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ABSTRACT The human microbiome consists of thousands of different microbial
species, and tens of thousands of bioactive small molecules are associated with
them. These associated molecules include the biosynthetic products of microbiota
and the products of microbial transformation of host molecules, dietary compo-
nents, and pharmaceuticals. The existing methods for characterization of these small
molecules are currently time consuming and expensive, and they are limited to the
cultivable bacteria. Here, we propose a method for detecting microbiota-associated
small molecules based on the patterns of cooccurrence of molecular and microbial
features across multiple microbiomes. We further map each molecule to the clade in
a phylogenetic tree that is responsible for its production/transformation. We applied
our proposed method to the tandem mass spectrometry and metagenomics data
sets collected by the American Gut Project and to microbiome isolates from cystic fi-
brosis patients and discovered the genes in the human microbiome responsible for
the production of corynomycolenic acid, which serves as a ligand for human T cells
and induces a specific immune response against infection. Moreover, our method
correctly associated pseudomonas quinolone signals, tyrvalin, and phevalin with
their known biosynthetic gene clusters.

IMPORTANCE Experimental advances have enabled the acquisition of tandem
mass spectrometry and metagenomics sequencing data from tens of thousands
of environmental/host-oriented microbial communities. Each of these communi-
ties contains hundreds of microbial features (corresponding to microbial species)
and thousands of molecular features (corresponding to microbial natural prod-
ucts). However, with the current technology, it is very difficult to identify the mi-
crobial species responsible for the production/biotransformation of each molecu-
lar feature. Here, we develop association networks, a new approach for
identifying the microbial producer/biotransformer of natural products through
cooccurrence analysis of metagenomics and mass spectrometry data collected on
multiple microbiomes.

KEYWORDS natural products, association network, biotransformation, mass
spectrometry, metagenomics, microbiome, xenobiotic

The human microbiome is a complex community of microorganisms, their enzymes,
and the molecules they produce/modify. Recent studies show that imbalances in

human microbial ecosystems can cause disease. The majority of relationships between
the microbiome and disease were discovered through microbiome-wide association
studies that link disease to a relative overabundance/underabundance of microbial
species using metagenome sequencing data (1, 2). However, these studies fail to
determine the molecular mechanism of disease.
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Metabolomics studies have shown that among all the molecules in the human
metabolome, microbial metabolites are the ones most altered in metabolic and inflam-
matory disorders (3). These molecules include the biosynthetic products of microbiota
(microbial natural products) and the microbial modifications of host, dietary, and drug
molecules (microbial biotransformation products) (4).

Currently, the majority of known microbial products and biotransformation products
are discovered through the targeted analysis of specific molecules, such as short-chain
fatty acids, secondary bile acids, and oral drugs in model systems (e.g., mice with a
controlled diet and environment) (5–7). However, these methods do not generalize to
complex communities like the human microbiome, where it is impossible to control
environmental factors. Moreover, targeted metabolomics analysis cannot detect novel
microbial metabolites.

Recent large-scale microbiome data sets, such as the Integrative Human Microbiome
Project (iHMP) (8) and the American Gut Project (AGP) (9), collect microbial and
molecular abundance profiles over thousands of human microbiota samples, providing
us with an unprecedented opportunity to explore the interactions between micro-
organisms, enzymes, and molecules in complex communities. In these projects, the
abundances of tens of thousands of microbial strains/species are measured using
microbial marker gene amplicon sequencing and whole-metagenome or metatran-
scriptome shotgun sequencing (10), and the abundances of tens of thousands of
molecules are measured using untargeted liquid chromatography-mass spectrometry
(LC-MS) (11). Recently, new methods have been proposed for finding associations
between microbial and molecular features through the correlations of their abundance
profiles across multiple microbiome samples (12, 13). However, these methods fail to
extend to thousands of microbiome samples. In addition, there is no consensus on how
to extract features from LC-MS data or what association test should be used.

