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‘TheApportionment ofHumanDiversity’ stands as a noteworthy intervention,
both for the field of human population genetics aswell as in the annals of public
communication of science. Despite the widespread uptake of Lewontin’s con-
clusion that racial classification is of ‘virtually no genetic or taxonomic
significance’, the biomedical research community continues to grapple with
whether and how best to account for race in its work. Nowhere is this struggle
more apparent than in the latest attempts to translate genetic associations with
complex disease risk to clinical use in the form of polygenic risk scores, or PRS.
In this perspective piece, we trace current challenges surrounding the appropri-
ate development and clinical application of PRS in diverse patient cohorts to
ongoing difficulties deciding which facets of population structure matter, and
for what reasons, to human health. Despite numerous analytical innovations,
there are reasons that emerge from Lewontin’s work to remain sceptical that
accounting for population structure in the context of polygenic risk estimation
will allow us to more effectively identify and intervene on the significant
health disparities which plague marginalized populations around the world.

This article is part of the theme issue ‘Celebrating 50 years since
Lewontin’s apportionment of human diversity’.
1. Introduction
Richard Lewontin’s ‘The Apportionment of Human Diversity’ [1] stands as a
noteworthy intervention, both for the field of human population genetics as
well as in the annals of public communication of science (for more about the
history and impact of this paper, see [2,3]). Though drawing on information
about human genetic variation that was both incomplete and crude by contem-
porary standards, much subsequent research has generally supported the
paper’s main scientific conclusions [4–6]. Specifically, it is now widely accepted
that most of the genetic diversity in the human species exists between individ-
uals within populations and that only a small fraction of the total genetic
diversity is accounted for by variation between populations. Lewontin’s
broader conclusion, that these features of human genetic variation meant that
racial classification was of ‘virtually no genetic or taxonomic significance’
and hence should be abandoned for both scientific and sociopolitical use,
was left under-developed and has held considerably less sway. Widespread
social inequity, rooted in centuries-old beliefs about racial biological distinction
and superiority, persists in many parts of the world [7].

Similarly, biomedical research aimed at disentangling genetic and non-genetic
contributions to population-level health disparities also continues to grapplewith
whether and how best to account for racial classification in its work. Nowhere is
the latter struggle more apparent than in the latest attempts to translate genetic
associations with complex disease risk to clinical use: the polygenic risk score,
or polygenic risk scores (PRS). The hope is that PRS can be used to triage high-
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risk patients for intervention of preventable health problems.
But such methods must account for human population struc-
ture (the fact that alleles at a locus are not distributed at
random across the human species but are more common in
people from some locations than others). While PRS attempt
to deal with population structure by using principal com-
ponents of genetic diversity in tests of association with
disease, risk estimates are usually applied to patients stratified
by self-identified race and/or ethnicity, with a range of conse-
quences arising from the elision of genetic ancestry and social
identity. In this paper, we offer some reflections on our ongoing
inability to reconcile these complexities of human population
structure and discuss the potential implications for clinical
use of genetic information in the context of PRS.
il.Trans.R.Soc.B
377:20200427
2. Race(ist) science and Lewontin’s
‘Apportionment of Human Diversity’

‘The Apportionment of Human Diversity’ was situated at a
particular moment in the history of population genetic inves-
tigation and in the face of historical and philosophical
recognition of the role that anthropology and biomedicine
played in legitimizing claims of racial distinction. Far from
being a value-neutral description of population difference,
research on the creation of the modern ‘race’ concept has high-
lighted repeatedly the ways in which it was, from the start,
used as away to justify (for example) colonialism, chattel slav-
ery and genocide as well as other, similarly exclusionary and
frankly monstrous, practices (e.g. [8,9]). This kind of work,
i.e. ‘race science’ being used to justify social and economic
arrangements that perpetuate white superiority, continues to
this day [10], and this (mis)use of science had long been a
target of Lewontin’s analysis and critique [11].

