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How to design an optimal sensor network 
for the unfolded protein response

ABSTRACT  Cellular protein homeostasis requires continuous monitoring of stress in the en-
doplasmic reticulum (ER). Stress-detection networks control protein homeostasis by mitigat-
ing the deleterious effects of protein accumulation, such as aggregation and misfolding, with 
precise modulation of chaperone production. Here, we develop a coarse model of the un-
folded protein response in yeast and use multi-objective optimization to determine which 
sensing and activation strategies optimally balance the trade-off between unfolded protein 
accumulation and chaperone production. By comparing a stress-sensing mechanism that re-
sponds directly to the level of unfolded protein in the ER to a mechanism that is negatively 
regulated by unbound chaperones, we show that chaperone-mediated sensors are more 
efficient than sensors that detect unfolded proteins directly. This results from the chaperone-
mediated sensor having separate thresholds for activation and deactivation. Finally, we dem-
onstrate that a sensor responsive to both unfolded protein and unbound chaperone does not 
further optimize homeostatic control. Our results suggest a strategy for designing stress 
sensors and may explain why BiP-mitigated ER stress-sensing networks have evolved.

INTRODUCTION
The unfolded protein response (UPR) is a multifaceted cellular re-
sponse to excess unfolded or misfolded proteins within the endo-
plasmic reticulum (ER) (Liu et al., 2003; Schröder and Kaufman, 
2005), a state referred to as ER stress. For moderate stress levels, 
the cellular response aims to restore protein homeostasis to the ER 
by up-regulating quality-control enzymes and chaperones, altering 
ER size and shape, and attenuating translation (Harding et al., 
2002). When these responses fail to mitigate stress, the cell initi-
ates apoptosis. Overloading and malfunction of the UPR are as-
sociated with many diseases (Kaufman, 2002; Wang and Kaufman, 
2012), including diabetes (Scheuner and Kaufman, 2008; Eizirik 

and Cnop, 2010), cancer (Vandewynckel et al., 2013), and neuro-
degenerative diseases (Scheper and Hoozemans, 2015; Hetz and 
Saxena, 2017).

A critical aspect of the UPR is the mechanism through which 
stress in the ER is detected and transduced to the nucleus. In the 
mammalian UPR, three transmembrane proteins, Ire1 (inositol-
requiring enzyme 1), PERK (protein kinase RNA-like ER kinase), and 
ATF6 (activating transcription factor 6) direct the response through 
three different pathways (Ron and Walter, 2007; Gardner et al., 
2013). Ire1 up-regulates ER-localized chaperones, including the 
most prevalent ER protein BiP (Kar2 in yeast), and proteins involved 
in membrane remolding and ER-associated degradation by promot-
ing the splicing of X-box binding protein 1 (XBP-1, Hac1 in yeast), a 
potent transcription factor. PERK phosphorylates the translation ini-
tiation factor eIF2α, which leads to an overall reduction in mRNA 
translation, and up-regulates the transcription factor ATF4, which 
promotes downstream UPR genes, including Chop, a transcription 
factor gene controlling apoptosis. While both Ire1 and PERK signal 
through similar mechanisms based on the activation of kinase do-
mains in the cytoplasmic regions, ATF6 signaling is initiated by 
transport of ATF6 to the Golgi, where it is processed by site-1 and 
site-2 proteases. The processed amino terminus then diffuses to the 
nucleus, where it in regulates several UPR target genes, many of 
which overlap with those controlled by XBP-1. While mammalian 
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FIGURE 1:  UPR model schematic. (A) Schematic overview of the UPR model. Protein production 
in the ER lumen is modeled as a chaperone-assisted folding process that returns unfolded 
proteins to the folding pathway (F), which are removed from the system. The basal flux of 
unfolded proteins into the ER, VU, is augmented in the case of stress by an additional V DU  flux. 
The pulsatile stress (top, right box) lasts for duration tp. Upon increased accumulation of 
unfolded protein in the ER, the UPR (top, left box) is activated, up-regulating the influx of 
chaperone into the ER to mitigate the increased folding load. Specific stress-sensing models are 
shown in B–D. (B) UPR activation model that responds directly to the concentration of unfolded 
protein in the ER lumen in a piecewise-linear manner with slope proportional to m, and 
activation threshold umin. (C) Chaperone-mediated sensor model that is activated when the 
concentration of free chaperone decreases below a threshold value cF ,max. (D) The logic circuit 
for the AND-switch, which combines the unfolded protein sensor and the free-chaperone 
sensor.

cells have three interacting signaling pathways associated with the 
UPR, yeast possesses only the Ire1 pathway (Ron and Walter, 2007; 
Gardner et al., 2013).

As the downstream responses of the various pathways have be-
come clearer, significant questions regarding the sensory mecha-
nisms of Ire1, PERK, and ATF6 within the ER lumen have been raised. 
For Ire1 and PERK, early evidence suggested that the chaperone BiP 
might negatively regulate the activation of the sensory molecules 
(Kimata et al., 2003). However, a mechanism involving only BiP was 
shown to be insufficient, because the UPR is inducible in cells with 
modified Ire1 and PERK that are incapable of binding BiP (Kimata 
et al., 2004). This led to the hypothesis that the activation of sensory 
proteins by unfolded protein ligands is buffered by BiP (Kimata et al., 
2004, 2007; Pincus et al., 2010). Further support for this hypothesis 
comes from structural similarities between Ire1 luminal domain di-
mers and major histocompatibility complexes, which both show a 
favorable groove for direct peptide binding (Credle et al., 2005). 
Additional studies have provided evidence of unfolded protein inter-
action with Ire1 and PERK in yeast (Gardner and Walter, 2011), and 
more recently with human Ire1 (Karagöz et al., 2017). Other evidence 
suggests that BiP binding to Ire1 and PERK may be allosterically 
regulated by unfolded proteins (Carrara et al., 2015), providing an 
alternative mechanism of activation. Because evidence suggests that 
Ire1 and PERK bind a set of proteins that overlap with, but are distinct 
from, those bound by BiP (Karagöz et al., 2017), it seems possible 
that both of these mechanism are realized in vivo.

