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Abstract
The connectedness of species in a trophic web has long been a key structural charac-
teristic for both theoreticians and empiricists in their understanding of community 
stability. In the past decades, there has been a shift from focussing on determining the 
number of interactions to taking into account their relative strengths. The question is: 
How do the strengths of the interactions determine the stability of a community? 
Recently, a metric has been proposed which compares the stability of observed com-
munities in terms of the strength of three- and two-link feedback loops (cycles of 
interaction strengths). However, it has also been suggested that we do not need to go 
beyond the pairwise structure of interactions to capture stability. Here, we directly 
compare the performance of the feedback and pairwise metrics. Using observed food-
web structures, we show that the pairwise metric does not work as a comparator of 
stability and is many orders of magnitude away from the actual stability values. We 
argue that metrics based on pairwise-strength information cannot capture the com-
plex organization of strong and weak links in a community, which is essential for sys-
tem stability.
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1  | INTRODUCTION

One of the central challenges for ecologists is to understand the re-
lation between the structure and stability of ecological communities. 
The traditional idea that the multitude of interactions in a community 
contribute to its stability (Elton, 1927; MacArthur, 1955; Odum, 1971) 
was challenged when ecologists started using models of dynamical 
systems, and it was shown that communities where species were 
more connected were less likely to be stable (Gardner & Asby, 1970; 
May, 1972). However, in the past decades it has become increasingly 
clear that the focus on the number of interactions is too limited and 
that the patterning of strong and weak interactions in communities 
is crucial to its stability (Banašek-Richter, Cattin, & Bersier, 2004; 
Banašek-Richter et al., 2009; Bersier, Banašek-Richter, & Cattin, 2002; 

Brose, Williams, & Martinez, 2006; Drossel, McKane, & Quince, 2004; 
Emmerson & Raffaelli, 2004; Gross, Rudolf, Levin, & Dieckmann, 
2009; James et al., 2015; Kondoh, 2003; McCann, Hastings, & Huxel, 
1998; Mitchell & Neutel, 2012; Montoya, Woodward, Emmerson, & 
Solé, 2009; Neutel, Heesterbeek, & de Ruiter, 2002; Neutel & Thorne, 
2014; Neutel et al., 2007; Novak et al., 2011; Paine, 1988, 1992; Polis 
& Strong, 1996; Rooney, McCann, Gellner, & Moore, 2006; de Ruiter, 
Neutel, & Moore, 1995; Ulanowicz, Holt, & Barfield, 2014; Wootton, 
1994; Wootton & Emmerson, 2005; Yodzis, 1981). May’s random ma-
trix theorem (May, 1972), which distinguishes the number of species, 
their connectance (number of possible interactions that are realized), 
and average interaction strength, is not able to explain local stability 
of community models with interaction strengths (sensu May, 1972) 
parameterized from observation (Jacquet et al., 2016; James et al., 
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2015; Neutel & Thorne, 2014; Neutel et al., 2002, 2007). Various 
studies have suggested alternative connectance measures which in-
corporate the strength of interactions (Banašek-Richter et al., 2009; 
Bersier et al., 2002; Ulanowicz, 1997; Van Altena, Hemerik, & de 
Ruiter, 2016). Furthermore, it has been argued that in order to under-
stand community stability, we need to look at the feedback structure 
formed by the interactions (Levins, 1974) and quantify critical feed-
back loops (Neutel et al., 2002). Feedback loops are cycles of causal 
effects (Levins, 1974). In particular, the strength of three-link loops 
has been shown to be key to stability (Mitchell & Neutel, 2012; Neutel 
et al., 2007), and recently, a metric has been proposed that compares 
the stability of observed trophic networks in terms of the strength of 
the three-link relative to two-link feedback loops in a system (Neutel 
& Thorne, 2014). The two-link loops in trophic networks represent 
the product of the effect of a predator on a prey (negative link) and 
the reciprocal effect of this prey on its predator (positive link). The 
three-link loops are loops in the smallest omnivorous structures [also 
called intraguild predation (Holt & Huxel, 2007), between a predator, 
an intermediate prey–predator, and the shared prey of this interme-
diate and its predator]. These structures form positive (one positive 
and two negative links) and negative (one negative and two positive 
links) three-link loops, quantified as products of the three effects 
(Levins, 1974). The understanding in terms of key feedback loops has 
revealed that it is not network complexity (the number of species or 
their connectance) which puts constraints on system stability, but the 
energy-flow and biomass distribution in the trophic pyramid (Neutel 
et al., 2002). Specifically, it has shown how increased predation pres-
sure over trophic levels leads to less stability (Neutel & Thorne, 2014; 
Neutel et al., 2007).

