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Of all infectious diseases, tuberculosis (TB)
remains one of the most important causes of
morbidity andmortality. Recent advances in under-
standing the biology of Mycobacterium tuberculosis
(Mtb) infection and the immune response of the
infected host have led to the development of several
new vaccines, a number of which are already
undergoing clinical trials. These include pre-expo-
sure prime vaccines, which could replace bacille
Calmette–Gu�erin (BCG), and pre-exposure booster
vaccines given in addition to BCG. Infants are the
target population of these two types of vaccines. In
addition, several postexposure vaccines given dur-
ing adolescence or adult life, in addition to BCG as a

priming vaccine during infancy, are undergoing
clinical testing. Therapeutic vaccines are currently
being assessed for their potential to cure active TB
as an adjunct to chemotherapy. BCG replacement
vaccines are viable recombinant BCG or double-
deletion mutants of Mtb. All booster vaccines are
composed of one or several antigens, either
expressed by viral vectors or formulated with adju-
vants. Therapeutic vaccines are killed mycobacte-
rial preparations. Finally, multivariate biomarkers
and biosignatures are being generated from high-
throughput data with the aim of providing better
diagnostic tools to specifically determine TB pro-
gression. Here, we provide a technical overview of
these recent developments as well of the relevant
computational approaches and highlight the obsta-
cles that still need to be overcome.
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Introduction

Three major infectious diseases, acquired immune
deficiency syndrome (AIDS), tuberculosis (TB) and
malaria, are the cause of an enormous disease
burden, with high rates of both morbidity and
mortality [1–4]. Every year, TB alone causes active
disease in 8.6 million individuals of whom 1.3
million die [2]. The cause of TB is an acid-fast
bacillus, Mycobacterium tuberculosis (Mtb), which
has developed a successful survival stratagem
[5–7]. The pathogen is surrounded by a highly
resistant cell wall rich in waxes and lipids [8].
Therefore, it can survive for long periods of time,
even under highly unfavourable conditions, either
in the environment or in the human host. The
preferred organ of TB disease manifestation is
the lung, which allows spreading of Mtb through
the most efficacious route: exhalation and expec-
toration [9]. The source of transmission is the
patient with active pulmonary TB, the most
prevalent form of this disease. Transmission is
highly efficient as indicated by the fact that two

billion individuals are infected with Mtb world-
wide. However, the majority of these infected
individuals do not develop active disease and are
not contagious. Rather, in these individuals Mtb
remains at a subclinical stage termed latent TB
infection (LTBI). Given an efficacious immune
response comprising primarily T lymphocytes
and mononuclear phagocytes, which orchestrate
formation of solid granulomas, this restraint can
be lifelong. Within these granulomas, however,
Mtb persists and becomes dormant (i.e. metabol-
ically inactive and nonreplicative) [8]. This can be
viewed as a ‘peaceful’ coexistence in which Mtb is
virtually inaccessible to immune attack and at the
same time does not harm its host. However, in
5–10% of LTBI cases, such coexistence at some
point becomes a ‘conflict’; vigorous Mtb replication
results in an enormous bacterial load accompa-
nied by uncontrolled immunity which causes
extensive tissue damage. As a result, the granu-
loma first necrotises and then liquefies, thus
becoming the source of pathology, as well as of
dissemination and transmission of Mtb. Massive
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destruction of the lung causes the characteristic
clinical signs of pulmonary TB [9].

The immune response in TB

Although the general principles of protective
immunity against TB are well established, the fine
details remain unclear [10–12]. This is due in part
to the fact that Mtb has not been eradicated
completely, in the human host or in animal models.
Hence, partial rather than absolute protection
is achieved by a productive immune response.
Epidemiological data indicate that a proportion of
individuals who live for long periods in a highly
contagious environment remain immunologically
na€ıve with respect to TB [13–15]. This could be
interpreted as innate host resistance, which is
probably independent of acquired immunity.

Essentially, CD4 T-cells of helper type 1 (Th 1) that
activate antimycobacterial activity in mononuclear
phagocytes are considered central mediators of
protection. Activation is mediated by cytokines
including interferon-gamma (IFN-c) and tumour
necrosis factor (TNF) [10, 11, 16]. Recent findings
suggest a role for IL-17-producing Th17 cells in TB
with an early but transient Th17 burst which
apparently contributes to protection whereas long-
lasting Th17 activity causes pathology [17–19]. An
additional role of CD8 T lymphocytes is now
generally accepted [20], although the contribution
of these cells remains unclear [21]. Do they con-
tribute to protection by cytolytic mechanisms
mediated by perforin and granulysin, or do they
primarily serve as a second source of Th1 cyto-
kines [21, 22]?

