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Abstract

Background: Surgical site infections (SSI) are an important cause of peri-surgical morbidity with risks that vary extensively
between patients and surgeries. Quantifying SSI risk would help identify candidates most likely to benefit from interventions
to decrease the risk of SSI.

Methods:We randomly divided all surgeries recorded in the National Surgical Quality Improvement Program from 2010 into
a derivation and validation population. We used multivariate logistic regression to determine the independent association
of patient and surgical covariates with the risk of any SSI (including superficial, deep, and organ space SSI) within 30 days of
surgery. To capture factors particular to specific surgeries, we developed a surgical risk score specific to all surgeries having
a common first 3 numbers of their CPT code.

Results: Derivation (n = 181 894) and validation (n = 181 146) patients were similar for all demographics, past medical
history, and surgical factors. Overall SSI risk was 3.9%. The SSI Risk Score (SSIRS) found that risk increased with patient factors
(smoking, increased body mass index), certain comorbidities (peripheral vascular disease, metastatic cancer, chronic steroid
use, recent sepsis), and operative characteristics (surgical urgency; increased ASA class; longer operation duration; infected
wounds; general anaesthesia; performance of more than one procedure; and CPT score). In the validation population, the
SSIRS had good discrimination (c-statistic 0.800, 95% CI 0.795–0.805) and calibration.

Conclusion: SSIRS can be calculated using patient and surgery information to estimate individual risk of SSI for a broad
range of surgery types.
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Introduction

Surgical site infections [SSIs] are important events. They are

one of the most common nosocomial infections [1], occurring in

2–5% of the estimated 30 million operations occurring annually in

the United States [2]. They are associated with significantly

increased health care costs [3]. Most importantly, they have

important implications for patients by causing pain, increasing the

risk of hospital readmissions, and making repeated procedures

more likely [4].

Being able to accurately quantify SSI risk would be helpful for

two primary reasons. First, determining the likelihood that a

particular patient develops an SSI is essential for deciding whether

or not particular preventive strategies [such as prophylactic

antibiotics] should be used. This is because the probability that

a particular patient benefits from such strategies is inversely

associated with baseline risk of the event. Second, an accurate risk

model would facilitate the comparison of SSI rates between

facilities and health care providers.

A large number of SSI risk models that are specific to particular

surgery types have been published. One of the most common tools

to predict SSI risk in a broad range of surgeries is the National

Nosocomial Infections Surveillan [NNIS] Basic SSI Risk Index

[5]. This model has several limitations including: its small number

of potential final scores [thereby limiting its discriminatory

abilities]; the uncertain validity of equally weighting all three

components of the model; and its inability to risk stratify particular

specific surgeries [6,7]. Mu et. al. [8] created 39 procedure-specific

models with more extensive candidate variables and greater c-

statistics than the NNIS Basic SSI Risk Index [median values of

0.67 vs. 0.60] but were still weakly discriminative.

In this study, we derived and internally validated a model to

predict the risk of developing surgical site infections [SSIs] within

30 days of surgery. SSI risk for an individual patient can be

estimated with this model via a webpage that we have developed

or using a point system created from the model.

Methods

Data Source
This study used data from the American College of Surgery

National Surgical Quality Improvement Program [ACS-NSQIP].

ACS-NSQIP collects prepoperative data and 30-day morbidity

outcomes on patients undergoing major operations meeting
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program criteria. Data are collected by uniformly trained Surgical

Clinical Reviewers [SCR] and entered into a secure internet

website. Data are subjected to quality checks with detailed

examination for inter-rater reliability.

Cases were collected in 8-day cycles with participating hospitals

either: including all specialties; or limiting their cases to general/

vascular surgery. Cases were sampled by the SCR from each

institution’s operative log and were excluded if: the patient was less

than 18 years old; surgical indications included acute trauma,

transplantation, or brain-dead organ donor; the procedure was an

inguinal herniorrhaphy, breast lumpectomy, laparoscopic chole-

cystectomy, or transurethral resection of the prostate and three

examples of the procedure had already been sampled within the

current 8-day sampling cycle; or the patient had already been

included within the previous 30 days. In high-volume hospitals,

the first consecutive general and vascular surgeries that qualified

within each cycle were included while approximately 20% of cases

from other specialties were included [varying by hospital size].

