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Purpose: Amino acid PET has shown high accuracy for the diagnosis and

prognostication of malignant gliomas, however, this imaging modality is not widely

available in clinical practice. This study explores a novel end-to-end deep learning

framework (“U-Net”) for its feasibility to detect high amino acid uptake glioblastoma

regions (i.e., metabolic tumor volume) using clinical multimodal MRI sequences.

Methods: T2, fluid-attenuated inversion recovery (FLAIR), apparent diffusion coefficient

map, contrast-enhanced T1, and alpha-[11C]-methyl-L-tryptophan (AMT)-PET images

were analyzed in 21 patients with newly-diagnosed glioblastoma. U-Net system with

data augmentation was implemented to deeply learn non-linear voxel-wise relationships

between intensities of multimodal MRI as the input and metabolic tumor volume from

AMT-PET as the output. The accuracy of the MRI- and PET-based volume measures to

predict progression-free survival was tested.

Results: In the augmented dataset using all four MRI modalities to investigate the

upper limit of U-Net accuracy in the full study cohort, U-Net achieved high accuracy

(sensitivity/specificity/positive predictive value [PPV]/negative predictive value [NPV]:

0.85/1.00/0.81/1.00, respectively) to predict PET-defined tumor volumes. Exclusion of

FLAIR from the MRI input set had a strong negative effect on sensitivity (0.60). In repeated

hold out validation in randomly selected subjects, specificity and NPV remained high

(1.00), but mean sensitivity (0.62), and PPV (0.68) were moderate. AMT-PET-learned MRI

tumor volume from this U-net model within the contrast-enhancing volume predicted

6-month progression-free survival with 0.86/0.63 sensitivity/specificity.

Conclusions: These data indicate the feasibility of PET-based deep learning

for enhanced pretreatment glioblastoma delineation and prognostication by clinical

multimodal MRI.
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INTRODUCTION

Glioblastomas are the deadliest primary brain tumors, and their
initial treatment (surgery followed by radiation), based on clinical
MRI, can miss tumor portions infiltrating to adjacent brain
regions. Accurate non-invasive imaging of tumor-infiltrating
brain is critical to optimize surgical resection and subsequent
radiation therapy and prolong survival (1, 2). However, current
clinical MRI, including T1-weighted images with gadolinium
(T1-Gad), T2, and fluid-attenuated inversion recovery (FLAIR),
has limited accuracy to detect such infiltrating regions and
predict survival, since they cannot accurately differentiate regions
with active tumor from vasogenic edema and necrosis (3).

To overcome the limitations of conventional MRI, advanced
imaging techniques, including perfusion MRI (3, 4), diffusion-
weighted imaging (DWI) (5, 6), and positron emission
tomography (PET) (7–9) are being actively investigated. Our
previous studies reported that high amino acid uptake measured
by alpha-[11C]-methyl-L-tryptophan (AMT)-PET can accurately
detect both enhancing and non-enhancing gliomas (10–13).
AMT-PET can estimate amino acid transport and tryptophan
metabolism via the immunosuppressive kynurenine pathway
(12). Increased AMT uptake often extends beyond the contrast-
enhancing tumor to identify glioma-infiltrated brain (10), which
is commonly underestimated based on clinical MRI. High AMT
uptake also has a strong prognostic value for survival in patients
with recurrent high-grade glioma (14). However, AMT-PET
cannot gain widespread clinical use due to the short half-life
(20min) of 11C, limiting its clinical use to institutions equipped
with an on-site cyclotron. Although other, 18F-labeled amino acid
PET tracers are more widely available, their use is still confined to
a limited number of centers worldwide.