This context explains the move between Lewontin’s techni-
cal (population genetic) observations and his sociopolitical
conclusion. Lewontin noted that of the (roughly) 15% of
human genetic diversity that is not attributable to differences
between individuals within populations, the larger part of
that 15% (approximately 9%) was accounted for by differences
between populations within ‘conventional racial’ groups
(which he identified by reference to a mix of cultural, linguistic
and historical information, as well as ‘obvious total genetic
divergence’). Only 6% of human genetic diversity appeared
to distinguish the seven human races he defined. From this esti-
mate, Lewontin concluded that ‘our perception of relatively
large differences between human races and subgroups, as com-
pared to the variation within these groups, is indeed a biased
perception and that, based on randomly chosen genetic differ-
ences, human races and populations are remarkably similar to
each other’ [1, p. 397]. Lewontinwent on to end his short article
with the matter-of-fact assertion:
Human racial classification is of no social value and is positively
destructive of social and human relations. Since such racial classi-
fication is now seen to be of virtually no genetic or taxonomic
significance either, no justification can be offered for its continu-
ance [1, p. 397].
The point here seemed to be that the very small amount of
human genetic diversity for which ‘racial’ classifications
accounted was not significant enough to warrant either
our usual racial ascriptions or treating racial categories as
especially meaningful objects of biological study. In a sub-
sequent publication, Lewontinmade this point more explicitly:
The taxonomic division of the human species into races places a
completely disproportionate emphasis on a very small fraction of
the total of human diversity. That scientists as well as nonscien-
tists nevertheless continue to emphasize these genetically minor
differences and find new ‘scientific’ justifications for doing so is
an indication of the power of socioeconomically based ideology
over the supposed objectivity of knowledge [12, p. 156].
The technical result, and the sociopolitical implication that
Lewontin drew from it, became part of the mainstream pos-
ition that ‘race’ is not a legitimate biological category. So
for example, authors such as Biondi & Rickards [13] argue
that race is an ‘oversimplification’ and that trying to use the
race concept in a biologically meaningful way is ‘a futile exer-
cise’. Race, they argue, does not and cannot adequately
capture extant population structure, phylogenetic history, or
‘ecological’ differences. In making this case, they take Lewon-
tin’s technical points as one of the key arguments in favour of
abandoning the race concept.

On the other hand, others have resisted (and, in some
cases, continue to resist) the conclusion that biology cannot
support the conception of race demanded by folk racial
categories and usage and that race is therefore of ‘virtually
no taxonomic significance’. In an article with the subtitle
‘Lewontin’s Fallacy’ [14], Edwards argued that the small
fraction of the genetic variation accounted for by between-
population differences is sufficient to produce robust
structuring and that the resulting population genetic clusters
can be called ‘races’ without straining the meaning of the
term. Other investigators, such as Risch and colleagues [15],
with an interest in identifying genetic contributions to com-
plex disease risk, agree and moreover claim that it is
precisely those genetic risk factors that differ between races
that might help address racial disparities in health
outcomes. These authors take issue with Lewontin’s claim
regarding the non-significance of racial classification, assert-
ing that even if small, the fraction of human genetic
variation that differs between races is both relevant and
worthy of ongoing investigation.

Irrespective of one’s beliefs about the role that genes
may or may not play in population health disparities (dis-
cussed further in the next section), questions about the
scale and biomedical relevance of population genetic differ-
ences have continued to matter in genetic investigation.
This is on account of the move away from linkage studies
in families to investigations of genome-wide association
in many thousands of cases and controls, where statistical
confounding due to population stratification becomes a
potential concern. Of course, the traditional epidemiological
approach of matching cases and controls with respect to
self-identified race and/or ethnicity (on an assumption of
shared genetic background such that confounding can be
minimized) has given way to approaches that instead con-
sider genetic ancestry directly. Nevertheless, even with
direct incorporation of principal components of genetic vari-
ation into association models, it is still the norm to conduct
genome-wide association studies (GWASs) in ancestry sub-
groups and so to estimate effect sizes of gene–disease
associations with respect to specific ancestral genetic back-
grounds. The ensuing associations, when combined across
thousands of loci in the form of a PRS, are tidy but not
obviously translatable to patients who self-identify with (or
are ascribed to) racial and/or ethnic categories rather than
genetic ancestries.
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3. Racial health disparities and the role of
genetic versus social determinants

A major rationale for continuing to study human populations
subdivided with regard to racial classification is the obser-
vation that many common complex traits and diseases
differ in their prevalence between racial and/or ethnic
groups, particularly in the United States [16,17]. The existence
of pronounced racial and ethnic health disparities, manifest
most recently in the stark differences in COVID-19-related
hospitalizations and deaths experienced by historically mar-
ginalized non-White racial and ethnic groups [18], is a
profound public health problem and one that demands
urgent redress. It should come as no surprise, therefore,
that geneticists eager to do their part to address these dispar-
ities would turn their attention to the identification of gene
variants that both increase disease risk and are more
common in the racial groups burdened by excess disease.
In other words, to emphasize precisely that small proportion
of the total genetic diversity that Lewontin regarded as of
little-to-no significance. Once potential genetic contributors
to disparities can be identified, so the reasoning goes, then
potent new biological pathways and targets for (likely
pharmaceutical) intervention can be devised [19–21].