Low-volume hospitals were required to enter at least 22 general/

vascular and other specialty cases per cycle.

Standard data collection sheets were used at each centre. The

patient’s electronic and/or paper medical record was reviewed to

abstract all preoperative and intraoperative information. Post-

operative information was collected by review of the in-patient

medical record, out-patient charts, and phone calls or letters to the

patient.

Analytical Dataset: Population, Primary Outcome, and
Covariates
The data were collected by the National Surgical Quality

Improvement Program. These data are collected without explicit,

written patient consent since they are for quality improvement.

Our study was reviewed by the NSQIP team [the data owners],

who released both patient- and institutional- deidentified data to

us for our analyses. We used the Participant Use Data File from

ACS-NSQIP which contained all reported surgeries from partic-

ipating hospitals in 2010 and excluded all operations containing

maligned CPT codes. The study was approved by the Ottawa

Hospital Research Ethics Board.

The primary outcome was surgical site infection [SSI] within

30 days of operation. This outcome included all patients with a

superficial, a deep, or an organ-space infection [Appendix S1]. In

the presence of an open wound, SSIs were counted only if they

were initially detected more than two days after the operation. We

considered all pre- and intra-operative covariates collected by

NSQIP as long as data for the covariate was missing in less than

1% of cases [thereby excluding pre-operative laboratory informa-

tion, since these were missing in at least ,15% of patients].

Analysis
The cohort was randomly divided into equally sized derivation

and validation groups. Non-linear associations between continuous

variables and the outcome were identified using fractional

polynomials [9,10].

In the first stage of modeling, we used binomial logistic

regression [SAS 9.2, Cary NC] with forward variable selection to

identify the covariates independently associated with 30-day SSI

status. This model was then used to gauge SSI risk within surgical

groups independent of all covariates in the initial model. Surgeries

that had the same first three numbers in their CPT code were

grouped together. SSI risk within each surgical group was

quantified as the ratio of the observed to expected number of

SSIs [with the latter calculated from the initial model]. We called

this statistic the ‘‘CPT3 Score’’ in which scores below 1 indicated

that fewer than expected SSIs were observed based on the patient

population. If no SSIs were observed within a surgical group, we

assigned CPT3 Scores of 0 if the expected number of SSIs in the

group exceeded 0.5 [otherwise, CPT3 Scores were defaulted to 1].

In the second stage of modeling, we added the CPT3 Score to

all other covariates and used binomial logistic regression with

forward selection to identify all covariates independently and

strongly [p,0.0001] associated with SSI. Finally, we tested the

significance of several potential interactions identified a priori based

on clinical criteria.

We used methods described by Sullivan et al [11] to convert the

model to the ‘‘SSI Risk Score’’ [SSIRS]. We calculated the

expected risk change associated with each SSIRS point using a

logistic regression model having 30-day SSI as the outcome and

risk score as the only dependent variable.

The model and SSIRS was evaluated by determining both

discrimination [using the c-statistic with 95% confidence intervals

[12]] and calibration [using the Hosmer-Lemeshow goodness-of-

fit test [13]]. The c-statistic is equivalent to the area under the

receiver operating characteristic [ROC] curve. Numerically, it is

the proportion of time that the estimated risk from a model is

higher in the person with an event vs. the person without an event.

A valued of 0.5 indicates that the model is nor better than chance

at predicting risk. Models are typically considered reasonable

when the C-statistic exceeds 0.7 and strong when it exceeds 0.8

[14].

We further assessed calibration by comparing the expected to

observed event rate at each SSIRS vallue. The expected risk of SSI

for each patient was calculated as the inverse of 1+ e2[inter-

cept+b*SSIRS value], where b was the coefficient of the risk score in a

logistic regression model whose sole covariate was SSIRS. The

expected and observed event rates were considered similar if the

expected rate was within the exact 95% CI around the observed

rate [15]. We compared the performance of our model with that of

the NNIS basic risk model [5].

Results

There were 363 431 surgeries recorded in NSQIP during 2010.