This study explores a novel end-to-end deep learning
network to test its ability to detect high tryptophan uptake
glioblastoma regions (i.e., the metabolic tumor volume) using
clinical multimodal MRI. Deep learning network, specifically U-
Net (15–17), is a powerful computational approach capable of
automatically learning non-linear relationships between features
and patterns existing in multimodal images. This approach

showed promise lately in performing automatic lesion detection
by amino acid PET in gliomas (18) with manually segmented

PET tumor volume as the ground truth. However, the use of
multimodal MRI to delineate tumor areas with high amino acid
uptake has not been evaluated, and the prognostic value of the

deep learning methods have yet to be investigated in depth.
In this study we investigated whether deep learning can mine

complex relationships between intensities on multimodal MRI
in PET-determined glioblastoma volumes, i.e., areas of high

AMT uptake used as the ground truth. The primary goal was
to evaluate if the advanced deep learning technique could be

translated to clinical practice, where AMT-PET (and other amino
acid PET) is unavailable in most centers, using multimodal MRI
to demarcate the PET-defined boundaries of infiltrating gliomas
and improve survival prediction. Our central hypothesis was that
tumor volume extracted frommultimodal MRI via deep learning
can predict the metabolic tumor volume determined by PET.
We also explored if the deep learning-based glioma volume is

more accurate to predict progression-free survival (PFS) than the
contrast-enhancing tumor volume. To determine the efficacy of
the proposed U-Net approach across different MRI scanners and
imaging parameters, we also compared MRI data acquired using
routine protocols on two different 3T MRI scanners.

MATERIALS AND METHODS

Subjects
Patients were selected retrospectively from a single-center PET
database of 73 adult subjects with newly-diagnosed glioma
(WHO grade I-IV) who underwent pre-treatment AMT-PET
scanning at the PET Center, Children’s Hospital of Michigan
between February 1, 2008 and January 31, 2018. The final
study group included 21 patients (age: 58 ± 12 years, 12
males; Supplementary Table 1), whomet the following inclusion
criteria: (i) histopathologically-verified glioblastoma (WHO
grade IV), (ii) available complete pre-treatment multimodal
MRI data set including non-contrast T2/FLAIR, DWI, and T1-
Gad acquired on one of two 3T MRI scanners (see details
below). Twenty patients had tumor resection and subsequent
chemoradiation; in one patient (#10), who died of pulmonary
embolism before surgery, glioblastoma was diagnosed by
autopsy. Clinical outcomes included PFS (not including the
patient who died before treatment), determined by serial MRI
and clinical follow-up. The study was approved by Wayne State
University’s Institutional Review Board, and written informed
consent was obtained from all participants in accordance with the
Declaration of Helsinki.

Data Acquisition and Preparation
MultimodalMRI protocols were applied in each patient on one of
two different 3T scanners (see acquisition parameters for Siemens
Protocol [Siemens Trio] and Philips Protocol [Philips Achieva]
in Supplementary Table 2). These were utilized to assess the
effect of specific MRI protocols on the performance of the U-Net
analysis. The contrast-enhancing tumor volume was measured
semiautomatically using 3D Slicer, as described previously (10).
This procedure was repeated by the same investigator (FJ)
on different days to establish reproducibility of the volume
measures. All patients underwent the same pre-treatment AMT-
PET scanning protocol (10, 13, 14) using a GE Discovery STE
PET/CT scanner with a median interval of 3 days between the
MRI and PET/CT scans. Briefly, after 6-h fasting, AMT (37
MBq/kg) was injected via a venous line. At 25min after AMT
injection, a dynamic emission scan of the brain (7 × 5min) was
acquired. Measured attenuation correction, scatter, and decay
correction were applied to all images. For visualization of AMT
uptake, averaged activity images 30–55min post-injection were
created and converted to an AMT standardized uptake value
(SUV) image.

The actual intensities of multimodal MR images were scaled
by the global mean. A binary mask of the metabolically active
tumor: P(x), was obtained as the ground truth from AMT-
PET by applying a previously established threshold of 1.65
tumor/normal cortex ratio of AMT SUV (13, 14). All images
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(including ground truth binary PET mask) were spatially co-
registered and resampled at the same resolution (1 ×1 × 1mm)
and matrix volume (240× 240× 150). Each multimodal volume
was normalized from mean and standard deviation. Single
data-augmentation scheme was applied to enlarge the training
dataset up to 100 augmentations per patient. This procedure
was iteratively performed by applying an arbitrary affine
transformation to multimodal MRI data of individual patients.