The difficulty with the pursuit of such research is twofold.
First, despite a great deal of effort, relatively few plausible
racially stratified gene variants with discernible effects on
common complex disease risk have thus far been identified.
The most prominent examples in this category include
the 8q24 association with prostate cancer risk [22] and
the APOL1 association with end-stage kidney disease risk
[23,24]. Second, an abundance of demographic, socioeconomic,
environmental and related data affirm the primary role of sys-
temic racism, myriad forms of marginalization and poverty in
unequal health outcomes [25–28]. Not only does an overfocus
on genetic contributions to racial health disparities distract
public policymakers from attending to more relevant drivers
of health and disease, it also undermines investigation of the
ways in which racial ascription and racism (and the associated
stresses of living in a racist society) lead to ill health [29,30].

There is really no debate about the relative contributions
of genetic and social determinants in this regard, just a stub-
born refusal on the part of many in the human genetics
community to give up on the potential of genetic discovery
to contribute remedies to the problem. Having (for the
most part) given up on the hope of identifying loci with
reasonable effect sizes as contributing to health outcome
differences, geneticists wishing to address health disparities
have now turned instead to PRS.
4. Polygenic scores and complex disease risk
The diseases of highest public health significance, so-called
‘common complex diseases’ such as coronary artery disease,
type 2 diabetes mellitus and asthma, are multifactorial in
aetiology, arising from the joint influence of multiple genetic
risk factors and environmental exposures. The extent of the
genetic component of common disease risk varies; heritabil-
ities, estimated from twin, adoption and studies of other
relatives, of between 30% and 50% are commonly cited [31].
Whereas early theoretical work suggested that this genetic
risk would be attributable to alleles present in 1–5% of the
population (i.e. the Common Disease-Common Variant
hypothesis [32,33]), few common variants of large effect were
identified via candidate gene studies (APOE may be the best
example of this, although its discovery also involved linkage
analyses [34]). GWAS, the gene-agnostic approach which
takes advantage of linkage disequilibrium across the genome
to identify common variation associated with disease risk, suc-
ceeded in identifying many more significant associations (over
275 000 to date [35]), nearly all of them of individually small
effect. Importantly, even when many loci have independently
been associated with risk of the same disease, together they
typically fail to account for more than a small portion of the
expected genetic risk, as reflected in heritability estimates
derived from traditional twin-studies and related method-
ologies (the so-called ‘missing heritability’ problem) [36,37].

One of the problems with finding risk variants using
GWAS is that, to reduce the chances of spurious associations,
very stringent statistical standards must be maintained. It is
possible that loci that do not meet these high standards
nevertheless have a measurable association with the trait in
question. PRS attempt to address this problem by using
many different markers, most of which do not meet standard
genome-wide significance thresholds, to generate a compo-
site measure of the overall association between those
markers and the trait in question [38,39]. By lowering the stat-
istical standards for counting a marker as trait-associated,
weighting associations by estimated effect sizes and aggregat-
ing associations over a larger number of variants, predictive
accuracy is increased, albeit at the expense of a loss in
terms of being able to distinguish spurious from robust
associations at any single locus. And, of course, any clear
aetiological link between specific genetic changes and the
phenotype of interest is also obscured.