391 [0.1%] of these were excluded because of invalid CPT codes

leaving 363 040 surgeries in the study [181 894 for model

derivation, 181 146 for model validation].

The study cohort is summarized in Table S1 [a complete

description of the cohort - including all candidate variables for the

model - is provided in Appendix S2]. Patients were middle aged

and predominantly independent. Approximately one third of

surgeries were ambulatory, one half were elective in-patient

surgeries, and the remaining 10% were emergency surgeries. More

than half of surgeries had clean fields and more than half of

patients had ASA scores of 1 or 2. Surgeries involved general

anaesthesia more than 90% of the time, housestaff more than half

of the time, and an additional procedure [by the same team] more

than a third of the time. Mean duration of the operation was 1.8

hours. Derivation and validation groups were essentially identical

[Table S1].

Overall, SSIs occurred after 14 227 surgeries [3.9%]. The

majority of these [n = 8188, 57.5% of all SSIs] had a superficial

component while 15.8% and 29.2% of SSIs involved the deep

incision or the organ space, respectively. Overall SSI risk, as well

as SSI type, was similar in the derivation and validation groups.

SSI risk increased significantly with increased levels in the NNIS

basic risk model [Table S2]. 82% of the cohort had an NNIS score

of 0 or 1, resulting in weak discrimination [c-statistic 0.641].Co-

variates describing the actual surgery predominated in the initial
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model [Appendix S3]. This initial model included 5 of the 11

variables dealing with patient demographics [45.4%], 10 of 32

variables describing patient medical history [31.2%], and 9 of 11

variables [81.8%] describing surgical information. The initial

model had adequate discrimination [C-statistic 0.772].

The initial model was used to generate the CPT3 Score

[Appendix S4]. Of the 296 possible unique combinations of the

first 3 numbers of CPT codes: 288 [97.3%] had at least one

operation in the derivation group; 48 [16.2%] had no observed

SSIs but had an expected number of SSIs [based on the initial

model] that exceeded 0.5 [and were therefore were assigned a

CPT3 Score of ‘‘0’’]; and 56 [18.9%] had no observed SSIs but

had an expected number of SSIs [based on the initial model] of

less than 0.5 [and were therefore assigned a CPT3 Score of ‘‘1’’].

Overall, CPT3 Scores ranged from 0 to 4.07 with a mean value of

0.895 and median value of 0.984 [Interquartile Range 0.394–

1.086].

In the final model, the CPT3 Score was strongly and

independently associated with 30-day SSI risk along with a dozen

other covariates and four interactions [Table S3]. SSI risk

increased with: smoking; increased body mass index; peripheral

vascular disease; metastatic cancer; steroid use; and pre-operative

sepsis. Procedural factors that notably increased the risk of

infection included: inpatient and emergent setting; contaminated

or dirty operative fields; ASA scores of 3 or more; the use of a

general [instead of local] anesthesia; the conduct of more than one

procedure during the surgery; and increased operative time. In the

validation group, the model had both excellent discrimination [C-

statistic = 0.800 [95% CI 0.795–0.805]]. Our web-page can be

used to calculate SSI risk for a particular patient from this model

[http://www.ohri.ca/SSI_risk_index/Default.aspx ].

The model was modified into the SSI Risk Score [SSIRS] to

make risk calculation without a computer possible [Table S4].

Each SSIRS point equaled the increased SSI risk associated with a

5-unit increase of the body mass index. Categorical variables

independently associated with a notably increased risk of an SSI

included: a contaminated/dirty or infected wound; inpatient and

emergency surgery; and an ASA score exceeding 3. Notably

influential continuous covariates included: a BMI exceeding 35;

operation duration less than or equal to K hour or exceeding 3K

hours; and a CPT3 score less than 0.9 or exceeding 1.262.

SSIRS had a potential range between 217 and 62 but had an

observed range between 215 and 50 [median score: 13,

interquartile range: 7 to 21] [Figure S1]. Discrimination using

SSIRS was very good [c-statisitc 0.781, 95% CI 0.776–0.786] but

was significantly lower than that of the entire model [Table S3].

The predicted SSI risk based on SSIRS was within the 95%

confidence interval of the observed risk in 49 of the 58 point levels

in which an SSI was observed [84.5%] capturing 89.7% of the

validation population.