Activated macrophages can control growth of Mtb
but generally cannot fully eradicate the pathogen
in various in vitro and in vivo systems. Reactive
nitrogen intermediates generated by the inducible
NO synthase are highly potent effectors against
Mtb in the mouse system [10, 11, 16, 23, 24].
However, their low abundance in humans raises
questions about the importance of their role in
human TB. Although direct killing of Mtb by
granulysin has been observed [22], its relevance
in vivo requires experimental verification. Further
investigation of the immune mechanisms relevant
to protection is therefore warranted. The contribu-
tions of various types of T-cells (invariant natural
killer, gamma-delta, lipid-specific CD1-restricted
and unconventional CD8 T-cells, such as mucosal-
associated invariant T-cells) may be small [10, 11,

16, 21]. Nevertheless, these cells could be impor-
tant at the cellular level. Similarly, macrophage-
activating mediators other than IFN-c and TNF,
including granulocyte–macrophage colony-stimu-
lating factor (GM-CFS), IL-1 cognates and vitamin
D derivatives, which have all been shown to stim-
ulate antibacterial defence mechanisms, need to be
considered at the humoral level [10–12, 25–27].
This is particularly noteworthy because IFN-c fails
to stimulate mycobacterial growth inhibition in
human macrophages in vitro. The complexity and
partial redundancy of the immune response in TB
presents a barrier against a full understanding of
the mechanisms involved. A further complexity is
the profound contribution of the immune response
to pathology. Regulatory T-cells, which produce
IL-10 and transforming growth factor beta (TGF-b),
have been identified in experimental animal
models and in patients with TB [10–12]. The
outcome of manipulating such cells is difficult to
predict and could affect both protection and
pathology. This also holds true for other immune
regulatory mechanisms.

A further complicated issue that needs to be
considered is the focus of the immune response
in TB on granulomatous lesions. Solid granulomas
successfully contain Mtb whereas caseous granu-
lomas allow them to bloom [8]. Accordingly, the
three-dimensional tissue organization, which is
very difficult to analyze under in vitro conditions,
plays a significant role. Moreover, increasing
evidence suggests that in patients with active TB,
different stages of granulomas coexist, which form
a spectrum ranging from solid granulomas to
cavitary lesions [11, 28, 29]. As a consequence,
different host mechanisms coexist, from protective
to detrimental, in a single patient with TB in a
spatial framework that is hard to decipher using
conventional approaches analyzing peripheral
blood leukocytes. This high degree of autonomous
and dynamic immune response in different regions
of the affected lung makes it difficult to conceptu-
alize a generalized vaccination strategy. It is clear
that biomarkers that serve as reliable correlates of
protection or of pathology would be extremely
useful.

In sum, the immune response in TB appears to be a
‘double-edged sword’ that is controlled at various
stages. The aim of conventional approaches
towards novel vaccination strategies in TB was to
mimic/improve immunity caused by natural Mtb
infection [6]. This can lead eventually to vaccines
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that prevent TB disease but do not achieve steril-
izing immunity. Such an immune response can be
compared to protective immunity operative in the
majority of Mtb-infected individuals who remain at
the stage of healthy LTBI throughout their lifetime.
It could be argued that those who develop TB
disease and hence those who are the prime targets
of vaccination fail to develop such a protective
response comprising the immune mechanisms
described above. Consequently, the chances of
successfully developing a highly efficacious vacci-
nation strategy based on current approaches
would appear to be low.

Efficacious vaccines against infectious diseases in
use today are all based on stimulating pre-existing
antibodies which neutralize the pathogen or its
product soon after infection. Because of the intra-
cellular location of Mtb, antibodies have been
attributed a minor role in control of TB. It is
generally assumed that Mtb is already hidden
inside mononuclear phagocytes when B-cell-
derived plasma cells produce specific antibodies
[6, 11]. In contrast to natural Mtb infection, pre-
existing antibodies stimulated by prior vaccination
could directly attack Mtb at the port of entry and
thus contribute to vaccine efficacy. This option has
thus far been largely ignored in TB vaccine design
[30].

Antigens

Equally perplexing is the issue of protective anti-
gens in TB. In many viral systems, a few dominant
antigens are sufficient and essential for protective
immunity. In TB, some proteins may be ignored by
the immune system but many are recognized
resulting in a medium level of activation of the
respective antigen-specific T-cell clone(s) [6, 31,
32]. Hence, unique protective T-cell antigens have
not been identified thus far. Rather a broad set of
antigens exist, which stimulate a measurable but
not a striking T-cell response. It is possible that
some of these protein antigens contain subdomi-
nant or masked epitopes, which are not accessible
to the antigen presentation machinery or are
concealed by dominant epitopes, respectively [32].

A multigene family comprising nearly 100 genes
has been identified in the Mtb genome, which is
characterized by a proline–glutamine (PE)
sequence, and a similar one characterized by a
glycine–alanine-rich region known as a polymor-
phic GC-rich repetitive sequence (PGRS) [33, 34].

The considerable variability of similar proteins
could deviate antigen-specific T-cell responses
towards irrelevant antigens, thus resulting in inef-
fective immunity. Finally, it has been speculated
that known T-cell epitopes of Mtb are counterpro-
ductive for vaccine-induced immunity [31]. Most of
these epitopes are located in conserved regions and
hence could be maintained during evolution to
benefit Mtb rather than the host. Consequently,
epitopes from variable regions should be exploited
for future vaccine candidates. Evidence from other
infectious diseases, notably malaria and AIDS,
supports this assumption [35, 36].