While the molecular details of the activation mechanism have yet 
to be fully resolved, one fact is clear: stress sensing is quite complex. 
Our aim in this work is to better understand why such a complex 
system might be beneficial for stress detection, and thereby provide 

insight into the evolutionary forces guiding 
stress-sensor design. Specifically, we ask, 
How do phenotypic features of a sensory 
network affect the trade-off between accu-
mulation of unfolded proteins and meta-
bolically efficient chaperone production in 
response to stress? We start from the naïve 
perspective that the simplest way to detect 
stress would be to directly count the num-
ber of unfolded proteins within the ER. Us-
ing a coarse-grained model of the UPR 
based on direct sensing of unfolded pro-
teins, we determine the optimal shape of 
response functions for acute and chronic 
stress conditions. Next, following experi-
mental evidence that chaperones inhibit 
stress-sensor activation, we determine the 
optimal response function for acute and 
chronic stress when sensor activation is neg-
atively regulated by freely available chaper-
one. Comparing the optimal performance 
of sensory systems that directly measure 
unfolded protein concentration with those 
that respond instead to available chaper-
one, we show that indirectly measuring 
stress through free-chaperone concentra-
tion leads to a more efficient chaperone use 
in mitigating stress. Finally, we consider 
whether further benefits can be obtained by 
combining both sensing modalities, as is 
observed experimentally.

MODEL
Model description
To model the UPR (Figure 1), we develop a course model in which 
we consider only two species explicitly: free unfolded client pro-
teins, U, and the total number of a generic chaperone present in the 
ER, CT. Descriptions of the UPR at a similar level of detail have been 
previously used to investigate the benefits of translational regula-
tion (Axelsen and Sneppen, 2004; Trusina et al., 2008). CT encom-
passes both free chaperone, CF, and chaperone forming a folding 
complex with client proteins, C U⋅ , such that C C C UT F= + ⋅ . The 
unfolded proteins represent those proteins in the ER with a signifi-
cant number of exposed hydrophobic residues, and hence are 
highly active and aggregation prone. The chaperones mediate this 
activity by restoring the proteins to the folding pathway. Proteins 
returned to this pathway are assumed to fold without incident 
and are secreted from the ER. The governing-delay differential 
equations for the reactive unfolded protein and total chaperone 
levels are

U V
k C U
K U V D H t t k U1 ( )U

T

UC
U p D

cat� = − + + − −



 −

�
(1)

� ( )= + −τC V G k C1T C X D T, �
(2)

In Eq. 1, the first term, VU, represents the basal flux of unfolded 
proteins into the ER. The second term, k C U K U/T UCcat( ) ( )+ , de-
scribes the catalytic activity of the chaperone on the protein. The 

third term V D H t t1U p( )− −



 represents a state of stress, which 

we model as a square pulse of increased flux starting at t 0= , 
where the pulse height is D times the basal flux, H is the Heaviside 
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function, and t p is the pulse duration. The final term, k UD , captures 
the decrease in unfolded protein present in the ER due to dilution 
and degradation, with kD being the inverse half-life of a protein in 
the ER. Similarly, in Eq. 2, VC  is the basal influx of chaperone, and 
the dilution and degradation of chaperone is described by the 
final term. GX ,τ  represents the response function for the feedback 
response of the UPR. The subscript X  denotes the specific model 
for UPR activation as described in the section Stress-sensing mech-
anisms, and the subscript τ indicates that the response depends 
on the state of the system at a previous time t tUPR− .

A detailed description of the model derivation and assumptions 
is available in the Supplemental Material. The parameterization of 
the model is constrained by experimental results from the literature 
and is presented in Table 1.

To facilitate analysis, we nondimensionalize the model by choos-
ing the degradation time kD

1−  to be a characteristic timescale and 
V k/C D to be a characteristic concentration. This leads to a normal-
ized form of the model:

� = ν −
α
β + + ν − − τ



 −u

c u
u D H t u1 ( )T

p
�

(3)

� = + −τc G c1T X T, �
(4)

In addition to the normalized times for the pulse duration 
τ = t kp p D and UPR response time τ = t kUPR UPR D, we have introduced 
three dimensionless parameters:

V k
k
k

K k
V/ , ,U D

D

UC D

C

catν = α = β =
�

(5)

where ν is the dimensionless influx rate of unfolded protein into the 
ER, α is the dimensionless catalytic constant for chaperone-assisted 
folding, and β is the dimensionless Km for the chaperone–unfolded 
protein interaction.

Stress-sensing mechanisms
In yeast, the level of stress in the ER is sensed by the transmembrane 
protein Ire1, which then facilitates the splicing of the transcription 
factor Hac1. Hac1 up-regulates the transcription of Kar2, among 
other genes, increasing the translation of the ER chaperone Kar2 

(BiP). We capture this process through a phenomenological model 
governing the level of activation of Ire1. Because there is a finite 
amount of time required for splicing, transcription, and translation, 
the increased flux of chaperone depends on the level of activity of 
Ire1 a time UPRτ  before. We incorporate this lag time as a time delay 
on the state variables u and cT in the response function and denote 

u u t UPR

def
τ( )= −τ  and c c tT T UPR,

def
τ( )= −τ . We consider three differ-

ent response functions, each representing a different stress-sensing 
mechanism.

Unfolded protein sensor
In the first mechanism, activation is directly related to the concentra-
tion of unfolded protein in the ER (Figure 1B). In this case, the activa-
tion function, Gu,τ , is

G
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where G0 the maximal gain, umin is the level of unfolded protein for 
which the UPR first activates, and m is the slope of the response func-
tion. The inverse of m can be interpreted as the width of the active 
range of the sensor. The response function resembles common sig-
moidal responses found in biology but has the advantage of having 
the same steady state for any parameterization of the response func-
tion so long as the steady state is below the activation threshold. We 
refer to this mechanism as the “U-switch” mechanism.

Chaperone sensor
The second mechanism we consider is one in which activation of the 
UPR is inhibited by free chaperones in the ER (Figure 1C). In this 
case, the activation function, Gc ,τ , is
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(7)

Parameter Value Units Source

kcat 8.15 10 4× − s 1− Twenty-minute ER residence time (Braakman and Hebert, 2013)

KUC 1.1 104× Vmol ER
1× − Estimated dissociation constant between BiP and CH1  

(Carrara et al., 2015)a

VU 200 mol s 1× − In proposed range for protein flux into ER (Vincent et al., 2014)

VC 60 mol s 1× − Corresponds with steady-state chaperone level of 3.3 × 105 molecules 
(Ghaemmaghami et al., 2003)b

kD 1.85 10 4× − s 1− Estimated half-life of chaperone in the ER (Sherman, 2002)c

G0 5 − Estimated based on fold-change of Kar2 mRNA levels  
(Kawahara et al., 1997)

tUPR 9 102× s Estimated response time of UPR chaperone production  
(Kawahara et al., 1997)

aAssuming ER volume, = µVER 2.15 m, and that KUC is approximately equal to the dissociation constant of BiP and a client unfolded protein.
bEstimated copy number of Kar2 (BiP) in Saccharomyces cerevisiae.
cApproximated as the doubling time of yeast.

