5 (x0.20–x0.80). Consequently, in relation to the
nuclei, the enlarged particle size leads to an increase in crystalline volume ratio, thereby
improving crystallinity [6,14].
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3.5. FT-IR Analysis

The FT-IR spectrum related to the CexSn1−xO2 samples has been studied in the range
of 80–4000 cm−1. Figure 7a–g shows FT-IR spectra for the samples with different x values
after drying at 80 ◦C and being calcined at 650 ◦C. In Figure 7a (sample after drying at 80 ◦C
only) the absorption bands at wavenumbers 3433, 2954, and 1673 cm−1 were attributed
to N–H, C–H, and C = O stretching vibrations [63]. The absorption band at 1418 cm−1

was attributed to C–H bending vibration initiated in the methylene group, and the peak
at 1272 cm−1 was assigned to the C–N stretching vibration. The bands at 833, 731, and
620 cm−1 were mapped to NO3- groups, with the vibrations generated by C–C ring and
C–N=O bending [64,65]. The absorption bands at 421 and 540 cm−1 were assigned to
Ce–OH band Sn–OH vibrations. Figure 7b–g show the disappearance of these peaks due
to broadband absorption for the samples calcinated at 650 ◦C. The single absorption peak
at 385 cm−1 in Figure 7b was attributed to Ce–O, and the other single absorption peak
at 491 cm−1 in Figure 6g was attributed Sn–O. The double absorption peaks at 382, 373,
370, 368 cm−1, and 487 cm−1 in Figure 7c–f were attributed to Ce–O, and Sn–O, where the
wavenumber values for the sample spectra changed when the x values were increased.
In regard to the x value increase, this was proved by the variable crystallinity exhibited
by the generated CexSn1−xO2 nanoparticles. All the bands characterizing the samples
(i.e., x = 0.20–0.80) were included in the range of the Ce-O and Sn-O stretching vibrations,
confirming the purity of the synthesized CexSn1−xO2 nanoparticles. Thus, the samples
were free of additional impurities [4,60].
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Figure 7. FTIR spectra of (a) the sample after drying at 80 ◦C ((b), x1.00) Ce1.00Sn0.00O2, ((c), x0.20)
Ce0.20Sn0.80O2 ((d), x0.40) Ce0.40Sn0.60O2, ((e), x0.60) Ce0.60Sn0.40O2, ((f), x0.80) Ce0.80Sn0.20O2 and ((g),
x0.00) Ce0.00Sn1.00O2 nanoparticles calcined at 650 ◦C.

3.6. Bandgap Analysis

The procedure underpinning the Kubelka–Munk function consists of mapping the
square of this function, namely, (F(R∞)hv)2, in relation to the energy and extension of the
linear portion of the curve to F(R)2 = 0. As shown in Figure 8 (x0.00–x1.00), the Kubelka–
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Munk function facilitates the calculation of energy bandgaps for nanoparticles according
to the diffuse reflectance spectra associated with samples exposed to a temperature of
650 ◦C. In this way, the band gap energy was generated for the oxide nanoparticles, with
the energy bandgap values and x values being inversely correlated. Quantum size effects
explained the rise in the bandgap energy value, whereas the transitions among the partially
suitable valance and conduction bands for Ce3+ ion d-shell electrons explained the decrease
in the band gap energy. Given the aspects addressed above, it is a complicated matter
to eliminate the effect of particle size with regard to the band gap. Indeed, the material
properties and band structure can be altered, where, owing to a particle size decrease,
bandgap reduction is directly related to size enlargement. Disruption in the s-electron and
p-electron conduction bands occurs at higher energy levels, leading to the possibility of
superimposition when the particles are of a small size. In term of the Fermi-level distance,
the larger the distance from the particle center, the lower the nuclear potential for electron
conduction is. Hence, the absorption energy is equivalent to the conduction band energy in
the case of transitions with permissible quantum numbers. In this work, band gap values
were reduced whilst x values were increased to make it easier to conduct a comparative
analysis, as shown in Table 1; however, flawed states may be enhanced at elevated x values,
resulting in a higher absorption coefficient. Furthermore, the characteristics of the optical
nanomaterial and related electronic structures can be modified by the fields of the electron
hole pairs generated by photon absorption.
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Figure 8. The energy bandgap of (x0.00) Ce0.00Sn1.00O2, (x0.20) Ce0.20Sn0.80O2, (x0.40) Ce0.40Sn0.60O2, (x0.06) Ce0.60Sn0.40O2,
(x0.08) Ce0.80Sn0.20O2, and (x1.00) Ce1.00Sn0.00O2) nanoparticles calcined at 650 ◦C.

4. Conclusions

The results obtained in this paper have proven that calcination is an effective technique
for the synthesis of CexSn1−xO2 nanoparticles. In addition, X-ray diffraction analysis
revealed that, at every x value, the CexSn1−xO2 nanoparticles exhibited a cubic fluorite
structure for CeO2 and a tetragonal structure for SnO2. A direct correlation was established
between the nanoparticle size and the x value, with sizes ranging between 6 and 21 nm
at x values between 0.00 and 1.00. The double absorption peaks were attributed to Ce–
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O and Sn–O and confirmed the purity of the CexSn1−xO2 nanoparticles. A shift in the
wavenumber for the sample’s nanoparticles spectra at increasing x values was documented.
The novel thermal treatment method confirmed that the crystallinity of the CexSn1−xO2
nanoparticles has been produced. Furthermore, the major vibrational modes displayed
by Ce-O and Sn-O were identified via FT-IR analysis, while UV-vis absorption analysis
revealed that, as the x value increased, the energy band gap diminished. Moreover, the
smaller particle size was derived from a lower x value and the smaller energy band gap
was derived from a higher x value. It can thus be concluded that products at lower x values
can have antibacterial activity applications as the smaller particles can diffuse through the
cell wall faster, while the products at higher x values can have solar cell energy applications
due to more electrons can be generated at the bigger particle size.
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