In this study, we develop an efficient pipeline to discover potential microbial
metabolites and microbial biotransformations by building a cooccurrence network of
microbes and metabolites using high-throughput LC-MS data and metagenomics data
collected over thousands of microbiota samples. Using this strategy, we identify several
microbial products and microbial biotransformation products from the human micro-
biome. Moreover, we develop a new method for computing the false discovery rates
(FDR) of the associations and using them to benchmark various metabolomics feature
extraction methods and association tests. Furthermore, we develop a new method to
detect clade-specific metabolites based on the cooccurrence network and the analysis
of a microbial phylogenetic tree.

RESULTS
Outline of the pipeline. Our pipeline (Fig. 1) includes the following: (a) extracting

microbial features, which could be either operational taxonomic units (OTUs) or bio-
synthetic gene cluster (BGC) families, (b) extracting molecular features, which could be
either mass spectrometry (MS) features or tandem mass spectrometry (MS/MS) features,
(c) searching for pairs of associated features and computing false discovery rates, (d)
constructing the association network, and (e) assigning molecular features to phylo-
genetic clades.

Data sets. The AGP data set consists of LC-MS/MS and 16S rRNA data collected from
the human gut microbiomes of 2,125 subjects. For a subset of these samples, shotgun
metagenomics data are also available. Optimus extracted 29,567 molecular features
from the LC-MS data (MinIntensity � 1,000), and MS-Clustering extracted 74,913
molecular features from the LC-MS/MS data (cosine similarity threshold [�] � 0.4). We
further applied deduplication using an m/z threshold of 0.01 and a Fisher’s exact test
P value threshold of 10�5. This decreased the number of molecular features from
29,567 to 18,940 for Optimus and from 74,913 to 73,275 for MS-Clustering. We
additionally annotated the extracted molecular features using spectral library search
(14) and Dereplicator� (15). Using the Greengenes Database (16) as the reference,
QIIME extracted 11,265 unique OTUs from the AGP data set (MinCount � 0).
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The data set for human microbiome isolates from cystic fibrosis patients (HUMAN-
CF) consists of tandem mass spectrometry and metagenomics data collected from 243
microbial isolates from cultures of sputum samples from cystic fibrosis patients (Global
Natural Product Social Molecular Networking [GNPS] data set MSV000080251). Each
sample contains one or a mixture of a few (from 1 to 11) different bacteria. Based on
the metagenomics data of HUMAN-CF, Quinn et al. (17) analyzed the association
between microbial species and discovered that Pseudomonas and Staphylococcus au-
reus are anticorrelated with Gram-positive anaerobes. In this study, we obtained 23,176
molecular features from LC-MS/MS data (see Materials and Methods for details). We
further applied SPAdes (18), antiSMASH (19), and BiG-SCAPE (20) to the shotgun
metagenomics data and extracted 18 nonribosomal-peptide BGC families which are
present in at least 10 samples.

Microbial products and biotransformation products. Microbial natural products
can be detected as positive correlations between the occurrence of the microbial
species and the molecules in the association network (Fig. 2a). In addition to the
microbial products, the association network also reveals many microbial biotransfor-
mation products. Microbial biotransformation products are distinguished by a strong
negative correlation between the occurrences of the microbial species and the precur-
sor molecules, along with strong positive correlations between the microbial species
and the product molecules (Fig. 2b).

We applied the association network pipeline to the AGP data set and found 18,623
and 8,178 associations with a P value threshold (PThreshold) of 10�10 for the molecular
features obtained by Optimus and MS-Clustering, respectively. To explore the power of
the association network (Fig. 3) in detecting microbial products and biotransformation

FIG 1 The pipeline includes the following steps: extracting microbial (a) and molecular (b) features from the raw data, searching
for pairs of associated features and computing false discovery rates (c), constructing the association network (d), and assigning
molecular features to phylogenetic clades (e).
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products, we further searched the mass spectra against AntiMarin (21), the Dictionary
of Natural Products database (22), and the Human Metabolome Database (23) using
Dereplicator� and analyzed the densely connected modules of this network that
contained the molecules annotated by Dereplicator� (Fig. 3).

FIG 2 (a) Microbial natural products can be detected as positive correlations between the occurrences of the microbial species and the molecules in
the association network. (b) Microbial biotransformation products can be detected as negative correlations between the microbial species and the
precursor molecules, along with positive correlations between the microbial species and the product molecules. The feature tables are mock-up data.