TABLE 1:  Model parameters.
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where cF ,τ  is the concentration of free chaperone at time t UPRτ− , 
which is given by

c c u
u1F T, ,= − β +





τ τ

τ
τ �

(8)

(see the Supplemental Material for a detailed derivation). cF ,max is 
the threshold concentration of free chaperone above which there 
is no activation, and m is the slope of the response. We refer to this 
mechanism as the “CF-switch” mechanism.

Unfolded protein-AND-chaperone sensor
The final mechanism consists of a combination of the previous two 
mechanisms such that both the unfolded protein–sensing function 
and the chaperone-sensing function must be active, that is, u con-
centration must be high and cF  concentrations low, for the UPR to 
respond (Figure 1D). The activation function for this case, GAND,τ, is

G G GAND u c, , ,=τ τ τ �
(9)

We refer to this mechanism as the “AND-switch” mechanism, as it 
becomes a logical AND function in the case that the unfolded pro-
tein and chaperone sensors become discrete on–off switches.

Fitness measures and Pareto optimization
It is often the case that the fitness of a phenotype is a function of 
several independent quantities. While the UPR influences cellular 
fitness in a wide-ranging set of interactions and functions that re-
main to be fully understood, we choose to focus on two measures 
of fitness that are central to UPR function: 1) the amount of excess 
unfolded protein present in the ER while the cell is under stress 
and 2) the total excess production of chaperone in response to an 
impulse of stress. The first measures how effectively the UPR is 
able to mitigate the negative effects of high concentrations of 
highly reactive protein species (such as aggregation and misfold-
ing) in the ER. The second measures the metabolic cost associated 
with rapidly reducing stress through chaperone production. When 
dealing with multiple fitness functions, one option is to choose a 
weighting for each and use the weighted sum of the individual fit-
ness functions as a scalar measure of overall fitness. However, this 
often requires an ad hoc choice of weights, making the results 
somewhat subjective. An alternative approach is to use Pareto op-
timization, which seeks to determine Pareto-efficient solutions in 
fitness space. The set of Pareto-efficient solutions, also called the 
Pareto front, is the set of points in fitness space for which any im-
provement in one fitness measure can only be achieved by a de-
cline in another fitness measure. Any specific weighting scheme in 
a scalar weighted–sum fitness measure corresponds to a point on 
the Pareto front. This technique has been used to probe pheno-
type space distributions in general (Savir et al., 2010; Shoval et al., 
2012) and has been applied to several biological problems in par-
ticular, including gene regulatory networks (Warmflash et al., 2012) 
and homeostatic control (Szekely et al., 2013).

The fitness landscape guiding the evolution of the cellular stress 
response very likely has many competing factors, such as the re-
sponse time or noise reduction, in addition to the accumulation of 
unfolded proteins in the ER lumen and the production of mitigating 
chaperones. Here, we focus only on the trade-off between unfolded 
protein concentration and chaperone production, as these are two 
fundamental features of homeostatic UPR control. We note that this 
trade-off is only one of many possible guiding principles in stress-
sensor design. The function measuring the cost of excess unfolded 
protein accumulation in the ER is given by

∫µ = u T u u dt1 max{ , }U
ss

T
ss0

�

(10)

where T  is the duration of the simulation, u umax , ss{ } is the maxi-
mum between the unfolded protein level and the steady-state un-
folded protein concentration at each time, and the prefactor to the 
integral is a normalization constant. Note that we seek to minimize 
a cost function. The corresponding fitness function would be the 
negative of the cost function and is maximized. µU measures the 
time average of the excess unfolded protein in the ER, normalized 
by the steady-state unfolded protein concentration. The cost func-
tion for chaperone production is computed by

∫ ( )µ = + τT G dt1 1C X
T

,0
�

(11)

µC gives the time average of the chaperone production rate. To-
gether, the measures ( )µ µ,U C  form the two-dimensional fitness 
space for the UPR.

In the case of the U-switch and CF-switch, the Pareto fronts 
are computed using a brute-force method by calculating the objec-
tive functions over a 100-by-100 grid of logarithmically spaced 
points in the ranges m 0.1,1000[ ]∈ , u u u0.01 ,1000ss ssmin ∈  , and 

c c c0.001 ,0.999F F ss F ss,max , ,∈  . We found that using a brute-force 
method provides efficient coverage of the extreme points on the 
Pareto front. For the AND-switch, in which the number of indepen-
dent parameters is four as opposed to two, the Pareto front is calcu-
lated using the nondominated sorting algorithm II (Deb et al., 2002) 
as implemented in the Python software platypus (Hadka, 2015).

RESULTS
Any effective stress-sensing network must be sensitive to the con-
centration of unfolded proteins in the ER lumen. However, the effi-
ciency with which a sensor controls the UPR will depend on the time 
course of the stress. With this in mind, we consider the response of 
sensory networks to two types of characteristic stress time courses: 
1) a sustained chronic stress, in which the system adjusts to a new 
steady state at a larger-than-usual protein influx, and 2) acute 
stresses of varying amplitude and duration, in which the on and off 
dynamics of the UPR become important. For each stress type, we 
determine the set of Pareto-optimal sensor designs for the unfolded 
protein sensor and the free-chaperone sensor and compare their 
features and efficiency. Finally, we compare the U-switch and 
CF-switch sensor models individually with the combined AND-
switch model. Results from the response of these three sensing 
strategies to different stresses provide insights into the potential 
evolutionary benefits of sensor network design.