U-Net Construction and Implementation
The detailed U-Net system architecture (15) is shown on
Supplementary Figure 1. U-Net consists of an encoding (or
collapsing) path which took a series of input slice images:
T1-Gad, T2, FLAIR, ADC, and a decoding (or expanding)
path, which returned a binary slice image as an output: AMT-
PET-learned MRI-based tumor volume, PM(x) (0: non-tumor,
1: tumor).

To investigate the effect of different multimodal MRI
protocols on the performance of theU-Net system, three different
U-Net systems (U-Net1(Siemens) trained by multimodal data of
Siemens Protocol, U-Net2(Philips) trained by multimodal data of
Philips Protocol, and U-Net3 trained by combined multimodal
[Siemens+Philips] Protocol) were separately implemented using
Google TensorFlow library (www.tensorflow.org). Each U-Net
system was designated to deeply learn non-linear voxel-wise
relationships between “given input: multimodal MRI data” and
“targeted output: AMT-PET tumor mask [i.e., P(x)],” where dice
similarity coefficient (DSC) was used as a measure of detectability
and maximized by back-propagating a loss function (i.e., minus
DSC) through the Adam optimizer (19). Batch size and learning
rate were set to 16 and 10−3, respectively. The augmented dataset
was randomly divided into training and testing data (70 vs.
30%, respectively) to evaluate the convergence of the three U-
Net systems in the original augmented dataset to investigate the
upper limit of U-Net accuracy in the selected study cohort (n
= 21). In addition, we applied a repeated hold-out validation
procedure to evaluate the performance of the proposed U-Net
in predicting target: P(x) from untrained subsets, U-Net4, where
the augmented data of 17 subjects were randomly assigned to
train and test the convergence of U-Net4, and the converged U-
Net4 was then used to predict P(x) of the remaining 4 subjects
for validation. We performed the above validations in randomly
assigned 17/4 subjects (training/testing), repeated 100 times, to
evaluate the overall performance of U-Net4.

To determine whichMRImodality had the strongest influence
on the prediction of the PET-defined tumor region, four different
three-channel U-Net3 systems were evaluated to learn P(x) from
combinations of input MRI modalities, (1) [T1-Gad, FLAIR,
ADC], (2) [T2, FLAIR, ADC], (3) [T1-Gad, T2, FLAIR], and
(4) [T1-Gad, T2, ADC]. The performance of each three-channel
U-Net3 system was compared to that of four-channel U-Net3
system which learned P(x) from all fourMRImodalities (baseline
condition) to determine which three-channel U-Net system has
the greatest decrease of sensitivity from baseline condition,
suggesting that an MRI modality excluded in that three-channel
U-Net3 system is the most influential for predicting P(x).

Statistical Analysis
The reproducibility of the T1-Gad enhancing volume, M(x),
measured by a semiautomatic method was tested by intra-class
correlation (ICC).

Sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV) were evaluated between “output:
PM(x)” and “target: P(x)”. To test how well U-Net4-based PET-
learned MRI tumor volumes can approximate the original PET-
based tumor volumes, corresponding volumes were correlated
using Pearson’s correlations. To test if P(x) and/or PM(x)
outperform M(x) for predicting PFS, a survival analysis was
performed with the following image-derived tumor volumes as
predictors: (1) P+: AMT-PET tumor mask volume, (2) M+:
contrast-enhancing tumor volume from the T1-Gad image,
and the following U-Net4-based volumes: (3) PM+: AMT-PET-
learned MRI-based tumor volume, (4) PM+M+: total tumor
voxel volume in PM(x)

⋂
M(x) (5) PM+M−: total AMT-PET-

learned MRI-based tumor voxel volume in PM(x)
⋂

Mc (i.e.,
outside the contrast-enhancing glioblastoma volume, consistent
with tumor-infiltrated non-enhancing brain, and (6) PM−M+:
total tumor voxel volume in PMc(x)

⋂
M(x), consistent with

enhancing tumor volume without high metabolic activity, a
glioblastoma subregion recently reported by our group (13).