The current vaccine BCG

Bacille Calmette–Gu�erin (BCG) is an attenuated
strain of M. bovis, the agent that causes cattle TB.
Albert Calmette and Camille Gu�erin discovered
BCG following passage of M. bovis to select for
attenuated mutants. Indeed after 230 passages, a
vaccine strain was created, which had lost its
pathogenicity/virulence but was still immunogenic
in experimental animals and even in cows (the
natural host of M. bovis) [37]. The vaccine was
developed to prevent serious forms of TB in infants,
as this was a major cause of neonatal mortality in
Europe in the early 20th century. At that time, it
was generally expected that approximately a quar-
ter of babies born into a household with a patient
with active TB would die, in many cases due to TB.
In 1921, the vaccine was administered to a human
for the first time. A baby born in a household with a
TB patient was vaccinated and grew up without
developing TB disease. Subsequently, more than
20 000 infants from households including at least
one patient with TB were vaccinated with BCG; the
results were impressive as less than 1% of the
vaccinated infants died of TB. Although a formal
control group was not included in the study, this
was a clear reduction in deaths [37]. To date, at
least four billion doses of BCG have been admin-
istered, and as part of the expanded programme on
immunization (EPI), its global coverage has
reached more than 80%. It is safe, although it
imposes a risk for immune-deficient individuals;
this led the World Health Organization to recom-
mend that human immunodeficiency virus (HIV)-
positive newborn babies should not be vaccinated
against BCG [38]. Thus, the vision of Calmette and
Gu�erin has become reality. However, protection
afforded by BCG is transient, lasting only for a few
years. BCG does not provide protection against
pulmonary TB in adolescents and adults, which is

J. Weiner & S. H. E. Kaufmann Review: Recent advances in tuberculosis control

ª 2014 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of The Association for the Publication of the Journal of Internal Medicine. 469

Journal of Internal Medicine, 2014, 275; 467–480



the most prevalent form of this disease today [39].
Hence, better TB vaccines are needed for satisfac-
tory control of this devastating disease.

During their studies in the 1920s, Calmette and
Gu�erin observed that BCG had a broader beneficial
effect on childhood mortality: amongst the more
than 20 000 vaccinees, only 5% died (including 1%
due to TB). This was unexpectedly low compared to
the overall mortality in this population of about
25% (see above) [37]. Although this led to some
speculation at the time about nonspecific protec-
tive effects of BCG, it was not pursued further until
more recently when epidemiological evidence was
presented that BCG can confer general resistance
against some communicable and perhaps even
some noncommunicable diseases that are under
the control of the immune system. Even though the
underlying mechanisms are far from understood,
the epidemiological data in support of this notion
are compelling [40].

Three possible explanations for these effects have
been suggested [40]. First, a shift from Th2 immu-
nity (which suppresses protective immunity
against bacteria and viruses, and is responsible
for allergic diseases), towards Th1 immunity
(which is critical for protection against viral and
bacterial infection) is stimulated. Secondly, cross-
reactive T-cell responses are induced, which pro-
vide broadly reactive immunity against various

pathogens through shared epitopes. Thirdly, long-
lasting activation of mononuclear phagocytes
occurs, which has recently been termed ‘trained
immunity’.

The occurrence of nonspecific activation of mono-
nuclear phagocytes over restricted time periods has
long beenknown. Recently, circumstantial evidence
has been provided for long-lasting macrophage
activation due to epigenetic alterations [40].

The TB vaccine portfolio

The main focus of the current portfolio of TB
vaccines is prevention of active TB with a few
candidates being developed for therapy of TB
disease as an adjunct to chemotherapy. Figure 1
and Table 1 provide an overview of advanced
vaccine candidates, their target populations and
timing of administration. The majority of preven-
tive vaccines build on immunity induced following
priming with BCG. These booster vaccines are
either viral vectors expressing one or more Mtb
antigens, or protein–adjuvant formulations com-
prising fusion proteins of up to four Mtb antigens.
Currently, most of these vaccines are designed for
postexposure vaccination of adolescents or adults
with LTBI who had been vaccinated with BCG in
childhood [5–7]. Nevertheless, pre-exposure vacci-
nation of BCG-vaccinated infants remains an
option.

Adolescent/
Adult

Adolescent/
Adult

Infant

Infant

Target populations Infection/Disease

Uninfected

Uninfected
BCG

Vaccine type

Preexposure/Preventive
BCG replacement

Preexposure/Preventive
Prime-boost

Postexposure/Preventive
Prime-boost

+LTBI/BCG (TST )

Active TB Therapeutic

Advanced Candidates

rBCG:

r-Mtb:
VPM1002

MTBVAC

Viral vectored: 

Protein/adjuvant: 
MVA85A/Aeras-485

H4:IC-31

Viral : 

Protein/adjuvant: 

vectored
MVA85A/Aeras-485

M72:AS01E
H56:IC-31
ID93:GLA-SE

Killed mycobacteria:
M. indicus pranii
M. vaccae
RUTI

Fig. 1 Overview of different
vaccine types. Advanced vac-
cine candidates for different
target populations, with stage
of vaccine administration.

J. Weiner & S. H. E. Kaufmann Review: Recent advances in tuberculosis control

470 ª 2014 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of The Association for the Publication of the Journal of Internal Medicine.