Optimal design of a sensor for chronic stress
We initially consider a cell subjected to a sustained pulse of in-
creased unfolded protein translocation rate into the ER. The stimu-
lus, which we call chronic stress, is a step increase of influx rate that 
continues indefinitely, allowing the system to fully acclimate to the 
stressed state. For this stress signal, we have computed the Pareto-
optimal parameterizations of both the unfolded protein–sensing 
and the free chaperone–sensing mechanisms (Figure 2A). In the 
case of chronic stress, both objective functions are determined by 
the new steady state reached by the UPR-activated system. Both 
mechanisms can reach the same set of steady states, and hence 
have the same Pareto fronts. Additionally, for each mechanism, the 
switching function that produces a steady state is not unique. In fact, 
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many combinations of slope and threshold will lead to the same 
steady state in response to chronic stress, as shown schematically in 
Figure 2A (insets). This can be readily seen by considering two-
switch parameterization u m,min,1 1)(  and u m,min,2 1α )( , in which the 
slope of the second response function is related to the slope m1 
through a linear scaling α. In the linear regime of the response, the 
steady-state chaperone and unfolded protein levels, cT

* and u * are 
related through the equations

c m G u u

m G u u

( ) 1

( ) 1

T
*

1 0
*

min,1

1 0
*

min,2

= − +

= α − +
�

(12)

which leads to the linear relationship between umin,1 and umin,2 in 
terms of α

u u u1 1
min,2

*
min,1= − α





 +

�
(13)

Hence, infinitely many combinations of u m,min( ) will lead to the 
same steady state and the same efficiency in dealing with a specific 
state of chronic stress. The same is true for the chaperone-based 
sensor.

However, the sensitivity of the response to changes in stress 
and the damping of oscillations depend on the particular param-
eterization of the switching function. As the response becomes 
steeper, Figure 2B shows that the mean level of unfolded protein 
changes less in response to the increases in influx. However, this 
comes at the cost of oscillations. Thus, while tighter control over 
the mean value of protein concentration can be achieved with a 
more abrupt response, a more graded response allows the system 
to adjust to a range of different levels of chronic stress without 
oscillations.

Efficient sensor design for acute stress
In the case of chronic stress, the quality of a response depended on 
the steady-state behavior of the stressed system. The dynamics of the 
system were not important, except in regard to oscillations in systems 
with steep responses. In contrast, for shorter stress events in which a 
new steady state may not be reached, the dynamics of the UPR are 
essential in determining the efficiency of the response. To investigate 
this, we consider the response of the system to stress pulses of 
different shape. Owing to the nonlinear coupling and delays, 
analytical solutions are either unavailable or uninformative for the 
transient pulse response. Hence, we numerically determine the 
Pareto fronts for each mechanism across a range of pulse shapes. 
Figure 3, A–E, shows Pareto fronts for a set of pulses in which the 
total protein influx is conserved (i.e., D constantpτ = ), and the ampli
tude and duration of the pulse is modulated. For small-amplitude, 
long-duration pulses, the unfolded protein-based switch is slightly 
more efficient when excess unfolded protein accumulation is the pri-
mary cost. However, the magnitude of the difference between the 
two mechanisms is small relative to the difference seen for other 
pulses. Similarly, for very short pulses of larger amplitude, the two 
mechanisms are essentially equivalent. However, for intermediate 
pulse shapes, the chaperone-based switch can be substantially more 
efficient. To quantify this, we divide the area under the Pareto front of 
the CF-switch by the area under the U-switch Pareto front

∫
∫

∆ =
µ µ

µ µ

d

dP
U
C

C

U
U

C �

(14)

where µU
U is µU of the unfolded protein–based mechanism and µU

C  is 
µU of the chaperone-based mechanism and the integrals are com-
puted over the range of the µC on the Pareto fronts. When 1P∆ > , 
the chaperone-based mechanism provides a more efficient re-
sponse across parameterizations, while the unfolded protein–based 

FIGURE 2:  Pareto front for chronic stress response. (A) The Pareto front (blue stars) for a sustained stress, where the 
system adapts to an increased stress level. The insets provide representative activation functions for the point on the 
Pareto front marked by a red triangle for the U-switch (top inset) and CF -switch (bottom inset). (B) The steady-state 
unfolded protein level as a function of influx rates. The black lines show the steady states of the system when there is no 
UPR activation (left) and full UPR activation (right). The solid and dashed sections of the lines correspond to stable and 
unstable fixed points, respectively. The blue lines show the analytically determined fixed points for intermediate 
activation of the UPR. The shaded regions show the range of oscillations of numerically simulated solutions. The 
numbers in the top center of each panel correspond to the activation functions shown as insets in A.
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mechanism is more efficient when 1P∆ < . We note that the ability of 
this metric to quantify the degree to which one mechanism is supe-
rior to another depends on the Pareto fronts not crossing. Observa-
tion of the calculated Pareto fronts indicates that, in the small range 
where the Pareto fronts do cross, the CF-switch is superior when the 
more dominant cost is the mitigation of stress (see Figure 3, A and 
B). Figure 3F shows P∆  for the cases τ =D 1p . There is a large range 
of intermediate pulses for which the chaperone-based switch is 
significantly more efficient for any choice of parameterization.

The added efficiency of the CF-switch can be understood by 
examining the phase-plane trajectories of each mechanism 
(Figure 4B). The projection of the unfolded protein sensor thresh-
old into the c uT −  plane is a horizontal line, while the free-
chaperone sensor threshold projects onto a line with a positive 
slope (see the Supplemental Material for derivation). Whereas the 
horizontal threshold of the unfolded protein sensor threshold 
means that the UPR will turn on and off at identical levels of stress, 
the slope of the free-chaperone sensor means that the on and off 
thresholds are no longer symmetric with regard to stress. This im-
parts three advantages to the free chaperone–sensing system. 
First, it allows for earlier activation when a stress arises, thereby 
reducing the maximum concentration of unfolded protein that oc-
curs during the stress event (shown as a heat map on the Pareto 
fronts in Figure 4A). Additionally, the gradient of the slope with 
respect to unfolded protein concentration is maximal at the onset 
of stress for the CF-switch, allowing an initially strong response 
(see heat map in Figure 4C). Finally, the system is able to deacti-
vate the response sooner when the level of stress begins to 

subside, thereby preventing the excess production of unneeded 
chaperone, as seen in the corresponding time courses shown in 
Figure 4C.

While the cost function µU measures the integrated excess pro-
tein accumulation with the ER over the time course of the stress, the 
maximal level of unfolded protein may also be an important physi-
ological measure of fitness. In Figure 4A, the Pareto fronts for each 
mechanism are colored corresponding to the peak unfolded protein 
concentrations experienced during the stress pulse. For the same 
amount of excess chaperone production, the chaperone-based sen-
sor leads to both less integrated excess unfolded protein and lower 
peak unfolded protein for nearly the entire Pareto front, except 
where the two mechanisms provide equivalent responses.