FIG 3 (a) Association network of AGP. (b) Pseudomonas bacteria are positively associated with phenazine-1-carboxylic acid, rhamnolipids, and PQS.
(c) The correlation between Desulfovibrio and cholic acid is noncausal. (d) Clostridiales biotransform bile acids. Here, we combined the nodes that
represent the same molecules or taxa in the same family.
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Correlating mass spectral data to 16S rRNA data. At a PThreshold of 10�10,

microbial features from the Pseudomonas genus are positively associated with
phenazine-1-carboxylic acid (m/z 225.07), five rhamnolipids, and five pseudomonas
quinolone signals (PQS) (Fig. 3b). Among the 42 rhamnolipids with unique masses
produced by Pseudomonas (24), 8 are included in the GNPS spectral library. A spectral
library search found four of the rhamnolipids in the AGP data set, and two (m/z 673.40
and m/z 701.41) are significantly associated with Pseudomonas. With molecular net-
working (14, 25), two more rhamnolipids were identified (m/z 553.25 and m/z 555.38),
both of which have a strong association with Pseudomonas. Pseudomonas is also
significantly associated with rhamnolipid B (m/z 651.40). Moreover, Pseudomonas is
positively correlated with compounds from different series of quinolones (26), includ-
ing 4-hydroxy-2-heptylquinoline-N-oxide (m/z 258.15), 2-nonyl-4-quinolone (m/z
270.19), 2-nonylquinolin-4(1H)-one (m/z 272.20), 4-hydroxy-2-nonylquinoline-N-oxide
(m/z 288.20), and 4-hydroxy-2-heptylquinoline (HHQ) (m/z 244.169). All of these mol-
ecules are known to be produced by Pseudomonas aeruginosa bacteria, playing roles in
quorum sensing and virulence (27–29). We further mapped shotgun metagenomics
data collected on samples with PQS present against PQS BGC, and we identified 2,472
out of 2,488,704 reads mapped to PQS BGC.

A Corynebacterium kutscheri OTU feature (Greengenes number 13393) is positively
correlated with a molecule at m/z 495.4 (P � 3 · 10�5). Dereplicator� annotated this
molecule as corynomycolenic acid (Fig. 4). The BGC for corynomycolic acid, which is a
close variant of corynomycolenic acid, has previously been discovered in Corynebacte-
rium diphtheria strain NCTC 13129 (30). The reference genome with a feature closest to
this C. kutscheri feature is that of C. kutscheri strain DSM 20755 (31) (99% identical 16S
rRNA over 100% coverage), which contains a BGC with high similarity to the coryno-
mycolic acid BGC reported in C. diphtheriae NCTC 13129 (72% identical over 52%
coverage).

We also observed a positive correlation between Desulfovibrio species and cholic
acid (P � 10�13), which is a human bile acid (Fig. 3c). This is explained by the fact that
the Desulfovibrio species feed on the sulfur released by deconjugation of taurocholic
acids to cholic acid (32). As sulfur is below the dynamic range of mass spectrometers,
the association network fails to correlate sulfur with Desulfovibrio species. This example
shows that some of the detected associations are noncausal.

We observed significant positive correlations between stercobilin (m/z 595.35 [P �

6 · 10�29]), and some of the Clostridiales. It is well known that stercobilin and urobilin
are the end products of heme catabolism by Clostridiales through bilirubin glucuroni-
dase and bilirubin reductase enzymes (33, 34). Clostridiales also showed negative
correlations with dehydrobilirubin (m/z 587.3 [P � 10�30]) and urobilin (m/z 591.35
[P � 5 · 10�26]), which are the products of bilirubin reductase.

Several species within the Enterobacteriaceae showed a negative correlation with
cholic acid (m/z 409.29 [P � 2e�26]) and a positive correlation with 7-oxodeoxycholate
(m/z 407.28 [P � 4e�10]), confirming the evidence that Enterobacteriaceae play a role
in dehydrogenation of bile acids (35, 36).

We also observed a strong correlation between Bacillus species and a steroid
hormone with m/z 285.18 (P � 9 · 10�24). Bacillus species are known to biotransform
steroids (37).