Journal of Internal Medicine, 2014, 275; 467–480



The viral vector–based vaccine candidates include
MVA85 Aeras 485 developed by the University of
Oxford. This vaccine has recently completed a
phase IIb trial in BCG-vaccinated infants, which
revealed an excellent safety profile but failed to
prove protective efficacy in this population [41].
Modified vaccinia Ankara (MVA) induces strong
CD4 Th1 cell responses and serves as vector to

express antigen 85A, a member of the antigen 85
family, which is used for numerous vaccine con-
structs (see Table 2) [41]. A phase IIb trial of
MVA85 in BCG-vaccinated HIV-positive adults is
ongoing [42]. Another viral vector–based vaccine
is Crucell Ad35/Aeras 402, which was being
investigated in a phase IIb trial in BCG-vacci-
nated HIV-positive adults and BCG-vaccinated

Table 1 Preventive tuberculosis vaccines

Vaccine Status

VPM1002 (rBCGDureC:hly) Phase IIa ongoing in infants

MTBVAC (rMtbDPhoPDFadD26) Phase I ongoing in adults

MVA85A (MVA expressing Rv3804) Phase IIb completed (no efficacy) in infants

H1 (Rv1886 + Rv3875 fusion protein in adjuvant IC31 or CAF01) Phase I completed in adults

H4 (Rv1886 + Rv0288 fusion protein in adjuvant IC31) Phase I completed in adults

MVA85A Phase IIb ongoing in adults

Ad5HUAG85A (Human Ad 5 expressing Rv3804) Phase I completed in adults

M72 (Rv1196 + Rv0125 fusion protein in adjuvant AS01) Phase IIa completed in infants and adults

H56 (Rv1886 + Rv3875 + Rv2660 fusion protein in adjuvant IC31) Phase I ongoing in adults

ID93 (Rv2608 + Rv3619 + Rv3620 + Rv1813 fusion protein

in adjuvant GLA-SE)

Phase I ongoing in adults

See text for further details.

Table 2 Antigens included in protein–adjuvant-formulated and viral vector–based TB vaccines

Rv number

Generic

name

Stage of Mtb

‘life cycle’ Vaccine candidate Comment

Rv3804 Ag85A Active Mtb MVA85A, Crucell

Ad35, Ad5HUAG85A

Fibronectin-binding protein shared by Mtb and BCG

Rv1886 Ag85B Active Mtb H1, H4, H56,

Crucell Ad35

Fibronectin-binding protein shared by Mtb and BCG

Rv3875 ESAT-6 Active Mtb H1, H56 Early secreted antigenic target

Rv0288 TB10.4 Active Mtb H4, Crucell Ad35 Low-molecular-weight protein. Present in Mtb but

not in BCG

Rv1196 – Active Mtb M72 PPE family member shared by Mtb and BCG

Rv0125 – Active Mtb M72 Serine protease pepA shared by Mtb and BCG

Rv2660 – Dormant Mtb H56 Expressed by Mtb under starvation conditions.

Shared with, but not immunogenic in, BCG

Rv2608 – Active Mtb ID93 PE-PPE family member shared by Mtb and BCG

Rv3619 – Active Mtb ID93 Esx protein family member shared by Mtb and BCG

Rv3620 – Active Mtb ID93 Esx protein family member shared by Mtb and BCG

Rv1813 – Dormant Mtb ID93 Expressed by Mtb under starvation conditions.

Shared by Mtb and BCG

BCG, bacille Calmette–Gu�erin; Mtb, Mycobacterium tuberculosis. For further details on Mtb proteins, see Ref. [87];
http://www.tbdb.org/ and http://tuberculist.epfl.ch/.
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infants; however, the trial was revised to phase
IIa with a smaller number of participants proba-
bly due to lack of evidence for efficacy [42]. This
construct is based on adenovirus serotype 35,
which expresses three Mtb antigens: 85A, 85B
and TB10.4 (see Table 2). A less advanced viral
vector–based vaccine is the antigen 85A-express-
ing type 5 adenovirus, a phase I trial of which has
just been completed [43]. Adenoviruses are potent
CD8 T-cell stimulators, whereas MVA virus pref-
erentially stimulates IFN-c-producing CD4 Th1
cells.

A large platform of protein–adjuvant formulations
has been developed by the Statens Serum Institute,
including the hybrid (H) 1 comprising antigen 85B
and ESAT-6 with the adjuvants IC31 (H1:IC31) or
CAF01 (H1:CAF01) (see Tables 2 and 3) [44, 45].
H1:IC31 is being investigated in a phase IIa trial
[42, 46] whereas the phase I trial with H1:CAF01 is
still ongoing. It is likely that the H1 vaccines will be
phased out and succeeded by H56 in IC31 adju-
vant, which has completed phase I and is moving
into phase IIa development. The H56 vaccine
comprises an additional antigen, Rv2660, fused
to H1 [47]. This antigen is preferentially expressed
in LTBI and hence H56:IC31 may be suitable for
postexposure vaccination of adolescents and
adults with LTBI [47]. Finally, H4:IC31/Aeras 404
composed of antigen 85B and TB10.4 is being
further developed in collaboration with Sanofi
Pasteur for vaccination of infants [42]; a phase I
trial has been completed. The vaccine antigens
85A, 85B, ESAT-6 and TB10.4 are preferentially
produced by metabolically active Mtb organisms
whereas the antigen Rv2660 is a so-called

dormancy-related antigen (Table 2) [42]. The most
advanced protein–adjuvant formulation with the
adjuvant AS01E has been developed by Glaxo-
SmithKline and named M72 (Tables 2 and 3) [48,
49]. The M72 fusion protein comprises two anti-
gens typically expressed in active TB disease
(Table 2). Four different antigens encompassing
both active and latent Mtb stages have been
combined in the ID93 fusion protein, developed
by the Infectious Disease Research Institute (IDRI)
[50]. This fusion protein with the adjuvant GLA-SE
is currently undergoing phase I testing (Tables 2
and 3).