Logical AND-switch sensor combining chaperone and 
unfolded protein concentrations
Experimental evidence supports a model for UPR activation that re-
lies on both the dissociation of BiP from the sensory protein and the 
binding of an unfolded protein to sensor oligomers (Oikawa et al., 
2007; Pincus et al., 2010; Karagöz et al., 2017). To investigate how a 
sensor integrating both the concentration of unfolded protein and 
the concentration of free chaperone (which serves as an indirect 
measure of chaperone-sensor binding), we combine the models for 
the U-switch with the CF-switch by multiplying the two activation 
functions (see Eq. 9) to form the AND-switch (shown in Figure 1D). 
The AND-switch is zero everywhere that either the U-switch or the 
CF-switch are zero and fully activated only when both individual 
switches are also fully activated. In this way, as the two slope 

FIGURE 3:  Pareto front for acute pulse. (A–E) The Pareto fronts corresponding to the U-switch sensor (blue circles) and 
the CF-switch sensor (red squares) for different pulse shapes. The total excess protein in each pulse is 1, with the pulse 
height and duration changing. (F) The normalized area between the Pareto fronts of each mechanism as a function of 
pulse amplitude (with total pulse influx conserved). The black dashed line delineates the pulse shapes for which the 
U-switch is superior (left) from those for which the CF -switch is superior (right).
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parameters, mu and mc, become large, the AND-switch approxi-
mates a logical AND gate for the two input signals.

Figure 5 shows a comparison between the Pareto sets for the 
AND-switch and the two individual switching functions for a pulse 
with amplitude D 1.0=  and duration τ = 0.5p . At low values of µC 
on the Pareto fonts, the AND-switch coincides with the U-switch, 
while at higher values of µC on the Pareto front, the AND-switch 
and the CF-switch coincide. For all cases, the AND-switch aligns 
with the better of the U-switch and the CF-switch, but never outper-
forms them. This suggests that, when the trade-off between chap-
erone production and unfolded protein buildup favors greater 
chaperone production, the optimal sensing strategy is to monitor 
the free chaperone, as demonstrated by the CF-switch results. In 
this case, the unfolded protein concentration does not directly con-
trol UPR activation, although it may still influence the system in 
ways not considered here, such as stabilizing the signal or reducing 
noise. When the trade-off places a premium on chaperone effi-

ciency (low µC), the Pareto front more closely follows that of the 
U-switch than the CF-switch. However, this effect is only present for 
pulses in which there is a portion of the Pareto front for which the 
U-switch is superior, which occur only for relatively small-amplitude 
pulses (Figure 3).

The preference for the AND-switch to coincide with either the 
U- or CF-switch can be understood by considering the large m limit 
at which both the U-switch and CF-switch become approximately 
binary. Then, the fully active region of the UPR in phase space is 
where u umin>  and c cF F ,max< . Three scenarios are then possible for 
the control of activation (shown schematically in Figure 6), each of 
which depends on where the two activation thresholds intersect in 
the phase plane. First, if the intersection occurs at a value of cT that 
is less than the steady state, then both the activation and deactiva-
tion thresholds will be determined by the cF condition. In the sec-
ond case, if the intersection occurs at a cT that is greater than the 
steady-state chaperone concentration (because no change in total 

FIGURE 4:  Comparison of Pareto fronts for U-switch and CF -switch. (A) The Pareto fronts for the UPR activated by the 
level of unfolded protein directly (circles) and by the level of free chaperone (squares). The chaperone-sensing system 
performs more efficiently than the unfolded protein–sensing system in all cases. The coloring of the markers 
corresponds to the maximum unfolded protein concentration reached during the stress event. (B) The time courses for 
unfolded protein (top) and total chaperone (bottom) during the stress event for the two Pareto-optimal models 
indicated by the arrows (and green triangles) in A. (C) The phase-plane trajectories (black curves) for the same two 
parameterizations in B. The background coloring indicates the activation level for the UPR in each model. Owing to the 
slanted activation threshold of the CF -switch, the UPR deactivates at a higher level than the U-switch. Parameter values 
for the stress pulses are: D 2.15= , 0.46pτ = .
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FIGURE 5:  Comparison of Pareto fronts for AND-switch, U-switch, and CF -switch. (A) The 
Pareto fronts for the U-switch, CF-switch, and the AND-switch. The AND-switch coincides with 
the better of either the U-switch or the CF -switch in all cases, but does not outperform the 
individual mechanisms. (B, C) The phase-plane trajectories and activation levels for sets of points 
on the Pareto fronts for which the AND-switch coincides with the U-switch (downward-pointing 
triangles in panel A) and the CF -switch (upward-pointing triangles in panel A). The left-most 
panels are for the U-switch, the center panels are for the CF-switch, and the right-most panels 
are for the AND-switch. The pulse parameters are D 1.0= , 0.5pτ = .

chaperone occurs until after the UPR is activated), but less than the 
maximal value reached during the stress event, the activation 
threshold will be determined by umin, and the deactivation threshold 
will be determined by cF ,max. In the third case, if the intersection is 
located at a cT value greater than the maximal level encountered by 
the system, then the control of both activation and deactivation de-
pends only on umin. The first and third scenarios correspond to the 
CF-switch and U-switch, respectively, while the second scenario 

used both conditions of the AND-switch’s 
logic to separately control the thresholds for 
turning the UPR on and off. However, under 
the conditions shown in Figure 5, the opti-
mal AND-switch always is of the type de-
scribed in the first case. Yet, even though 
the activation threshold is set by the CF- 
switch, the slope of the response allows the 
activation surface (heat map in Figure 5B, 
right panel) to closely mimic that of the U- 
switch (left panel).

Taken as a whole, these results suggest 
that a sensing mechanism that incorporates 
both chaperone sequestration and direct un-
folded protein binding does not improve the 
efficiency of the feedback response beyond 
what can be achieved by either mechanism 
individually. Therefore, optimization of the 
trade-off between chaperone production 
and stress mitigation can rationalize the ob-
servation of a chaperone-based sensor, as 
discussed in the preceding section, but not 
the combination of this mechanism with di-
rect unfolded protein activation, suggesting 
that the combined mechanism observed in 
both yeast and higher eukaryotes serves an-
other purpose.

DISCUSSION
Only with the appropriate design can a 
sensor network for the UPR efficiently regu-
late protein homeostasis in the cell. We 
developed a minimal model of the UPR 
that incorporates the stress of increased 
protein influx or increased protein misfold-
ing within the ER, the role of folding chap-
erones in mitigating that stress, and 
the sensory network that controls the mag-
nitude and timing of the transcriptional 
feedback. This model was then used in a 
genetic multi-objective optimization algo-
rithm to determine the Pareto-optimal set 
of signal-transducing functions mapping 
the stress levels in the ER to response levels 
of chaperone transcription. Pareto optimi-
zation provides a useful structure for the 
analysis of regulatory mechanisms within 
the cell that must strike a balance between 
a few (or many) competing measures of fit-
ness. In particular, it removes the subjectiv-
ity often required when choosing weights 
for different fitness functions to generate a 
single scalar fitness variable. Instead, calcu-
lation of the Pareto front allows for a clear 

understanding of the trade-offs constraining the fitness space of a 
phenotype.