Discussion

This study derived and internally validated a model that uses

commonly available information to predict the risk of SSI within

30-days of an operation. Compared to the NNIS Basic Risk

model, it had significantly better discrimination while maintaining

adequate calibration. The model was also modified to the SSI Risk

Score [SSIRS] that permits 30-day SSI risk to be estimated at the

bedside without computational aids. If validated in an external

patient population, this model will be a significant advance for

predicting the risk of SSI in patients having surgeries.

Determining SSI risk has two important applications. First,

accurate quantification of SSI risk is needed to compare SSI rates

between patients groups [defined by hospitals, clinical services, or

individual surgeons]. Second, determining SSI risk for an

individual patient is necessary to gauge the potential utility of

preventive interventions. For example, an intervention that halves

SSI risk [slightly less than the risk reduction associated with

prophylactic antibiotics [16]] has a number needed to treat [NNT]

to avoid one SSI of 20 when the baseline risk is 10% but a NNT of

200 when the baseline risk is 1%. Surgeon behaviour and practice

guidelines reflect the fact that higher-risk patients are more likely

to benefit from preventive interventions since antibiotic prophy-

laxis is recommended for patients with contaminated or dirty

wounds – patients who have a higher risk of SSI. Our model

illustrates that many other factors contribute to SSI risk.

Systematically considering all of these factors should result in a

more accurate estimate of SSI risk and better decisions regarding

SSI preventive therapies.

Our model was similar to, but distinct from, other studies

examining SSI risk in patients. The CPT3 Score in our model

used an approach similar to that by Raval et al [17], who used a

more clinically robust method to cluster CPT codes into

procedural groups. Multiple previous studies have found signifi-

cant associations between the risk of SSI and factors in our model

[including wound class, body mass index, surgical location and

urgency, ASA class, the performance of more than one procedure,

metastatic cancer, the presence of steroids, and surgical duration]

[18]. One study found that smoking [19] is an independent

predictor of SSI in breast cancer surgeries. We believe that our

study is innovative in the way it gauged the independent influence

that each of these factors – along with a new method of

quantifying the influence of different operative types – have on

SSI risk.

Our model has several notable strengths. It was derived and

internally validated on a large cohort of patients involving a large

number and a broad range of hospitals, surgeons, and surgeries.

The analytical dataset included prospectively collected data with

explicitly defined covariates. Our model was very accurate with

both excellent discrimination and calibration. Finally, the model

has real practical relevance to clinicians and patients since it

permits the SSI risk for a particular patient to be calculated

through the internet [http://www.ohri.ca/SSI_risk_index/

Default.aspx] or through the SSI Risk Index [Table S4].

Several limitations of our study should be noted when

interpreting its results. The most important limitation to our

model is its inability to capture interventions for reducing SSI risk

given to patients. The most important of these are peri-operative

antibiotics, which has a relative risk of SSI that varies between

0.19 and 0.85 [16]. Given that they so effectively decrease SSI risk,

and are more likely to be given to patients with more aggressive

wounds, we believe that our model and index underestimates SSI risk

associated with wounds other than clean wonds. The second most

important limitation is that our model has not been externally

validated. Until this has happened, people should use it cautiously

to predict SSI risk in patients. Other limitations are notable: the

model, when expressed as a scoring system, is too complicated to

memorize [a notable benefit of the NNIS Basic Risk model]; the

model requires that the user knows the CPT code of the surgery;

one of the components of the model – duration of the operation –

is unknown prior to the operation when interventions to decrease

the risk of SSI would primarily be invoked. Therefore, SSI risk

estimates prior to the operation would only be approximations

since they would require an estimate of the operation duration.

In summary, we derived and internally validated a model that

predicts the risk of 30-day SSI in a broad range of surgical

procedures. These data show that the risk of SSI can be estimated
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using readily available covariates regarding the patient and the

surgery. We believe that external validation of this model,

especially with data that incorporate information regarding

prophylactic antibiotics, should be pursued before this model is

used to predict the risk of surgical site infections in individual

patients.
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Figure S1 Relationship between the Surgical Site Infec-
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presented for the observed percentages.
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