Finally, a preparation of killed Mycobacterium
vaccae, an atypical mycobacterium sp., has been
prepared as a booster vaccine and is due to be
tested in a phase I trial in the near future [42]. This
vaccine, DAR-901, is a further development of an
M. vaccae vaccine originally intended for TB ther-
apy in HIV-positive adults [51]. A phase III trial
with this vaccine generated data that were difficult
to interpret [42] (Table 4).

Amongst the two live vaccine candidates currently
in clinical trials, VPM1002 is the most advanced,
with a phase IIa trial almost completed successfully
in infants, the ultimate target population of this
vaccine candidate [52]. This vaccine is based on a
recombinant BCG with a deletion in urease C and
expression of listeriolysin [53, 54]. The second
viable vaccine, MTBVAC, is a double-deletion
mutant of Mtb and is currently undergoing a phase
I trial. It is clear that the purpose of these two viable
vaccines is the replacement of BCG and hence they
are targeted at pre-exposure vaccination [55].

Table 3 Adjuvants used for current vaccine candidates

Adjuvant Characteristics Formulation Vaccine Source

IC31 Cationic antimicrobial peptide and TLR-9

ligand

KLKL5KLK polypeptide and

oligodeoxynucleotides

H4, H1, H56 IC

CAF01 Liposome-based, lipoid MINCLE ligand DDA and TDB H1 SSI

AS01E Liposomal-based, surface-active saponin

and TLR-4 ligand

Saposin QS21 and MPL M72 GSK

GLA-SE Stable emulsion of a TLR-4 agonist and

antigen

GLA-SE containing squalene ID93 IDRI

DDA, dimethyldioctadecyl ammonium bromide; GLA-SE, glucopyranosyl lipid adjuvant stable emulsion; GSK, Glaxo-
SmithKline; H, hybrid; IC, intercell; IDRI, Infectious Disease Research Institute; MINCLE, macrophage inducible C-type
lectin; MPL, monophosphoryl lipid A; O/W, oil in water; SSI, Statens Serum Institute; TLR, Toll-like receptor; TDB,
trehalose 6,60-dibehenate.
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Some of the current preventive vaccines could also
be considered for therapeutic purposes, and M72/
AS01E has already been tested in a phase IIa trial
in patients with active TB [42]. Other therapeutic
vaccine candidates are based on whole killed
mycobacteria or semi-purified bacterial prepara-
tions given as adjunct to chemotherapy [56]
(Table 4). A member of the latter group is RUTI
[57]. This vaccine is also considered for prime–
boost vaccination in adolescents or adults with
LTBI (postexposure vaccination). Phase IIb testing
of the vaccine is awaited. M. vaccae developed by
the Chinese pharmaceutical company, AnHui
Longcom, was considered for TB therapy, but
careful analysis of available data does not provide
evidence of a beneficial effect of this vaccine [42,
58]. Mycobacterium indicus pranii, developed in
India, was originally intended as a vaccine against
leprosy, but retrospective analysis of a phase III
trial provided evidence of protection against TB. A
killed preparation of the M. indicus pranii vaccine
has already been licensed for specific TB cases and
is being further evaluated in phase III trials [42,
52].

High-throughput and multiplatform biomarkers in TB

Biomarkers are unique indicators of biological
processes [59], and are often applied as surrogate
end-points that are used instead of a clinical end-
point. Thus, in the case of TB, a potential biomar-
ker should reflect the transition from LTBI to active
TB diagnosed by clinical and laboratory means,
such as night sweating, cough, expectoration of
acid-fast bacilli and lung X-ray [60]. Over the last
two decades, there have been numerous advances
in the field of high-throughput (HT) biology. It is
now possible to screen samples for thousands or
even hundreds of thousands of variables, includ-
ing, for example, mRNA, microRNA and protein

expression, cytokine levels and metabolites. The
generated datasets can then be screened for mark-
ers (or predictors) of a particular condition or
response. However, the sheer number of variables
can generate a new level of complexity for the
analysis (for review, see [61]).

Generally, the performance of a single biomarker
can be markedly increased using instead a tailored
combination of independent biomarkers [62]. Such
a combination is sometimes referred to as a ‘biosig-
nature’ (although this term is frequently used in the
context of detecting signs of life or living organisms
in general). This principle can be best illustrated by
a simple, yet persuasive thought experiment. In a
committee that makes decisions based on majority
vote, each member has a different probability of
making an error. For example, one member of the
committee, an expert, errs only once every 100
times, and two other members are wrong once every
20 times. However, even though these twomembers
perform much worse than the expert, they none-
theless contribute to the performance of the com-
mittee as a whole, leading to a counterintuitive
result: the error rate of the whole committee is 0.3%
– three times lower than the error rate for the expert
alone. On the rare occasions that the expert is
wrong, the two othermembers have a 90%chance of
mitigating the expert decision.