In this work, we have applied this technique to the problem of 
maintaining protein homeostasis in the ER through the activation 
(and deactivation) of the UPR. Optimality was assessed with regard 
to two metrics: 1) the integrated level of unfolded protein over the 
course of the stressing event and 2) the excess production of chap-
erone over the course of the stress.
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What makes a good sensor network?
Analysis of the model provided insight into desirable traits for 
stress-sensing networks. First, for chronic stress, in which the sys-
tem has time to reach a new steady state (or limit cycle), the steep-
ness of the activation function has two opposing effects: a greater 
slope suppresses oscillations of the feedback, but at the cost of 
looser overall control of the unfolded protein level across the op-
erational range of the homeostat. Because experiments of UPR 
activation show nonoscillatory, dose-dependent responses to 
stress (Pincus et al., 2010), it seems as though a more graded 
response that suppresses oscillations and allows for stable inter-
mediate UPR levels has been selected.

Second, the model helped to identify a benefit of sensing stress 
through the concentration of free chaperone, as opposed to the 
concentration of unfolded proteins directly. A BiP-mediated activa-
tion was initially proposed for Ire1-based stress sensing due to the 
clear connection between BiP-Ire1 coimmunoprecipitation and sup-
pression of the UPR with BiP overexpression (Dorner et al., 1992; 
Bertolotti et al., 2000; Okamura et al., 2000). The analysis presented 
here provides a possible reason that a BiP-based mechanism would 
evolve. Sensing the level of free chaperone can both provide a 
sharper response during increasing stress and increase the deactiva-
tion threshold as the system returns to basal functioning. Hence, it 
provides both faster on and off responses, allowing for a more effi-
cient use of excess chaperone. The notion that one function of BiP 
is to accelerate the deactivation of the UPR is supported by 

experiments: yeast with an Ire1 mutant that does not bind BiP exhib-
its delayed deactivation of the UPR upon the removal of stress com-
pared with wild type (Pincus et al., 2010). Interestingly, it has been 
demonstrated in yeast (Pincus et al., 2010), and more recently in 
human (Karagöz et al., 2017), that unfolded proteins within the ER 
lumen interact directly with Ire1 and are essential for full UPR activa-
tion. It has been proposed that unfolded proteins act as a ligand for 
activating the UPR, while BiP plays the role of a buffer (Oikawa et al., 
2007; Pincus et al., 2010). Our analysis shows that the AND-switch 
logic requiring both inputs can decouple the threshold for activating 
the UPR from the point at which the UPR deactivates, but this does 
not enhance the efficiency of the response with regard to the trade-
off between chaperone production and stress mitigation. Hence, 
the combined sensory mechanism is likely the result of another 
factor such as noise reduction or ligand selectivity.

Effect of sensor mutations on signaling
Our model provides qualitative predictions regarding the impact 
mutations to Ire1 will have on the sensor activation and sensitivity to 
stress. An Ire1 mutant that does not bind BiP effectively increases 
cF ,max such that the CF-switch would always be active (Figure 6). In 
the case of the AND-switch, this means the activation and deactiva-
tion are both controlled by the unfolded protein threshold, umin. The 
early shutoff provided by the chaperone-sensing portion of the 
AND-switch is lost. In support of this, time-course experiments for 
UPR activation using an Ire1 mutant that does not bind BiP show an 
increased lag time between the removal of stress and deactivation of 
the UPR compared with wild-type Ire1 (Pincus et al., 2010). Similar to 
more detailed UPR models (Pincus et al., 2010), our minimal model 
predicts precisely this effect. Furthermore, our model shows that the 
origin of the BiP-mediated deactivation lies in the differing depen-
dence on unfolded protein concentration of the U-switch and CF
-switch. The fact that this has been experimentally observed in yeast 
lends credence to the idea that cells have evolved to take advantage 
of the enhanced efficiency of a BiP-mediated stress response.

Similarly, our model predicts that mutations causing a decrease 
in the affinity between Ire1 and unfolded proteins, effectively raising 
umin, could have one of two effects. If the mutation is severe enough 
to prevent the interaction altogether, the threshold for activation for 
the AND-switch would increase to an unsustainable level of stress, 
and the UPR would never activate. Alternatively, if the mutation 
raised umin by a smaller amount, but enough so that the intersection 
of the U threshold and CF threshold moved from either case 1 or 
case 2 to case 3 in Figure 6, then both activation and deactivation 
would be set by the unfolded protein concentration. In this case, we 
would again expect that the early shutoff provided by the BiP-Ire1 
interaction would be lost. Mutational experiments disrupting the 
proposed unfolded protein binding site on Ire1 have shown that the 
UPR is diminished for given drug-induced stress levels (Credle et al., 
2005), indicating that the affinity of Ire1–unfolded protein interac-
tion can be modulated. It would be interesting to see whether 
certain mutations also remove the BiP-controlled early shutoff by 
increasing the threshold of unfolded protein required for activation 
to a level that renders the Ire-BiP interaction irrelevant.

Other features can affect the fitness of stress signaling
While our model is far simpler than the many-faceted response of 
the true UPR, it captures essential aspects of the ER stress response 
and allows for clear analysis of a subset of the evolutionary con-
straints governing the sensing mechanism of Ire1. Our model also 
provides novel insight into the role played by the stress-detecting 
network in optimizing the UPR. Of course, there are several questions 

FIGURE 6:  Schematic depiction of AND-switch phase-plane 
geometry. In the binary-switch limit, the intersection of the activation 
thresholds for the U-switch (dashed blue line) and the CF -switch (solid 
blue lines) with the phase-plane trajectory of the system (solid black 
curve) mark the points at which the UPR activates and deactivates. 
The shaded regions above the umin line and to the left of the cF ,max  
lines demarcate the area of phase space for which the UPR is 
activated under the control of the AND-switch. Line 1 shows a case 
for which cF ,max  dictates both the on and off transitions for the UPR. 
In the case of line 2, the on transition is determined by umin, and the 
off transition is controlled by cF ,max . Finally, line 3 shows a case for 
which the on and off transitions are set by umin. The arrows labeled 