Hence, while the identification of sets of loci linked to com-
plex disease risk has helped increase confidence that fewer
genetic contributions are missed, it has changed how the
risk information can be translated for public health benefit.
Whereas previously, the goal of most GWAS was to identify
specific disease-linked genes and biological pathways with
the hope of informing drug development, PRS are better
suited to risk stratification not genetic discovery. PRS calcu-
lation for patients with and without the trait of interest
permits estimation of the relative risk of disease for specific
scores, and those at the upper limits of the population risk dis-
tribution (typically the top 2–5% [40]) can be singled out for
clinical intervention. A patient who, for example, scores
highly for risk of coronary heart disease could be sent for diag-
nostic assessment, advised to make heart-healthy lifestyle
changes and/or started on pharmacological treatment, all
with the intention of slowing or preventing disease processes
and improving clinical outcomes (e.g. [41–43]. The primary
challenge with this approach however is that, even in aggre-
gate, effect sizes for many PRS are too small (i.e. the
associations with disease risk tooweak) towarrant much clini-
cal action [44]. In other words, that someone is slightly more
likely to at some point suffer from a complex disease such as
heart disease is not necessarily useful for individual clinical
(or, perhaps even, lifestyle-related) decision-making.

For phenotypes where effect sizes are higher, or other
clinical risk assessments less informative, PRS could be a
useful screening tool. Lello et al. [45] argue, for instance,
that ‘the top few percentiles in PRS’ for breast cancer risk
have a roughly one in three chance of developing breast
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cancer at some point in their lives. If correct, such individuals
could appropriately be regarded as ‘high risk’ according to
current guidelines (as the baseline lifetime risk is roughly 1
in 8) and therefore be worth prioritizing for earlier or more
intensive cancer surveillance. The ability of PRS to improve
disease risk prediction relative to other clinical risk models
varies by phenotype however, even among different types
of cancer [46], and many PRS only marginally improve stan-
dard clinical risk assessments [47–49].

Aside from the variable predictive power, and hence clinical
utility, of PRS, there are at least two major stumbling blocks to
moving PRS into clinical practice. First, PRS, in summing
across many hundreds or thousands of low significance indi-
vidual estimates of variant–disease association, are especially
susceptible to confounding by cryptic population structure. In
other words, even if stratification bias is small per locus, it
can accumulate across loci in a PRS. Researchers working on
GWAS generally address the difficulty of population structure
by adjusting associations for a finite number of principal com-
ponents of genetic variation [50]. But such statistical control is
not foolproof: a few years ago, a classic GWAS on height was
found to have produced spurious results due to residual genetic
population structure that remained unidentified at the time of
analysis [51–53]. One approach to address such confounding
is to deploy methods such as ‘sib-pair controls’, or checking
to see if the predictive accuracy of a particular PRS is main-
tained when tested within families (see box 1). When this has
been done, the PRS for some traits have remained roughly as
predictive as they were in the general population (e.g. body
mass index); for other traits, however (e.g. educational attain-
ment), the predictive ability has been substantially reduced
[45,57,58]. At the moment there appears to be no way to tell,
without running such a test, how a particular trait’s PRS will
perform under those conditions.

The other problem, to which we turn in the next section, is
that PRS developed for one population tend to be much less
predictive when applied to other populations (however
‘population’ is understood or operationalized) [59,60]. And
while there is still debate about why this is the case, that it
is the case makes the clinical application of PRS fraught.
5. Polygenic risk scores and populations: the real
problem

Most currently validated PRS have been developed using
data from samples of broadly ‘European’ origin and/or
ancestry [61], and because such scores do not replicate (or
‘transfer’) when applied to patients drawn from other popu-
lation backgrounds, many PRS are less predictive when used
for non-European ancestry populations [62]. Why this is the
case remains an open question, with commentators noting
the role of population genetic differences in underlying allelic
architecture and patterns of linkage disequilibrium, as well as
the likely contribution of non-genetic risk factors and popu-
lation-specific gene–environment interactions [54,61–66] (see
box 2). Irrespective of the exact explanation(s) for this, now
well-recognized ‘transferability problem’, there are tangible
implications of the difficulty for the deployment of PRS in
clinical practice in ways that are useful and will not exacer-
bate health inequities. And while many, creative, solutions
to the problem are currently being actively explored
[63,69,70], it is not clear that even the best designed approach
to PRS development and validation will be able to transcend
more fundamental difficulties inherent to the distribution of
health and disease among human groups.