In addition, we observed a negative correlation between Oxalobacteraceae and
phenylalanine (m/z 165.08 [P � 6 · 10�11]) and n-acetylphenylalanine (m/z 207.12 [P �

3 · 10�13]). In fact, phenylalanine and n-acetylphenylalanine were not detectable in any
of the subjects where Oxalobacteraceae were present. Oxalobacteraceae species are
shown to be capable of consuming phenylalanine as a carbon source (38).

Clostridiales species showed negative correlations with phenylalanine (m/z 165.08
[P � 2 · 10�15]), tryptophan (m/z 206.07 [P � 10�27]), dihydroxyphenylacetic acid (m/z
153.056 [P � 3 · 10�11]), and tyrosine (m/z 182.08 [P � 5 · 10�13]) and a positive
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FIG 4 (a) Chemical structure of corynomycolenic acid. (b) Metabolite graph of corynomycolenic acid. (c) Fragmentation graph of corynomy-
colenic acid. (d) Annotation of the mass spectra of corynomycolenic acid (only explained peaks are shown).
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correlation with indolepropionate (m/z 190.018 [P � 8 · 10�11]). Clostridiales is known
to biotransform the phenyl residue in these molecules (39).

Correlating mass spectral data to BGC families. In the HUMAN-CF data set, we
correlated BGC families with molecular features and discovered an interesting BGC
family containing two adenylation domains, two thiolation domains, one condensation
domain, and one NAD binding domain (Fig. 5a) that was positively correlated with two
molecular features (m/z 229.135 [P � 4.05 · 10�16] and m/z 245.125 [P � 1.98 · 10�9]).
Dereplicator� annotated these two features as phevalin (score of 4) and tyrvalin (score
of 7). These annotations matched the adenylation specificities of the corresponding
domains (Fig. 5). BLAST results suggest that this BGC family contains the aureusimine
nonribosomal peptide synthetase from Staphylococcus aureus (100% coverage and
99.46% identity), which is known for the synthesis of phevalin and tyrvalin (40). 16S
rRNA sequencing results show that Staphylococcus aureus is widely present in the
HUMAN-CF data set (17).

Discovering a corynomycolenic acid BGC. We further investigated the genes
responsible for the production of corynomycolenic acid in the human microbiota.
Corynomycolenic acid is a member of the mycolic acid family with immunomodulatory
activities that is produced by Corynebacterium and Mycobacterium species (41–44).
These molecules are ligands of human T cells, prompting specific immune responses.
Mining the genome of C. kutscheri DSM 20755 revealed a BGC that contains all the
necessary biosynthetic enzymes for the production of corynomycolenic acid (Table 1,
Fig. 6). Moreover, we highlight the different genes of the two BGCs which are poten-
tially responsible for the structural difference between the molecules from the two
species (Table 2).

Assigning molecular features to the corresponding phylogenetic clades. We
assigned the molecular features to the clades in the phylogenetic tree with which they
were significantly associated. For this analysis, we used the Greengenes phylogenetic
tree, which was pruned to keep only the OTUs that were associated with at least one
metabolite. At a P value threshold of 10�10, 550 of the MS-Clustering features were
mapped to 872 OTUs in the phylogenetic tree. Figure 7 demonstrates molecular
features assigned to different clades at a P value threshold of 10�20.

Benchmarking. We benchmarked various feature extraction methods with various
parameters by comparing the numbers of identifications at different false discovery
rates. Moreover, we benchmarked four different techniques for estimating the associ-
ations between molecular and microbial features. These techniques include Fisher’s
exact test (for binary data), Pearson’s correlation test, Spearman’s correlation test, and
the mutual information criterion. Our results show that Optimus and Spearman’s
correlation are the best feature extraction and association methods (Fig. 8 and 9).

DISCUSSION

Recent experimental advances have enabled the acquisition of tandem mass spec-
trometry and shotgun metagenomics data from tens of thousands of environmental/
host-oriented microbial communities through large-scale projects, including the Amer-
ican Gut Project and the Integrative Human Microbiome Project. Metagenome-mining
studies have revealed thousands of biosynthetic enzymes with uncharacterized sub-
strates/products from these data sets. Moreover, metabolomics studies have revealed
signals for hundreds of thousands of bioactive small molecules in the mass spectral
data sets.