For each volume measure as well as non-binary prognostic
variables (age, Karnofsky Performance Status [KPS] scores, Ki-
67 tumor proliferative index), a receiver operating characteristic
(ROC) analysis was performed to determine an area under
the curve (AUC), and optimal sensitivity and specificity was
determined for 6-month PFS. Binary prognostic variables
(MGMT promoter methylation status, IDH1 mutation status,
and resection extent [partial vs. gross total]) were entered in a
Cox regression analysis to identify non-imaging predictors of
PFS. A p-value of <0.05 was considered to be significant.

RESULTS

The intra-observer reproducibility of the T1-Gad tumor volume
measurement was strong with an ICC of 0.988 (p < 0.001). The
T1-Gad volumes extracted on two different measurements were
similar (mean: 18.51 ± 1.50 cm3 vs. 18.57±1.39 cm3). Thus, the
average volume of the two T1-Gad volume measurements was
used as M(x) in further analyses.

Comparison of PET-Defined and
U-Net-Learned MRI-Defined Tumor
Volumes
After 5000 epochs, DSC values of the three U-Net systems
to predict target: P(x), U-Net1(Siemens)/U-Net2(Philips)/U-Net3,
reached 0.98(0.98)/0.99(0.99)/0.98(0.98) in the training (testing)
set, respectively. At the voxel level, the resulting three U-Net
systems led to ≥0.85 sensitivity, 1.00 specificity, ≥0.81 PPV, and
1.00 NPV (detailed values are listed in Supplementary Table 3).
In the repeated hold-out validation, U-Net4 achieved 0.62 ±

0.23 sensitivity, 1.00 ± 0.00 specificity, 0.68 ± 0.19 PPV, and
1.00 ± 0.00 NPV (Supplementary Table 3), suggesting that the
proposed U-Net4 can achieve about 84% of the U-Net3 PPV by
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correctly predicting P(x) from an independent patient cohort
not included in both training and testing procedures of the
U-Net4. The AMT-PET-learned MRI tumor volume (PM+)
from U-Net4 showed a positive correlation with the AMT-PET
tumor volume P(x) (r = 0.61, p = 0.03). P(x) showed an
even stronger correlation with PM+M+, i.e., the U-Net4-based
PET-learned tumor volume inside the contrast-enhancing MRI
volume (r = 0.75, p < 0.001).

Comparison of the Effect of Different MRI
Protocols and Specific MRI Sequences on
Metabolic Tumor Volume Prediction
Figures 1, 2 present representative examples to predict the
AMT-PET-learned MRI-based tumor volume, PM(x), using the
proposed U-Net systems with multimodal MRI data acquired

using two different clinical MRI protocols. Both U-Net3 and U-
Net4, which fully learned non-linear relationships of multimodal
MRI data, provided the PET-learned tumor volumes [PM(x)],
which were spatially well-matched with the PET-based ground
truth, P(x), indicating that systematic learning of different
MRI protocol data can supplement conventional MRI by
approximating glioblastoma volume with high amino acid
uptake. In addition, PM(x) of U-Net3 (mean: 41.5 ± 30.1 cm3)
and U-Net4 (mean: 31.0 ± 22.5 cm3) were correlated (R = 0.50,
p = 0.02), and both were significantly larger than M+, which
indicates voxels of T1-Gad enhancement (mean: 18.5 ± 14.4
cm3) at p < 0.01 in a paired t-test.

Among the four MRI sequences, exclusion of FLAIR images
yielded the greatest decrease in sensitivity to detect true positive
voxels of P(x), as compared with the exclusion of other threeMRI
modalities (sensitivity of four-channel U-Net3 = 0.85, sensitivity

FIGURE 1 | Representative example of AMT-PET-learned MRI-based tumor volume: PM(x) (voxels inside red contour), where multi-modal MRI data of Patient No. 9

(images acquired with Siemens Protocol) were separately analyzed by U-Net1(Siemens) (1st row), U-Net2(Philips) (2nd row), U-Net3 (3rd row), and U-Net4 (4th row). Note

that U-Net1(Siemens) and U-Net3 learned multi-modal MRI of Patient 9 and outperformed the other two U-Net systems to spatially match PM(x) with the target,