For example, while the immediate source of the transfer-
ability problem is the markedly skewed (Euro-centric)
underlying population distribution of global GWAS discovery
efforts [59,60,71], the ascertainment and analysis of additional
non-European ancestry populations is necessary but not suffi-
cient for the clinical achievement of more generalizable risk
prediction. This is because data from a more heterogeneous
collection of population genetic backgrounds, where avail-
able, must still be organized prior to the development and
validation of new PRS. In general, two distinct approaches
are employed. Either PRS are designed to separately predict
disease in each major population (or, more often, genetic
ancestry) group of interest, stratifying prediction to encompass
population-specific variants with stronger associations with
disease risk (e.g. [72]), or an ‘all-purpose’ PRS is designed to
capture and combine predictive elements from a global popu-
lation sample (encompassing multiple subpopulations) into a
single risk predictor that can be universally applied (e.g.
[70,73]). In the former case, appropriate clinical application
requires assigning the patient to a population/ancestry cat-
egory prior to risk estimation; there are several difficulties
with this. First, what is going to count as a ‘population’ in
this context will vary based on the assumptions made by the
researchers developing these tools [74]. Even leaving aside
the problem of identifying ‘natural’ populations, for any set
of populations developed, patients, whose ancestry is either
admixed or does not otherwise correspond to the groups for
which a score has been validated, may receive less accurate
risk estimates. In the latter case, without a clear understanding
of all of the factors that contribute to marginal effect size
estimation, the PRS may still underestimate risk. This is
because in the presence of gene × gene and/or gene × environ-
ment interactions, a given PRS may only predict risk for a
cohort matched on both ancestry and environment.

Importantly, no matter which approach is applied, com-
plexities of human population structure (i.e. the ways in
which non-random mating occurs across different axes and
scales) will stymie even good faith efforts to translate poly-
genic risk information for use with individual patients.
First, there is no way to determine, ahead of actually testing
them, which population or ancestry genetic clusters are
biomedically relevant, making any choice of ancestry cat-
egories or subpopulations for effect size (and hence, PRS)
estimation effectively arbitrary; a feature of human genetic
variation that is well recognized [74]. Furthermore, as already
noted, whatever stratification approach is adopted will fail
many patients whose genetic identities do not otherwise
correspond to the chosen categories.

Along with the lack of an objective way to identify popu-
lations of interest, there is the equally significant problem of
the disconnect between human population genetic structure
and non-genetic population arrangements such as, for
example, socially ascribed racial and/or ethnic identity [75].
Often, what is medically relevant about populations (and
hence what influences the predictive value of a PRS) is a func-
tion of the social and/or environmental risk factors shared by
that population, and not the allele frequencies of the popu-
lation in question. This fact all but ensures that ‘all-purpose’
PRS will capture spurious associations and risk that is not
causally associated with the alleles in question (per box 1).



Box 1. Sib-pair controls and population structure.

The sib-pair method is one way to test for the problem of traits covarying with populations, and genetic differences between
the populations therefore being statistically associated with the trait in question, despite not being causally involved in the
development of the trait (in other words, to test for the effects of residual or cryptic population stratification). To adapt an
example from Coop [54], imagine running a genome-wide association study (GWAS) on a diverse population that included
both people native to, say, Liverpool, England, and people native to, say, Paris, France, and looking at the trait ‘pounds of
black tea consumed per year’. Any alleles more common to people from Liverpool will be strongly associated with tea-
drinking (people in Liverpool consume perhaps eight pounds of tea per year, whereas those in Paris consume less than
around a half pound [55,56]). But these alleles are (presumably) not doing any causal work; rather, what matters is the socio-
cultural context. Nevertheless, a polygenic risk score (PRS) using these markers would be (broadly) predictive, insofar as it
was able to predict who was English and hence who was more likely a heavy tea-drinker!

But now, if one tried to use the resulting PRS to predict tea-drinking behaviour within families, it would suddenly
become non-predictive, as within a family, all children usually either grow up in a heavily tea-drinking household or not,
and any differences between children are the result of idiosyncratic differences, and not associated with the alleles that
differ in frequency between people from Liverpool and those from Paris. When the associations found are reduced radically
under sib-pair control, it is usually a sign that something has gone awry (i.e. that the alleles used in the PRS are not related to
the trait in question in a simple causal way).
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And, because the impact that such structure has on health
outcomes (via straightforward differences in genes causally
associated with health) is likely swamped by the differences
caused by social determinants of health [76,77], once again
it is unclear how best to move from a population-level under-
standing of disease risk (however defined) to a risk prediction
for an individual patient.