While these data sets represent a gold mine for discovering small molecules
associated with the microbiota, manual analysis of billions of mass spectra in these data
sets is infeasible, and new computational approaches are needed to integrate the
large-scale metagenomics and tandem mass spectrometry data for systematic discov-
ery of the unknown small-molecule products of the biosynthetic enzymes. In this
regard, the following three questions need to be addressed. (i) Is the molecular feature
associated with the microbiota? If so, which microbial species is it associated with? (ii)
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NAD_binding_

FIG 5 BGC of phevalin. (a) Putative nonribosomal peptide synthetase (NRP) BGC discovered by antiSMASH. This BGC contains two adenylation domains
(A), two thiolation domains (T), one condensation domain (C), and one NAD binding domain (NAD). Under each adenylation domain are the associated
amino acids and scores predicted by NRPSPredictor. The greater the score, the greater the likelihood that the amino acid will be recognized by the
adenylation domain. The surrounding structures are the putative molecules that can be produced by the BGC. (b) Fragmentation tree of Val-Phe (phevalin)
and Val-Tyr (tyrvalin) given by Dereplicator�. (c) Mass spectral annotations given by Dereplicator�.
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Which biosynthetic enzyme within the microbial species is it associated with? (iii) What
is the chemical structure of the molecule?

In this article, we developed a method for addressing the first question. Our method
detects microbial natural products and microbial biotransformation products through

TABLE 1 Shared genes of the corynomycolic acid BGC from Corynebacterium diphtheria NCTC 13129 and the putative corynomycolenic
acid BGC from Corynebacterium kutscheri DSM 20755a

Shared gene in BGC from:

COG Protein functionb

C. diphtheria NCTC 13129 C. kutscheri DSM 20755

Position

Strand Geneb

Position

Strand GenebStart End Start End

4169 3030 � 1837 776 � COG1835 Acyltransferase
7716 6562 � pimB [H] 5690 4560 � rfaB [C] COG0438 Mannosyltransferase/glycosyltransferase
7758 8492 � ubiE [C] 5875 6735 � COG0500 Methyltransferase
10460 8517 � pckG [H] 8719 6896 � pckG [H] COG1274 Phosphoenolpyruvate carboxykinase
10812 11591 � trmB 9478 10401 � trmB [H] COG0220 tRNA methyltransferase
12223 14463 � mmpL3 [H] 11071 13662 � mmpL3 [H] COG2409 Putative membrane protein
14450 15508 � 13666 14745 � COG0392 Membrane protein
19989 18439 � pccB [H] 19980 18418 � accD5 [H] Propionyl-CoA carboxylase beta chain
24761 20001 � ppsA [H] 24845 20001 � ppsA [H] COG3321 Polyketide synthase
26674 24860 � fadD32 [H] 26987 25143 � fadD32 [H] COG0318 Long-chain fatty acid–AMP ligase
27660 26749 � 28128 27214 � Cutinase
28181 27666 � 28649 28134 � Hypothetical protein DIP
30205 28181 � csp1 [H] 30577 28646 � csp1 [H] COG0627 Protein PS1 [H]
31486 30458 � csp1 [H] 32001 30934 � fbpC [H] COG0627 Protein PS1 [H]/antigen 85-C [H]
33329 31641 � 34132 32198 � Transmembrane protein
34315 33338 � 36163 35192 � COG0382 Protein y4nM [H]
36791 34806 � glfT2 [H] 38653 36674 � glfT2 [H] UDP-galactofuranosyl transferase
44742 43552 � rfbD [H] 44664 43483 � rfbD [H] COG0562 UDP-galactopyranose mutase
aThe genes were annotated by using BASys (45).
bResults given by similarity search in BASys are indicated as follows: [H], homology to a SwissProt entry; [C], homology to a CCDB entry.