However, it has also been suggested that in order to capture 
the stability of empirical trophic networks, one does not need to go 
beyond the pairwise interactions (Smith, Sander, Barabás, & Allesina, 
2015; Tang, Pawar, & Allesina, 2014). Commenting on Neutel and 
Thorne (2014), Smith et al. (2015) argue that the metric proposed by 
Tang et al. (2014), which is based on random matrix theory (Allesina 
& Tang, 2012; May, 1972) and uses pairwise information of the inter-
action strengths, in the form of the correlation between effects of 
predators on prey and vice versa, will be a better estimator of stability. 
They imply that the match between the feedback metric and system 
stability found by Neutel and Thorne (2014) depends on the particular 
data set, obtained using a scaling procedure to make the interaction 
strengths dimensionless.

Here, we compare the ability of these two recently proposed met-
rics to explain local stability of the observed food-web structures stud-
ied by Neutel and Thorne (2014). First, we take the original, observed 
interaction strengths (Jacobian matrix elements, sensu May (1972); 
see also Berlow et al., 2004, table 1) and apply the feedback metric 
and the pairwise metric to these data. We then apply both metrics 
to the scaled data set used by Neutel and Thorne (2014). The scaling 
was introduced by Neutel and Thorne (2014) to translate the observed 
structure in the intraspecific interaction strengths (diagonal matrix ele-
ments) into the off-diagonal structure, in order to analyze the feed-
back structure without losing the intraspecific information. Next, we 

parameterize the same observed food-web structures with synthetic 
interaction strengths, first with an asymmetry within predator–prey 
pairs of interaction strengths, and then with completely random (sym-
metric) strengths, to investigate to what extent the results depended 
on the empirical parameterizations. Finally, we perform a disturbance 
experiment with the empirical data, in the example of Yodzis (1981), 
where we disrupt the empirical patterning of interaction strengths 
by randomly swapping pairs of predator–prey interaction strengths 
in the matrices. We do this to show to what extent the metrics are 
able to explain the impact of the empirical organization of interaction 
strengths on community stability.

2  | METHODS

2.1 | Empirical food webs

Our local stability analysis was performed on Jacobian community 
matrix models (linearizations of systems of differential equations) of 
the same food-web structures as were used for the feedback analy-
sis in Neutel and Thorne (2014). These were 23 observed food webs 
(Neutel & Thorne, 2014, table S3): two Antarctic food webs with 
interaction strengths quantified from independent flux observations 
(Neutel & Thorne, 2014, 2016b) and 21 soil food webs with interac-
tion strengths quantified from inferred fluxes based on time-averaged 
biomass observations (de Ruiter et al., 1995; de Ruiter, Neutel and 
Moore 2016; Neutel et al., 2007, 2016). Our analysis was on the 23 
trophic networks (+/− structure, consumer–resource, or predator–
prey interactions) in these food webs, obtained by removing the detri-
tus row and column from the matrices.

2.2 | Underlying dynamics of the populations

The fluxes between the populations Xi (with X referring to its biomass) 
of each population i = 1 ··· n in a food web were described by: 

where fi(Xh) is the functional response in a consumer, ri is the intrinsic 
growth rate, mi is the intrinsic loss rate (we assume net intrinsic growth 
for basal species and ri = 0 for nonbasal species), cii is a proportionality 
constant referring to intraspecific competition, and ehi is a biomass 
conversion efficiency.