In other words, if the population structure that mattered
for disease risk could be readily identified, and if sociocul-
tural location mirrored genetic population structure, then
population structure, understood to reflect both sociocultural
position and genomic affinities, could be accounted for in the
development and clinical application of PRS. Put another
way, if human population structure was straightforward, i.e.
if there were in fact only a few major population divisions
within our species, little gene exchange between populations,
and general homogeneity (of both genetic and non-genetic
risk factors) within each of those populations, the problem
would be easily solved. In such a world, it would be
simple to develop separate PRS for each population, and
easy to assign people to the correct referent population for
risk analysis using a PRS. But part of the lesson from the
kind of study of human populations that Lewontin made
famous is precisely that this picture is utterly unlike actual
human population structure. While it is true that sophisti-
cated clustering algorithms can tease out elements of
genetic population affinities [78–80], there is both no sense
of there being a ‘lowest level’ at which population ceases to
matter, nor do such algorithms produce a privileged set of
clusters that are ‘right’ in all cases. Instead, there are better
and worse ways of cutting the pie for particular purposes,
and for the generation of PRS with clinical value, no obvious
method that guarantees the capture of all and only clinically
relevant risk factors.

But if developing and validating separate PRS for each
population of interest is a losing proposition, there are good
reasons to be sceptical that developing a PRS using a world-
wide population sample could solve this problem either.
Recall that predictive accuracy in populations with internal
structure can be high, even if many of the variants on which
the prediction is based have no causal effect whatsoever.
That is, at the population level, we can successfully predict
that specific alleles are associated with the trait in question,
but we are doing so only because they are associated with
genetic population structure, and it is the environmental
differences associated with the stratified populations that are
doing the real work of increasing disease risks.
6. Shipwrecked on the shoals of population
structure

There is a certain irony in the utility of PRS being wrecked on
the shoals of population structure. Twenty years ago, Rose
[81] published ‘Sick Individuals and Sick Populations’, part
of the point of which was to highlight the fact that the
causes of differences in disease incidence within populations
(causes of incidence) were usually distinct from the causes
of differences in disease prevalence between populations
(causes of prevalence). The other take-home message from
Rose was that the causes of between-population prevalence
were usually where the public health action was. If one
wants to make major changes in population-level health out-
comes, i.e. to identify and intervene on the risk factors
responsible for health inequities, attention to the causes of
prevalence usually makes more sense than a focus on identi-
fying and intervening on individuals’ exposure to the causes
of incidence. But, of course, using PRS to guide clinical prac-
tice is to focus on causes of incidence (a very particular set of
causes: genetic predispositions to disease), and hence to not
only disregard more salient risk factors but to misdirect
public health intervention.

There are at least two potential negative consequences of
this misdirected attention. First, in labelling only those at the
furthest limits of the incident population distribution ‘high
risk’, PRS (particularly if relied on in preference to more
salient, but harder to measure, social determinants of
health) may contribute to false reassurance among those
whose social identities nevertheless place them at higher
(prevalent) risk due to the experience of systemic disadvan-
tage and discrimination. This can promote both individual
complacency and broader harms, such as those associated
with delayed diagnosis and treatment. Second, it may inap-
propriately lay the blame for poorer health outcomes on



Box 2. Why might polygenic scores developed using one population not be predictive in other populations?

Duncan et al. [61] list six potential reasons why polygenic scores developed in one population might be less predictive in
other populations:

(i) True differences due to drift.
(ii) True differences due to selection.
(iii) True differences in genetic effects due to environmental differences (gene–environment interactions).
(iv) Bias due to uncorrected population stratification in discovery and/or training samples.
(v) Bias due to our discovery/training population data and/or polygenic scoring methods. Specifically, linkage disequi-

librium (LD) structure and variant frequency are captured imperfectly with current methods (including genotyping
and imputation), and they vary across populations, and currently available data resources are unequally representa-
tive of diverse worldwide populations.

(vi) Random error in the estimation of GWAS betas.

Both (i) and (ii) involve the possibility that differences in the genetic makeup of two populations might result in a polygenic
risk score (PRS) that is predictive in one population not being predictive in the other, because of the differences in allele fre-
quencies between the two populations (see [67] for a detailed analysis of some of the ways in which this can happen).
Imagine two populations, each of which has hundreds or thousands of genes that influence a particular trait. If in the
tested population, a subset of those alleles have reasonably high relative frequencies (thus permitting the detection of the
effect the different alleles have), whereas in the other population, most of those loci from that same subset are fixed or
nearly fixed (so these genes are not doing much ‘work’ in the population), a PRS from the first will fail to be predictive
in the second, even if, in the second, those genes do ‘the same’ thing that they do in the first population.