C∆  mutation and U∆  mutation show the predicted change to the 
activation thresholds for a mutant in which the interaction between 
chaperone and sensor is disrupted ( C∆ ) and a mutant in which the 
unfolded protein–sensor affinity is decreased ( U∆ ). We emphasize that 
this picture is schematic, and for any real system, the dynamics (black 
curve) will necessarily depend on the threshold values for the UPR.
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that require further inquiry. For one, we have only considered iso-
lated incidents of stress in this work. In reality, cells experience a 
dynamic continuum of different unfolded protein loads on the ER 
folding machinery. It remains to be established how switch design 
might be altered when the evolutionary driver is a distribution of 
protein fluxes into the ER. In this scenario, it is tempting to speculate 
that a graded response would be even more valuable, as it would 
allow for greater specificity in response over a range of stress levels. 
In a similar vein, the relatively small copy number of Ire1 molecules 
in the cell ( 200≈ ; Ghaemmaghami et al., 2003) implies that there will 
be significant noise in any signal transmitted from the ER lumen to 
the nucleus. Further work will examine how noise and information 
transmission effect fitness of stress signaling.

Finally, we note that the model presented here is not limited to 
describing the feedback of the UPR. It can readily be extended to 
any feedback control mechanism of enzymatic reactions in which 
either the substrate or enzyme act as a positive or negative regula-
tor of enzyme production.

Conclusions
In summary, we developed a minimal model of the UPR to under-
stand optimal design of the ER stress-sensor network. The most 
important results of our analysis are as follows: 1) A graded response 
will, in general, suppress oscillations in chronic stress conditions, at 
the expense of looser regulation of unfolded protein concentration 
in the ER. 2) Sensors whose activity is down-regulated by the amount 
of free chaperone can improve fitness by activating and deactivat-
ing at different levels of stress. 3) Integrating signals from free-
chaperone levels and unfolded proteins imbues the stress signaling 
network with an additional degree of freedom for tuning control of 
the UPR. However, this extra degree of freedom does not enhance 
the fitness of the controller with regard to the trade-off considered 
here. By unraveling the advantages gained by indirect regulation 
of the ER stress sensor, our approach helps in understanding 
homeostatic controllers in other biological contexts and can guide 
synthetic biology sensor design.

MATERIALS AND METHODS
Numerical solution of delay differential equations
To simulate Eqs. 3 and 4, we use the Python software pydelay, which 
implements the Bogacki-Shampine method to compute trajectories 
of systems of delay differential equations (Flunkert and Schoell, 
2009). Solutions to delay differential equations require the specifica-
tion of a time history for each variable for at least as long as the 
longest delay present in the system. Here, we use the steady state 
of the unfolded protein and chaperone levels for the time history, 
such that our perturbations due to stress are deviations from the 
steady functioning of the ER folding machinery. The steady states 
are found by setting Eqs. 3 and 4 equal to zero under the assump-
tion that the UPR is operating at a basal level below the threshold 
for activation, which leads to

=c 1T ss, �
(15)

u 1
2 4ss

2( )= ν − α − β + ν − α − β + νβ



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(16)

These equations are valid only so long as they are consistent 
with the assumption that the UPR is inactive at the steady state, that 
is, u uss min<  for the U-switch and c cF ss F, ,max>  for the CF-switch and 
both conditions for the AND-switch. This requirement places con-
straints on the values taken by umin and cF ,max for a given 
parameterization. For the optimization procedure described in 

Fitness measures and Pareto optimization, we ensure that the 
steady state for the baseline influx does not activate the UPR for all 
simulations. Additionally, if the slope of the activation function, m, 
for the CF-switch is small enough, the activation function can be less 
than G0 when c 0F = , effectively lowering the maximum possible 
response. To avoid this, we also ensure that both the CF- and AND-
switches can reach maximum activation for positive cF . If the ampli-
tude of the stress is small enough, the existing (steady-state) chap-
erone concentration is sufficient to maintain a new steady-state 
concentration of unfolded protein that is still below the activation 
threshold for the UPR (see the Supplemental Material). Conversely, 
for a fixed stress amplitude, D, a maximal value of the activation 
threshold can be determined, beyond which no response will occur. 
This provides a boundary constraint for the Pareto optimization pro-
cedure. Despite the simulations being started with a history at the 
steady state, numerical artifacts can occasionally lead to small fluc-
tuations at the onset of the simulations. To ensure that these do not 
interact with the prescribed perturbations we seek to analyze, each 
simulation is allowed to relax for a period of 30 UPRτ  before the pulse 
of stress is applied. Following the equilibration period, each model 
is simulated for time of 30p UPRτ τ+ . This allows all simulations, re-
gardless of pulse shape and response function parameterization to 
return to a steady state following the stress response.

Code availability
Python scripts used to simulate the model and calculate Pareto sets 
can be found at https://bitbucket.org/schnell-lab/upr_feedback_
control/src/master. All codes were run using Python, version 2.7.

ACKNOWLEDGMENTS
This work is partially supported by the University of Michigan 
Protein Folding Diseases Initiative and a pilot grant from the 
Michigan-Israel Partnership for Research and Education. W.S. is a 
fellow of the Michigan IRACDA program (National Institutes of 
Health grant K12 GM111725). Y.S. acknowledges the support of 
the American Federation for Aging Research and the Israeli 
Council for Higher Education. Y.S. is a David and Inez Myers Career 
Advancement Chair in Life Sciences fellow.

REFERENCES
Axelsen JB, Sneppen K (2004). Quantifying the benefits of translation regu-

lation in the unfolded protein response. Phys Biol 1, 159–165.
Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000). Dynamic 

interaction of BiP and ER stress transducers in the unfolded-protein 
response. Nat Cell Biol 2, 326–332.

Braakman I, Hebert DN (2013). Protein folding in the endoplasmic reticu-
lum. Cold Spring Harb Perspect Biol 5, a013201.

Carrara M, Prischi F, Nowak PR, Kopp MC, Ali MM (2015). Noncanonical 
binding of BiP ATPase domain to Ire1 and Perk is dissociated by un-
folded protein CH1 to initiate ER stress signaling. Elife 4, e03522.

Credle JJ, Finer-Moore JS, Papa FR, Stroud RM, Walter P (2005). On the 
mechanism of sensing unfolded protein in the endoplasmic reticulum. 
Proc Natl Acad Sci USA 102, 18773–18784.

Deb K, Pratap A, Agarwal S, Meyarivan T (2002). A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6, 
182–197.