One important assumption in this example is the
independence of the opinions. If, for example, the
two nonexpert members always make the same
errors as the expert, the performance of the whole
committee will clearly not be better than that of the
expert alone. Similarly, only when variables within
a biosignature are independent, can better perfor-
mance be expected. It is therefore preferable to
select two genes that are not only good predictors
but also functionally unlinked (Fig. 2).

Table 4 Therapeutic TB vaccines

Vaccine Status

M. indicus pranii Retrospective analyses of almost 29 000 phase III study participants. Ongoing phase III trials.

Licensed for therapeutic use in certain patients with TB in India

M. vaccae Phase IIb trial completed: no evidence of benefit of M. vaccae immunotherapy in patients with

TB (retrospective analysis, Cochrane collaboration)

RUTI Phase IIa trial in LTBI completed

Dar-Dar Phase III trial in HIV and patients with TB terminated

M72-AS01 Phase IIa trial in patients with TB completed

HIV, human immunodeficiency virus; LTBI, latent tuberculosis infection; M., Mycobacterium; TB, tuberculosis.
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It is noteworthy that dependence is a broader
concept than correlation, particularly if the latter
is used in the narrow sense of a Pearson or
Spearman correlation coefficient [63]. While corre-
lated variables are necessarily dependent, the
reverse does not hold true; uncorrelated variables
can still lack independence. In the simple example
of x and y = x2, the variables x and y are clearly
dependent but are not correlated.

Three examples illustrate the ability of tailored
biosignatures to improve performance. First, Gi-
bot et al. [64] applied a combination of three
biomarkers for diagnosis of sepsis: plasma con-
centrations of soluble triggering receptor
expressed on myeloid cells-1 (sTREM-1), plasma
concentrations of procalcitonin (PCT) and the
expression of Fc fragment of immunoglobulin
gamma receptor I (Fc-cRI, CD64) on polymorpho-
nuclear cells. All three components of the new
biosignature have previously been proposed as
biomarkers. Using a combination of all three
biomarkers, it was possible to generate a com-
posite, three-dimensional biosignature which was
superior to any of the three single biomarkers.

Secondly, Furman et al. [65] profiled gene expres-
sion, serum cytokine levels, in vitro cytokine stim-
ulation as well as other parameters in search for a
biosignature correlated with the specific antibody
response after influenza vaccination. Using a
supervise machine-learning algorithm (elastic
nets, see [66]), they identified a set of nine variables
that perform well in predicting the response.

Thirdly, in TB, we analyzed metabolic profiles in
search of a biosignature capable of correctly
discriminating serum samples of patients with
TB from serum samples of healthy control sub-
jects [61]. Using a bootstrapping approach, we
were able to show that the overall classification
error rates decrease from about 8 to 12% for
biosignatures with less than five variables to

Correlation: 0.68
Joined error rate: 13%

Correlation: –0.20
Joined error rate: 8%

Fig. 2 Classification of serum
samples (patients with TB and
control subjects) using inde-
pendent predictors. Combining
a predictor with an error rate of
22% with a correlated predictor
results in a higher joined error
rate (13%) than combining the
same predictor with an inferior
predictor which is not as
strongly correlated (joined error
rate 8%). Data from Ref. [61].
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Fig. 3 Number of variables selected as predictors versus
error rate in a classification task. The error rate decreases
with the number of variables that have been chosen for
classification. However, adding more than 25 variables to
the biosignature does not result in a further improvement
of the error rate. Figure from Ref. [61].
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about 3% for a biosignature generated with 20–25
variables. Further expansion of the biosignature
did not improve the accuracy of this approach
(Fig. 3).

Biomarkers in TB

Several studies have focused on biomarkers in TB
[67, 68]. Generally, patients with TB were com-
pared to clinically asymptomatic control subjects,
although some studies included as controls indi-
viduals with other diseases (contagious and non-
contagious diseases such as sarcoidosis) [67–73]. It
is now well established that patients with TB can be
discriminated from healthy control subjects using
biomarkers from different platforms, including
cytokines (for a review, see Walzl et al. [74]), gene
expression [67–70], proteins [75] and biochemical
compounds [61]; see also [76]. Several biomarkers
as well as tailored biosignatures have been identi-
fied; indeed, some biomarkers were identified in
several studies, including Fc-cRI (CD64) and genes
associated with type I IFN signalling. However, it is
unclear to what extent these signatures are specific
for TB. For example, it has been proposed that
Fc-cRI is a general marker of infection [77]. Com-
parisons with other diseases [67, 69, 71, 78, 79],
including infectious diseases, cancer and sarcoid-
osis, revealed that biosignatures can be designed to
reliably discriminate between different diseases.
However, the performance of these biosignatures is
still impaired by a high error rate (around 10%; for
comparison, see [78]).