AMT-PET tumor volume: P(x) (voxels inside blue contour); sensitivity/specificity/ PPV/NPV=0.86/1.00/0.82/1.00, 0.41/1.00/0.51/1.00, 0.85/0.89/0.69/1.00, and

0.70/1.00/0.74/1.00 for U-Net1(Siemens), U-Net2(Philips), U-Net3 and U-Net4, respectively. For comparison, T1-Gad tumor volume: M(x) (voxels inside green contour) was

superimposed. White box indicates the region of interest where T1-Gad, T2, FLAIR, ADC map, and AMT-PET slices were captured to show the contours.
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FIGURE 2 | Representative example of AMT PET-learned MRI-based tumor volume: PM(x) (voxels inside red contour) where multi-modal MRI data of Patient No. 13

(images acquired with Philips Protocol) were separately analyzed by U-Net1(Siemens) (1st row), U-Net2(Philips) (2nd row), U-Net3 (3rd row), and U-Net4 (4th row).

U-Net2(Philips) and U-Net3 learned multi-modal MRI of Patient 13 and outperformed the other two U-Net systems to spatially match P(x) with the target, AMT-PET

tumor volume: P(x) (blue contour), sensitivity/specificity/PPV/NPV= 0.65/1.00/0.40/1.00, 0.95/1.00/0.79/1.00, 0.94/1.00/0.75/1.00, and 0.91/1.00/0.68/1.00 for

U-Net1(Siemens), U-Net2(Philips), U-Net3 and U-Net4, respectively. For comparison, T1-Gad tumor volume: M(x) (voxels inside green contour) was superimposed. White

box indicates the region of interest where T1-Gad, T2, FLAIR, ADC map, and AMT-PET slices were captured to show the contours.

of three-channel U-Net3 with [T1-Gad, FLAIR, ADC]/[T2,
FLAIR, ADC]/[T1-Gad, T2, FLAIR]/[T1-Gad, T2, ADC] =

0.84/0.79/0.81/0.60). Specificity remained at 1.0 with all three-
channel U-Net3 systems.

Survival Prediction
Mean PFS (data available in 17 patients) was 232 days (7.7
months). The results of the ROC analysis with U-Net4-based
tumor volumes for 6-month PFS prediction are shown in
Table 1. The highest AUC (0.66) was achieved by PM+

⋂

M+ with a sensitivity/specificity of 0.86/0.63. In contrast, the

contrast-enhancing volume, M+, had a lower AUC of 0.45, with
sensitivity of 0.71 and specificity of only 0.38 to predict 6-month
PFS. None of the clinical or molecular prognostic variables
predicted PFS.

DISCUSSION

This study provides proof-of-concept results that PET-learned
MRI-based tumor volumes can approximate metabolic tumor
volumes defined by amino-acid PET imaging. Thus, the results
suggest that advanced deep learning can be translated to clinical
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TABLE 1 | Results of the receiver operating characteristic analysis to predict

6-month progression-free survival by imaging (MRI, PET, and MRI-learned PET

from U-Net4) and clinical variables.

Prognostic Variables AUC 95% CI Sensitivity Specificity

T1-Gad volume: M+ 0.45 0.14–0.75 0.71 0.38

AMT-PET tumor

volume: P+

0.69 0.41–0.98 0.75 0.78

AMT-PET-learned MRI

tumor volume: PM+

0.43 0.12–0.74 0.57 0.38

Volume combinations:

PM+M+ 0.66 0.37–0.95 0.86 0.63

PM+M− 0.32 0.04–0.61 0.71 0.25

PM−M+ 0.64 0.35–0.93 0.71 0.63

Clinical

Age 0.19 0.0–0.41 0.62 0.22

KPS score 0.52 0.21–0.83 0.50 0.33

Ki-67 proliferative index 0.28 0.02–0.53 0.75 0.22

KPS, Karnofsky Performance Status.

practice where AMT-PET is currently unavailable and the use of
other amino acid PET tracers is also limited. The data also suggest
that the intersection of PET-learned MRI-based tumor volume
and the contrast-enhancing tumor volume may provide better
prognostic information than the standalone contrast-enhancing
tumor volume. These results will need to be tested in future
studies in independent data sets and with other amino acid PET
tracers used as the ground truth for tumor metabolic volume.