For (iii), the issue is that an allele that, in one environment, has a positive effect on the trait (compared to the other alleles
at that locus), might, in a different environment, have a much weaker effect, have no effect, or even have a negative effect, on
the same trait. Here, Lewontin’s ‘Analysis of Variance and Analysis of Causes’ [68] is the classic reference. One of Lewontin’s
arguments for analysis of variances being of limited value in understanding the causal influence of genes on traits was pre-
cisely that they revealed nothing about the ‘norm of reaction’ of the trait. He argued that understanding the norm of reaction
was essential to understanding how development would respond to different environments (fig. 1 of [68]). Relatedly, a
change in the environment can change the heritability of a trait [68], and some changes might reduce heritability and
hence the predictive ability of PRS.

For (iv), and as per box 1, if there is population structure in the population tested, and that structure is associated with
differences in traits for environmental and/or social reasons, a GWAS will be able to use the alleles that differ in frequency
between the populations to predict differences in traits, despite those alleles having no true causal influence on the trait in
question. In general, stratification of this sort will generate biases, and PRS, which relax the statistical requirements for using
associations, are particularly sensitive to this kind of error.

For (v), recall that GWAS do not identify actual genes, but rather markers which are presumed to be associated with some
(number of) gene(s). If, in one population, variation in a marker tends to be correlated with that of a particular gene (i.e. the
marker and gene are in LD), but in another population LD is lower, a PRS developed using the first population will not be as
predictive in the second.

Point (vi) simply notes the possibilityof randomerrors;while this concern is considerable inGWAS, it is generally thought that
markers found to be associated at the standard, very strong, statistical significance levels are unlikely to be spurious. The same
cannot be said of the weaker associations used in PRS, many of which are in fact likely to be mis-estimated or entirely spurious.

Note that more than one of these problems may occur in any particular GWAS and that these different issues can interact
in potentially complex ways.

More recently, Mathieson [66] has suggested that the ‘omnigenic model’ (in which many loci contribute indirectly to
variation in many traits) can explain the failure of polygenic scores developed in one population to be predictive in
others; he argues further that since PRS likely rely so heavily on loci with only indirect relationships to the trait in question,
we should not expect them to be ‘robust clinical targets’. The mechanisms by which predictive power is lost in the omnigenic
model are broadly similar to (i), (ii), (iii) and (v) described here.
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incident (in the case of PRS, genetic or innate) susceptibilities,
suggesting that the uptake of an earlier colonoscopy (or similar
screening modality) by those at the highest end of the genomic
risk distribution will compensate for myriad unmeasured and
unaddressed social determinants of health. The degree to
which these negative consequences come to pass is still an
open question and, as has been argued elsewhere [43,82],
empirical work exploring the impact of PRS on patients and
their broader communities is urgently required lest this new
approach perpetuate the very population health inequities it
seeks to address.
7. Conclusion
The problem here, as was the case in Lewontin’s intervention
50 years ago, is that neither health risks nor sociopolitical
relationships can be adjudicated by scientific descriptions of
human genetic variation. On its face, this is confusing: if
racial discrimination is justified by supposed evidence of
racial biological distinction, then surely definitive proof that
such biological distinction is a fallacy would effectively, and
permanently, undermine discriminatory beliefs and practices.
But this ignores the complex ways in which population
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genetic observations are taken up and used, or alternatively
ignored [83], for strategic social ends. Similarly, proponents
would have us believe that attending to, and indeed account-
ing for, population structure in the context of polygenic
risk estimation will allow us to more effectively identify
and intervene on population health risks. However, because
nearly all public health problems are co-constituted by
biological as well as social determinants, an exclusive (or
near exclusive) focus on genetic risk, once more, ignores the
social realities. Only this time, much more than the apparent
irrelevance of scientific claims is at stake: in the absence of
a better understanding of the risk factors driving disease
aetiology, disparities can only persist and even potentially
worsen. This is the lesson to take away from ‘The
Apportionment of Human Diversity’. Namely that science,
even exquisitely executed and explained science, in the
absence of social contextualization and understanding, will
not solve our social ills.
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