Biomarkers monitoring drug treatment are of par-
ticular interest due to their potential to provide
secondary end-points for treatment outcome (such
as relapse or success). Global gene expression
analyses at the levels of both transcription (mRNA)
and translation (protein) indicate however that the
most discernible effects are found within the
intensive phase of treatment or even in the first
2 weeks [78, 80]. The applicability of such biosig-
natures as surrogate end-points becomes ques-
tionable if biomarkers fail to reveal significant
changes at later treatment time-points.

How to create a biosignature

A biosignature is more than the enumerating of the
names of the variables (predictors) thought to
predict a given classification or continuous
response. In addition to these variables, it also
includes the specific mathematical operation of

transforming them into a specific prediction. When
applied to new data (a test dataset), the perfor-
mance of a model can be evaluated; any errors or
misclassifications can be used to calculate param-
eters such as general error rate, accuracy or area
under the receiver operating characteristic (ROC)
curve. Currently, biomarkers or biosignatures are
often used in a setting in which the response is (i)
categorical rather than continuous and (ii) often
bimodal (i.e. only two possible categories). For a
clinical diagnosis, the ideal test result is either
positive or negative. In a real-world context, stages
of disease with different pathologies are more likely
to produce several categories corresponding to the
different pathologies.

HT data allow rapid characterization of a large
number of samples. Yet frequently the number of
samples is much smaller than the number of
variables or features (e.g. mRNAs, proteins or
metabolites analyzed). Simple frequentist statisti-
cal approaches, such as linear regression or ANOVA,
will fail. The large number of variables implies a
large number of parameters that have to be
estimated from an insufficient number of samples.
Thus, a reduction of the dimensionality of the data
will be required [81].

Perhaps the most straightforward approach is an
unbiased removal of some variables prior to the
main analysis. This type of dimensionality reduc-
tion is known as feature extraction. For example, in
the case of microarrays, features that show a low
variance or low interquartile range are often
removed to reduce the total number being analyzed
[82].

Clearly, it is tempting to extract features based on
the differences between conditions to be differen-
tiated. For example, to select putative biomarkers
for TB, one might want to focus on the set of genes
that are differentially expressed between those
conditions. However, this procedure cannot be
applied outside of model training and validation.
In any sufficiently large set of random variables,
some will correspond to the response; artificially
enriching this set prior to model building using
such a ‘specific filtering’ procedure will result in
optimistic and incorrect error estimates. Informa-
tion on the response must not be used as an
explorative step before the model has been gener-
ated using a cross-validation approach. Variables
may be filtered before applying a machine-learning
algorithm, but this filtering must be nonspecific
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and not dependent on the response that the
algorithm is supposed to model.

Another way of dealing with high dimensionality is
to apply a dimension reduction technique, of which
there are several types. Principal component
analysis (PCA) is a simple but powerful mathemat-
ical procedure in which the bulk of the variance
represented by the different variables can be
recovered from a few principal components [81].
Each component is a linear combination of all or, in
variants such as sparse PCA, only a few selected
variables. Therefore, interpretation of the principal
components and selection of the most important
variables are relatively straightforward. Notably,
PCA does not rely on the response variable (i.e.
disease state). Accordingly, clusters corresponding
to the response are unbiased and not a result of
applying knowledge a priori. A further intriguing
feature of PCA is that the components themselves
are not correlated. Whilst this in itself does not
guarantee independence, it can be sufficient for an
accurate and reliable biosignature.

Numerous other dimensionality reduction tech-
niques exist. Some, like PCA, rely on linear trans-
formations of the data whereas others, such as
elastic maps [66] or auto-encoders, are inherently
nonlinear. Furthermore, some methods [such as
sparse PCA or sparse partial least squares (SPLS)]
allow the number of variables included in some of
the components to be explicitly limited.

Such an approach has been applied recently by
Rousu e al. [83], who analyzed two sets of data: (i)
proteome data from 412 samples from patients
with TB and symptomatic as well as asymptomatic
control subjects and (ii) plasma proteome profiles
from 944 malaria samples from various diagnostic
classes (including cerebral malaria, severe malaria
anaemia, uncomplicated malaria and community
controls). Both datasets included several clinical
variables. The aim of the study was first to test the
feasibility of the methods used for classification
and, secondly, to correlate these with HT vari-
ables. Clinical and proteomic datasets were used
separately to predict the classification of the
samples. Furthermore, proteomic data were used
for selection of clinical variables to construct a
model based on clinical variables alone; thus,
proteomic data were utilized to improve the model
at the time of model training, but were not
required at the time of making new predictions.
Here, the variables were treated as a ‘black box’,

without linking the results to the underlying
biology. The results showed that selection of
clinical variables guided by proteome analysis
was able to improve classification accuracy in
most but not all comparisons.

Finally, a third way of reducing dimensionality of
the data involves understanding the biology of the
data. Variables can be grouped according to their
biological functions, annotations or chemical prop-
erties, as well as experimentally determined func-
tional associations. Gene expression data are often
grouped based on functional or cellular localization
of gene products, for example using their gene
ontology (GO) annotations. Alternatively, it is pos-
sible to form groups of co-regulated genes based on
an a priori experiment in which correlations of gene
expression between genes were determined in a
range of individuals [65].