We assumed linear functional responses in this study (follow-
ing Neutel & Thorne, 2014). However, the community matrices with 
underlying linear functional responses can be easily translated into 
ones based on nonlinear responses, and the results are robust to these 
other types of functional response (see Neutel & Thorne, 2016a). 
Assuming linear functional responses, equation (1) becomes a Lotka–
Volterra-type equation with intraspecific competition terms (see, e.g., 
Pimm, 1982): 

(1)
dXi

dt
= riXi−miXi+

n∑

h=1

ehifi(Xh)Xi−

n∑

j=1

fj(Xi)Xj−ciiX
2
i
, i=1… n

(2)

dXi

dt
= riXi−miXi+

n∑

h=1

ehichiXhXi−

n∑

j=1

cijXiXj−ciiX
2
i
, i=1… .n
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2.3 | Parameterization of Jacobian 
community matrices

The interaction strengths between the populations are the elements 
of the Jacobian community matrix, a linearization of the system 
around the nontrivial equilibrium (where each species has a posi-
tive population density). Thus, they are the partial derivatives of the 
population growth equations (dimension per time) evaluated at equi-
librium (May, 1973). Using equation (2), the elements of the commu-
nity matrix Α are effects of predator j on prey i, �ij=−cijX

∗
i
 ; effects of 

prey h on consumer i, �ih=ehichiX
∗
i
; and intraspecific effects, �ii=−ciiX

∗
i
 

(because at equilibrium, ri−mi+
∑n

h=1
ehichiXh−

∑n

j=1
cijXj−ciiXi=0). 

Thus, the negative effects of predators on prey are the feeding rates 
of a predator on its prey divided by predator biomass, and the positive 
effects of prey on their predators are predator growth rates divided 
by prey biomass (Pimm, 1982; de Ruiter et al., 1995; Yodzis, 1989).

The interspecific interaction strengths of the Antarctic food webs 
were quantified from direct flux observations (Neutel & Thorne, 2014, 
2016b), and those of the 21 soil food webs were quantified from 
inferred fluxes based on time-averaged biomass observations (de 
Ruiter et al., 1995; de Ruiter et al. 2016; Neutel et al., 2007, 2016). 
The intraspecific interaction strengths (diagonal elements) were not 
obtained from directly observed fluxes, but the observations provided 
upper bounds. The rationale is as follows: For a given food web in 
equilibrium, total loss for each population equals total gain. Growth 
rates and predatory loss rates of each population were known; hence, 
nonpredatory loss rates were also known, because the systems were 
in equilibrium. This total nonpredatory loss rate consists of intrinsic 
death and intraspecific competition: diX∗

i
=miX

∗
i
+ciiX

∗2
i

 . The amount 
of intraspecific competition is hence contained within the energetic 
boundaries of the system 0≥ ciiX

∗
i
≥di . The upper bounds were used to 

quantify the diagonal elements of (un-normalized) community matrix 
Α: �ii=−ciiX

∗
i
=−di .

2.4 | Scaled interaction strengths

Following Neutel & Thorne, 2014; interaction strengths were scaled 
by dividing each row in community matrix Α by the absolute value 
of its respective diagonal element, �ij∕||�ii||, which resulted in time-
independent and dimensionless matrices Γ. This scaling procedure 
was introduced by Neutel and Thorne (2014) to translate the diagonal 
structure of the matrix into the off-diagonal structure, and obtain an 
eigenvalue which, for their observed food webs, was equivalent to a 
critical value of intraspecific competition for stability [specifically, it 
represents the proportion of total nonpredatory loss needed for sta-
bility; see Neutel et al. (2002)].

2.5 | Determination of stability

The diagonal elements of the Jacobian and scaled matrices were then 
set at zero, obtaining matrices Α0 and Γ0. System stability was deter-
mined as the largest real part of the eigenvalues of these matrices, λd. 