FIG 6 (a) Putative BGC of corynomycolenic acid in Corynebacterium kuscheri strain DSM 20755. (b) Known BGC of corynomycolic acid in
Corynebacterium diphtheria strain NCTC 13129. Genes annotated with the same function in the two BGCs are in the same color. Genes in gray are
unique genes of the two BGCs. (c) Chemical structure of corynomycolenic acid. (d) Chemical structure of corynomycolic acid. The structural
difference between the two molecules is highlighted in black boxes.
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a comparative analysis of the molecular and microbial features across multiple micro-
biomes. In the case of corynomycolenic acid, we further used genome mining to assign
the molecule to its BGC within the genome of its microbial producer. While identifi-
cation of the biosynthetic enzymes responsible for corynomycolenic acid production
provides a proof of concept, novel computational methods are needed for systematic
characterization of the products of the microbial biosynthetic enzymes through the
association network approach.

The association network detects pairwise interactions between the molecular and
microbial features across thousands of microbiomes. While this method is capable of
discovering microbial natural products and microbial biotransformation products, in-
teractions that involve multiple sequential biotransformations/complex pathways can-
not be handled. Moreover, many of the interactions retrieved by this method are
noncausal correlations. For example, the association network finds correlating features
that are caused by a confounding factor. While this results in a denser network with
noncausal edges, in some scenarios, these noncausal edges can lead to the discovery
of causal interactions that were missed by the network.

Currently, the association network approach is based on the use of Fisher’s exact
test P values, which assumes different samples are independent. While the indepen-
dence assumption is natural for data sets such as that of the American Gut Project,
collected from distinct individuals, confounders like health status could increase the
false discovery rate. The association network approach is the first step toward detecting
the complex interactions between microbial and molecular features through the
comparative analysis of thousands of microbiome samples.

In addition to linking BGCs to molecules, other potential applications of associ-

TABLE 2 Unique genes of the corynomycolic acid BGC from Corynebacterium diphtheria NCTC 13129 and the putative corynomycolenic
acid BGC from Corynebacterium kutscheri DSM 20755a

Source of BGC

Gene position

Strand Geneb COG FunctionStart End

C. diphtheria NCTC 13129 61 3138 � Coagulation factor 5/8-type domain-containing protein
4176 5276 � Hypothetical protein Cauri
5267 6679 � Integral membrane protein
11576 12208 � Hypothetical protein
15103 15002 � Hypothetical protein
16160 16059 � Hypothetical protein
16147 16251 � Hypothetical protein
16296 16153 � Hypothetical protein
17827 16859 � Cell wall surface anchor family protein
26737 27669 � Hypothetical protein
34806 34312 � COG0671 Membrane-associated phospholipid phosphatase
37391 36876 � ybjG [C] COG0671 PAP2 superfamily protein
39009 37432 � gbsA [H] COG1012 Betaine aldehyde dehydrogenase
41301 39076 � betT [H] COG1292 High-affinity choline transport protein
41438 43366 � betA [H] COG2303 Choline dehydrogenase

C. kutscheri DSM 20755 41 601 � Hypothetical CgR protein
1923 3059 � Hypothetical protein A
3084 4592 � Hypothetical protein A
10402 11067 � Hypothetical
11081 10443 � Hypothetical protein
14777 15109 � Hypothetical protein Cauri
15170 17683 � pepN [H] COG0308 Aminopeptidase N
18337 17705 � pcp [H] COG2039 Pyrrolidone-carboxylate peptidase
34155 35132 � Hypothetical Protein
39510 38839 � ideR [H] COG1321 Iron-dependent repressor
40294 39497 � znuB [C] COG1108 29-kDa membrane protein in fimA 5= region
41112 40291 � yfeC [H] COG1108 Chelated iron transport system membrane protein
41752 41099 � mntB [H] COG1121 Manganese transport system ATP-binding protein
42741 41713 � mntA [H] COG0803 Manganese-binding lipoprotein

aThe genes were annotated by using BASys (45).
bResults given by similarity search in BASys are indicated as follows: [H], homology to a SwissProt entry; [C], homology to a CCDB entry.
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ation networks include detection of carbon sources depleted by microorganisms,
identifying biomarkers for drug metabolism, linking microbial enzymes to xenobi-
otic metabolism, and identifying the role of microbial metabolites in disease.
Association networks provide an untargeted approach for generating/testing vari-

FIG 7 Assigning the molecular features that are positively associated with the microbial features at a P value threshold of 10�20 to the phylogenetic tree.
The tree is trimmed to the taxonomic-order level. Numbers in boldface show the counts of molecules assigned to the corresponding clades. Heatmap
shows � log10�P�, where P is the minimal P value between the molecule and an OTU within the clade. Dereplicator� molecular annotations for the known
molecules are shown. The molecular features were extracted by MSClustering based on tandem mass spectral data and annotated by spectral library
search and Dereplicator� (level 2 and 4 metabolite identification) (46).