For classification tasks and for extracting a biosig-
nature, a range of supervise machine-learning
algorithms is available, including support vector
machines, elastic nets, partial least squares dis-
criminant analysis (PLS-DA), neural networks and
others. These techniques essentially exploit a
training dataset, such as gene expression data, to
find a model fitting the given response (e.g. classi-
fication of health or disease). Several tools of this
type have been applied to generate biosignatures of
TB [61, 67, 69, 70]. As yet, the generated biosig-
natures are of limited compatibility and often do
not perform satisfactorily when selected variables
are used in connection with other techniques [78].

It remains debated to what extent the number of
variables available from an HT analysis should be
reduced. Gene expression studies of host
responses in active TB revealed biosignatures
based on as few as four genes [84] and up to as
many as 393 [67]. While a larger number of correct
variables can improve the performance of a given
biosignature, it can also result in the well-known
statistical phenomenon of overfitting. At the same
time, a rise in the number of variables can increase
the chances of including independent variables,
thus improving performance.

Model validation

Biomarker models are frequently based on a large
number of variables. Consequently, care must be
taken to ensure that models are not overfitted,
resulting in an overly optimistic error estimate and
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that data used to generate the model (the training
set) are clearly separated from data used to validate
or test the model (the test set).

Due to the large number of variables and param-
eters, a model fitted to a single dataset will be
prone to overfitting [85]. In fact, even random data
can generate a perfectly fitted model if the dataset
is sufficiently large. There are two main ways to
validate a model: (i) by bootstrapping using the
same dataset and (ii) using an independent set of
samples. In the first case, the dataset is partitioned
into a training set and a test set. The model is
generated using the training set, and its perfor-
mance is validated against the test set. The number
of misclassifications is then determined and
provided that the response variable is binomial
and corresponds to classes that could be labelled
as ‘positive’ and ‘negative’, the errors can then be
partitioned into false positives and false negatives.
In the second case, the performance of the model is
determined by validation with a separate dataset
from another cohort, study or recruitment proce-
dure.

Simply partitioning the dataset significantly
decreases the size of the training set, resulting in a
lower power of the approach. To this end, cross-
validation procedures, typically a k-fold or leave-
one-out (LOO) approach, are applied. In the case of
LOO cross-validation, for each sample in the data-
set, the remaining samples are used as a model
training set. Any procedure such as specific filtering
which uses the information of the response must
only be applied to this training set and must not
involve the given sample. The model is then applied
to the sample, and the correctness of the prediction
is recorded. Then, the next sample is considered,
and the procedure is repeated until all samples have
been assessed. In a k-fold cross-validation
approach, the dataset is partitioned into k subsets,
and for each subset, the same procedure as above is
repeated: the subset is removed from the total
dataset, and the remaining subsets are merged to
form the training set [85]. Although cross-validation
maximizes the use of the information from the
dataset, they do not result in a singlemodel. Rather,
a number of independent models are created for
each replicate or fold, and the summary error rates
are considered to be valid for the model constructed
on the basis of the full dataset.

Despite the value of a cross-validation, the good-
ness of a model is directly related to its universal

applicability. Even if a model performs extremely
well for a dataset derived from a given experimental
or clinical context, it may perform poorly in another
patient cohort or for data collected by another
technique. It is, therefore, imperative to test each
model on independent data (external cross-valida-
tion). This procedure can only be realized correctly
if the data used in cross-validation were not
analyzed before creating the model; ideally, cross-
validation should be carried out in a blinded
manner. Even if the datasets for evaluation were
not directly used for the model, mere knowledge of
the results could bias the approach to model
building. This phenomenon is known in statistics
as ‘data snooping’ [86].

Nevertheless, some error rates (and counts of false
positives and false negatives in the case of bimodal
responses) are used to generate measures of the
goodness of the model of which a number is
available. In case of bimodal data, four distinct
measures are of particular interest: sensitivity,
specificity, positive predictive value (i.e. precision)
and negative predictive value. The proportion of all
correct classifications (100 minus the overall error
rate) is known as the accuracy. In certain cases,
further measures can reflect the true performance
of the model much more reliably than the error rate
alone. Accuracy or error rate is prone to the so-
called accuracy paradox: if the categories are
highly imbalanced (e.g. the prevalence of positive
cases is very low), an algorithm uniformly assign-
ing the ‘negative’ class in every prediction can have
a lower overall error rate than a more meaningful
model.

Conclusions and outlook

Despite rapid progress over the last decade, vac-
cine development and biomarker research have not
yet been linked in the area of TB research. Inten-
sive development of HT biomarkers to provide
surrogate end-points for vaccines in other thera-
peutic fields shows results that promise advance-
ment also for TB vaccine design. In addition,
biomarkers could help in stratification of study
participants. Several vaccine candidates are con-
sidered to target adults with LTBI. Of these indi-
viduals, less than 10% will develop active TB.
Selecting individuals with increased risk of active
TB for a vaccine trial could reduce the number of
study participants significantly and therefore also
reduce the cost and duration of such vaccine trials.
It is clear that further investigation combining
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experimental research, clinical studies and com-
putational biology is required for the development
of control measures against TB. It is hoped that the
combined efforts of these different areas of exper-
tise can accelerate the development of therapeutic
approaches directed against this devastating
disease.
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