Dorner AJ, Wasley LC, Kaufman RJ (1992). Overexpression of GRP78 
mitigates stress induction of glucose regulated proteins and blocks 
secretion of selective proteins in Chinese hamster ovary cells. EMBO J 
11, 1563–1571.

Eizirik DL, Cnop M (2010). ER stress in pancreatic β cells: the thin red line 
between adaptation and failure. Sci Signal 3, pe7.

Flunkert V, Schoell E (2009). Pydelay—a python tool for solving delay dif-
ferential equations. arXiv: 0911.1633 [nlin.CD].

Gardner BM, Pincus D, Gotthardt K, Gallagher CM, Walter P (2013). Endo-
plasmic reticulum stress sensing in the unfolded protein response. Cold 
Spring Harb Perspect Biol 5, a013169.



3062  |  W. Stroberg et al.	 Molecular Biology of the Cell

Gardner BM, Walter P (2011). Unfolded proteins are Ire1-activating ligands that 
directly induce the unfolded protein response. Science 333, 1891–1894.

Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A, Dephoure N, 
O’Shea EK, Weissman JS (2003). Global analysis of protein expression in 
yeast. Nature 425, 737–741.

Hadka D (2015). Platypus—multiobjective optimization in python. http://
platypus.readthedocs.io/en/latest/# (accessed November 30, 2017).

Harding HP, Calfon M, Urano F, Novoa I, Ron D (2002). Transcriptional and 
translational control in the mammalian unfolded protein response. Annu 
Rev Cell Dev Biol 18, 575–599.

Hetz C, Saxena S (2017). ER stress and the unfolded protein response in 
neurodegeneration. Nat Rev Neurol 13, 477–491.

Karagöz GE, Acosta-Alvear D, Nguyen HT, Lee CP, Chu F, Walter P (2017). 
An unfolded protein-induced conformational switch activates mamma-
lian IRE1. Elife 6, e30700.

Kaufman RJ (2002). Orchestrating the unfolded protein response in health 
and disease. J Clin Invest 110, 1389–1398.

Kawahara T, Yanagi H, Yura T, Mori K (1997). Endoplasmic reticulum 
stress-induced mRNA splicing permits synthesis of transcription factor 
Hac1p/Ern4p that activates the unfolded protein response. Mol Biol Cell 
8, 1845–1862.

Kimata Y, Ishiwata-Kimata Y, Ito T, Hirata A, Suzuki T, Oikawa D, Takeuchi M, 
Kohno K (2007). Two regulatory steps of ER-stress sensor Ire1 involving 
its cluster formation and interaction with unfolded proteins. J Cell Biol 
179, 75–86.

Kimata Y, Kimata YI, Shimizu Y, Abe H, Farcasanu IC, Takeuchi M, Rose MD, 
Kohno K (2003). Genetic evidence for a role of BiP/Kar2 that regulates 
Ire1 in response to accumulation of unfolded proteins. Mol Biol Cell 14, 
2559–2569.

Kimata Y, Oikawa D, Shimizu Y, Ishiwata-Kimata Y, Kohno K (2004). A role for 
BiP as an adjustor for the endoplasmic reticulum stress-sensing protein 
Ire1. J Cell Biol 167, 445–456.

Liu CY, Xu Z, Kaufman RJ (2003). Structure and intermolecular interactions 
of the luminal dimerization domain of human IRE1α. J Biol Chem 278, 
17680–17687.

Oikawa D, Kimata Y, Kohno K (2007). Self-association and BiP dissociation 
are not sufficient for activation of the ER stress sensor Ire1. J Cell Sci 
120, 1681–1688.

Okamura K, Kimata Y, Higashio H, Tsuru A, Kohno K (2000). Dissociation of 
Kar2p/BiP from an ER sensory molecule, Ire1p, triggers the unfolded 
protein response in yeast. Biochem Biophys Res Commun 279, 445–450.

Pincus D, Chevalier MW, Aragón T, Anken Ean, Vidal SE, El-Samad H, 
Walter P (2010). BiP binding to the ER-stress sensor Ire1 tunes the 
homeostatic behavior of the unfolded protein response. PLoS Biol 8, 
e1000415.

Ron D, Walter P (2007). Signal integration in the endoplasmic reticulum 
unfolded protein response. Nat Rev Mol Cell Biol 8, 519–529.

Savir Y, Noor E, Milo R, Tlusty T (2010). Cross-species analysis traces adapta-
tion of Rubisco toward optimality in a low-dimensional landscape. Proc 
Natl Acad Sci USA 107, 3475–3480.

Scheper W, Hoozemans JJM (2015). The unfolded protein response in 
neurodegenerative diseases: a neuropathological perspective. Acta 
Neuropathol. 130, 315–331.

Scheuner D, Kaufman RJ (2008). The unfolded protein response: a pathway 
that links insulin demand with beta-cell failure and diabetes. Endocr Rev 
29, 317–333.

Schröder M, Kaufman RJ (2005). The mammalian unfolded protein 
response. Annu Rev Biochem 74, 739–789.

Sherman F (2002). Guide to Yeast Genetics and Molecular and Cell Biology, 
Part B, Cambridge, MA: Academic.

Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, Dekel 
E, Kavanagh K, Alon U (2012). Evolutionary trade-offs, Pareto 
optimality, and the geometry of phenotype space. Science 336, 
1157–1160.

Szekely P, Sheftel H, Mayo A, Alon U (2013). Evolutionary tradeoffs between 
economy and effectiveness in biological homeostasis systems. PLoS 
Comput Biol 9, e1003163.

Trusina A, Papa FR, Tang C (2008). Rationalizing translation attenuation in 
the network architecture of the unfolded protein response. Proc Natl 
Acad Sci USA 105, 20280–20285.

Vandewynckel Y-P, Laukens D, Geerts A, Bogaerts E, Paridaens A, 
Verhelst X, Janssens S, Heindryckx F, Van Vlierberghe H (2013). The 
paradox of the unfolded protein response in cancer. Anticancer Res 
33, 4683–4694.

Vincent M, Whidden M, Schnell S (2014). Surveying the floodgates: estimat-
ing protein flux into the endoplasmic reticulum lumen in Saccharomyces 
cerevisiae. Front Physiol 5, 444.

Wang S, Kaufman RJ (2012). The impact of the unfolded protein response 
on human disease. J Cell Biol 197, 857–867.

Warmflash A, Francois P, Siggia ED (2012). Pareto evolution of gene 
networks: an algorithm to optimize multiple fitness objectives. Phys Biol 
9, 056001.