FIG 8 Benchmarking various feature extraction methods and association tests. Different methods are compared based on the number of
associations discovered (a) and the number of unique metagenomic features associated with a molecular feature (b) at different false discovery rate
thresholds. Here, we benchmark MS-Clustering and Optimus (binarized abundance with thresholds 10, 102, . . ., 106) with Fisher’s exact test
association and Optimus (continuous abundance) with Pearson’s correlation test association, Spearman’s rank correlation test association, and
mutual information criterion. In the case of Pearson’s correlation, no association was discovered at a false discovery rate of 0.01.
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ous hypotheses about the causal relationships between the molecules and mi-
crobes in complex communities.

MATERIALS AND METHODS
Definitions. Consider a set of microbial community samples (Samples), a set of molecular features

(Molecules), and a set of microbial features (Microbes). Here, each molecular feature is the abundance of
a specific molecule (binary or continuous), and each microbial feature is the abundance of a specific
microbe. Every feature X is characterized by a subset of samples that X is present in, as follows:
SamplesX � �S�Samples|X is present in S�. Here, S represents a sample.

Inputs. The inputs to our pipeline are the untargeted mass spectrometry data and metagenomics
data collected on a set of microbiome samples.

Main pipeline. The association network pipeline consists of the following steps.
(i) For microbial feature extraction, QIIME (47) is used to extract and quantify the operational

taxonomic units (OTUs) from the 16S rRNA sequencing data. The QIIME output is the OTUCount matrix,
where OTUCount(A, S) is the number of times an OTU A is observed in a sample S. For each OTU A, we
define SamplesA � �S|OTUCount�A,S��MinCount� for a threshold MinCount.

When shotgun metagenomics data are available, we can quantify BGC families on top of OTUs. First,
we apply SPAdes (18) to metagenomics data to obtain genome assemblies. Second, we apply antiSMASH
(19) to the genome assemblies to extract putative BGCs. Third, we use BiG-SCAPE (20) to cluster similar
BGCs into BGC families, resulting in an absence-presence table of the BGC families in each sample. We
exclude from analysis rare BGC families that are present in less than 10 samples.

(ii) For molecular feature extraction, molecular features from the liquid chromatography-mass
spectrometry (LC-MS) data are first extracted and quantified using the feature extraction algorithm
Optimus (48). Optimus outputs the FeatureIntensity matrix, where FeatureIntensity(X, S) is the intensity
of a feature X in a sample S. We then select a threshold MinIntensity, and for every feature X, we define
SamplesX � �S|FeatureIntensity�X,S��MinIntensity�. We further remove molecular features that are pres-
ent in less than two samples. When LC-MS/MS data are available, we extract molecular features using the
MS-Clustering algorithm (49). Since the LC-MS/MS data are more suitable for molecular-feature annota-
tion, we use MS-Clustering as the molecular-feature extraction method when analyzing the AGP and
HUMAN-CF data sets.

We also construct a set of decoy molecular features, DecoyMolecules (Fig. 1b). These decoy
molecules are used to estimate the FDR. The set DecoyMolecules is created as follows: for every feature
X�Molecules, we construct a decoy feature Xd, with SamplesXd

being a randomly chosen subset of
Samples with size |SamplesX|.

(iii) To perform the association test, we then search for pairwise associations between Molecules and
Microbes (Fig. 1c). More specifically, we look for pairs (X, A) consisting of a molecular feature X and a
microbial feature A that have a statistically significant correlation in their patterns of occurrence.