To the best of our knowledge, this study is the first to
demonstrate that advanced U-Net may enhance detection of the
metabolic tumor volume of glioblastoma by PET-learned multi-
modal MRI acquired in the clinical setting, where amino acid
PET is often not available to detect non-enhancing infiltrative
areas. Such regions often show MRI signal abnormalities on
FLAIR, T2, or DWI, and the three-channel, leave-one-out
analysis suggested that the FLAIR sequence may have the
strongest influence on the prognostic value of the full four-
channel U-Net system on the metabolic tumor volume. Active
glioma contrast on FLAIR images may be the most similar
to the PET-derived volume and provides the most effective
low-level intensity features to the U-Net convolution layers.
Non-enhancing FLAIR-positive tumor regions often encompass
glioma-infiltrated brain can be underestimated and undertreated
in clinical practice, and, therefore, they are high-risk areas
for post-treatment tumor progression (13). A recent study
indeed showed that pre-treatment MRI volumes, including
both enhancing and FLAIR-based volumes, are poor predictors
of PFS, particularly in patients with gross total glioblastoma
resections (20). Future studies could incorporate additional
MRI-based volume measurements for comparisons in a more
comprehensive analysis.

Several studies have attempted to predict survival from
multimodal MRI data by mining radiomic features via classical
machine learning approaches (21–24) and deep learning models
(25, 26). All these studies differ methodologically and typically
require heavy computational loads for evaluating and ranking

a huge number of features, which led to mixed outcomes
depending on the employed algorithm, the types of the MRI
sequences, and analysis work-flow. The main innovation of this
study is the use of a deep learning approach called U-Net to
directly detect metabolically active (PET-defined) glioma volume
from multimodal MRI by learning intricate and abstract non-
linear relationships of MRI intensities in active glioma regions
showing high AMT uptake. The resulting U-Net system can
identify metabolically active glioma in a set of multimodal
MRI data according to the learned non-linear relationships
across voxels.

This study has some limitations. First, the limited sample size
can be problematic for individual U-Net to learn heterogeneous
multimodal feature maps via deep learning process (27).
Although data augmentation was applied to alleviate this
limitation, it included all subjects’ data for augmenting
training/testing instances based on affine transformation
simulating spatially variant glioblastoma (18, 28), which may
cause overfitting of an individual U-Net, since the intensities
of multimodal MRI having different resolutions are over-
sampled at isotropic grids. We presumed that the use of the
original augmented dataset helps us investigate the upper
limit of the U-Net accuracy for detection of spatially variant
glioblastomas in the selected study cohort. The high detection
accuracy provided by Unet1−3 is likely an overestimation due
to heavy data augmentation applied due to the limited sample
size. The reproducibility and real-life accuracy of each U-Net
should be evaluated at a new, independent dataset obtained
from other advanced data augmentation strategies (29). Our
hold-out validation analysis in U-Net4 with a subgroup of our
patients showed the feasibility of this latter approach, but, as
expected, it showed lower accuracy values. The true accuracy
of this approach will need to be tested in a larger, independent
patient population. This could be feasible with the use of more
commonly utilized amino acid PET tracers (such as O-(2-
[18F]fluoroethyl)-L-tyrosine) (30). Finally, known molecular
genetic prognostic markers (such as IDH mutation and MGMT
promoter methylation) were not associated with survival in this
small cohort, and the limited sample size precluded multivariate
survival analyses. This may have contributed to the lack of
prognostic value of the imaging variables for overall survival.

CONCLUSIONS

After further validation in larger, independent cohorts, the tested
U-Net approach may be useful in the presurgical evaluation of
glioblastoma by supplementing conventional multimodal MRI to
approximate glioblastoma volume with high amino acid uptake.
The benefits of the proposed approach include the lack of added
risk or cost to improve tumor delineation and survival prediction
using clinically acquired multimodal MRI, and fully automated
end-to-end analysis pipeline that does not require subjective and
complex intervention in raw MRI data. Future studies could
expand this deep learning application to assisting evaluation
of gliomas with different grades and detecting post-treatment
glioma recurrence.
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