FIG 9 Benchmarking MS-Clustering and Optimus (binarized abundance with thresholds 10, 102, . . ., 106)
with Fisher’s exact test association. Data on the x axis represent false discovery rates estimated by the
Benjamini-Hochberg procedure. Data on the y axis represent the numbers of metabolite-microbe associ-
ations discovered.

Cao et al.

July/August 2019 Volume 4 Issue 4 e00387-19 msystems.asm.org 12

https://msystems.asm.org


Given two features X and A, to detect whether X and A are cooccurring, we consider the null
hypothesis that the events “X is present in a sample” and “A is present in a sample” are independent. A
statistically significant correlation in the patterns of occurrence of X and A is detected if the P value of
Fisher’s exact test, denoted PValue(X, Y), is lower than the selected threshold PThreshold, and the null
hypothesis is rejected.

While there are other techniques for computing the associations between the molecular and
microbial features, including Pearson’s correlation, Spearman’s correlation, and mutual information
criterion, in this section, we focus on the Fisher’s exact test method.

For the multiple-hypothesis testing, we compute the FDR using the target-decoy approach (TDA)
(50). We first search for the associations between DecoyMolecules and Microbes and then estimate the
FDR as |DecoyAssociations| ⁄ |RealAssociations|, where DecoyAssociations and RealAssociations are the
sets of association pairs found in decoy and target data sets. We also use the Benjamini-Hochberg (BH)
procedure for estimating the FDR.

(iv) To build the associations network, we further construct a bipartite network where the vertices are
the molecular and microbial features and there is an edge between two vertices if the corresponding
features are associated (Fig. 1d).

(v) We also report the associations between the molecular features and the groups of related
microbial features by assigning molecular features to the clades in the phylogenetic tree that are
potentially responsible for their production/biotransformation (Fig. 1e). Note that here, assignment of a
molecule to a phylogenetic clade does not necessarily mean that the molecule is produced by those
species. For example, those species might play a role in biotransformation of the molecule.

Given a phylogenetic tree T and a molecular feature X, we first mark all the microbial features that
are positively correlated to X and count the number of marked features in every clade. Then, we select
the minimal clade that has at least P percent (P � 80) of features marked. If the selected clade is a proper
subset of the whole tree, we assign X to this clade. We perform the steps described for every molecular
feature, and for each clade, we report the set of molecular features that are assigned to it.

Deduplication of molecular features. Feature extraction methods usually report redundant fea-
tures, i.e., each single molecule is reported as multiple features with similar m/z values. Such features are
called “duplicates.” The process of finding all groups of duplicate features and merging them into unique
features is called “deduplication.” We apply deduplication to remove the redundancy in the molecular
features.

We consider a pair of molecular features to be duplicates if they have similar m/z values and a
statistically significant correlation in their patterns of occurrence. Then, we build a graph in which
molecular features are nodes and every putative pair of duplicates is connected by an edge. The
connected components of the resulting graph are the groups of duplicate features. For the i-th group
DuplicatesGroupi, a new consensus feature Yi is constructed with the m/z being the average m/z of all
the features in DuplicatesGroupi, and SamplesYi

is defined as the union

�
X�DuplicatesGroupi

SamplesX.

Benchmarking. Molecular-feature extraction consists of identification and quantification of the
peaks across multiple LC-MS runs and is a fundamental step in proteomics and metabolomics. Although
many tools for molecular-feature extraction have been proposed, it is not clear which one is more
accurate. Moreover, it is not clear how to adjust the parameters in various feature extraction methods.

Here, we describe an approach to compare the various feature extraction methods in the
microbiome-wide correlation studies. Given a set of microbial features and several feature extraction
methods with various sets of molecular features, we apply the pairwise association pipeline to these sets
to identify the method and the parameter settings that result in the highest number of pairs of
cooccurring features discovered at a certain FDR level. To avoid bias toward methods that report higher
numbers of molecular features, we also compare the numbers of discovered microbial features in these
pairs. The FDR is estimated by the target-decoy approach (TDA) and the Benjamini-Hochberg procedure.
Four different association tests are benchmarked, including Fisher’s exact test, Pearson’s correlation test,
Spearman’s rank correlation test, and the mutual information criterion.

Data availability. The association networks computer code is available on GitHub at https://github
.com/mohimanilab/AssociationNetworks.
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