By definition, with all diagonal elements set at zero, then λd ≥ 0; that 
is, the systems need some level of self-damping in order to be stable, 
and −λd is the amount of self-damping needed for stability. In the case 
of the normalized matrix Γ0, λd has a biological meaning and indicates a 
tipping point. It represents a critical level of intraspecific competition 
of the populations as a proportion of the maximum possible intraspe-
cific competition (the upper bound of the diagonal elements) (Neutel 
& Thorne, 2014). In the case of the Jacobian matrix Α0, λd is related 
to the timescales of the systems and is not easily interpretable bio-
logically given the different intraspecific interaction strengths of the 
populations. It is the opposite of a system’s resilience. The inverse of 
λd of Α0 is the time with which the system moves away from the equi-
librium, after a very small disturbance.

2.6 | Synthetic parameterization of 
community matrices

For the synthetic parameterization of the community matrices, the 
empirical values of the nonzero off-diagonal elements were first 
replaced by values randomly drawn from uniform distributions (−10, 
0) for effects of predators on prey and (0, 0.1) for effects of prey on 
predators (following Pimm & Lawton, 1978; see also Neutel & Thorne, 
2014). This procedure was then repeated without the asymmetry in 
size ranges, drawing values from uniform distributions (−1, 0) and (0, 
1) (following May, 1972; see also Neutel & Thorne, 2014).

2.7 | Pairwise disturbance experiment

To show the effect of the patterning of interaction strengths on stabil-
ity, we performed a disturbance experiment, following Yodzis (1981). 
For each empirical community matrix Α0, the pairs of nonzero off-
diagonal elements were randomly permuted. This preserved the sign 
structure and the pairwise structure of the interaction strengths of 
the original matrix.

2.8 | Feedback metric

The metric proposed by Neutel and Thorne (2014) expresses a ratio 

between three-link and two-link feedback: 3
√⌊

a3

a2

⌋
, where a2 and a3 are 

coefficients of the characteristic polynomial of the community matrix. 
In a matrix with zero-diagonal elements, the second coefficient, a2, 
represents the sum of all the two-link feedback loops (F2), resulting 
from the pairs of predator–prey interactions, which are by definition 
negative: In community matrix Α0, F2=

∑
�ij�ji (the same holds for nor-

malized matrix Γ0). The third coefficient, a3, in zero-diagonal matrices, 
represents the sum of all the three-link loops (F3), coming from the 
smallest omnivorous structures, each generating a positive and a coun-
teracting negative feedback loop: F3=

∑
(�ij�jk�ki+�ik�kj�ji) , where i is 

the bottom prey, j is the intermediate predator, and k is the omnivore. 
The sum of the positive and counteracting negative loop in each three-
link omnivorous structure is by definition positive, given the functional 
assumptions (Neutel & Thorne, 2014).
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2.9 | Pairwise metric

The metric proposed by Tang et al. (2014) quantifies the overall 
correlation between effects of predators on prey and vice versa: 
√
SV(1+�)−E, where S is the number of “species,” E is the mean of 

the off-diagonal elements of the community matrix, V is their variance, 
and ρ is the overall pairwise correlation between the elements of the 
community matrix (αij, αji)i≠j (Tang et al., 2014).

3  | RESULTS

We found a strong correlation between our feedback metric and sta-
bility for the 23 empirical food webs parameterized with the origi-
nal interaction strengths (observed Jacobian community matrices) 
(Fig. 1A). The pairwise metric showed no relation with food-web sta-
bility, neither for the original, nor for the scaled interaction strengths, 
and underestimated the stability by many orders of magnitude (Fig. 1B 
and D), while the feedback metric explained both data sets equally 
well (Fig. 1A and C).

When we parameterized the same interactions in these food webs 
with random-type values, imposing a simple asymmetry between 
negative and positive interaction strengths (Pimm & Lawton, 1978; 
see also Neutel & Thorne, 2014), both metrics showed a relation with 
food-web stability, but the feedback metric outperformed the pair-
wise metric (Fig. 2A and B). We then calculated system stability for 
different parameterizations (sampling from the two size distributions, 

as above) of the same food-web structure. Thus, we removed the 
effect of system size and connectance on stability. This made clear 
that the pairwise metric was not able to explain the relation between 
the structure and stability of a system, in contrast to the feedback 
metric (Fig. 2C and D).

Next, we repeated this procedure, using a symmetry between 
negative and positive interaction strengths (following May, 1972; 
see also Neutel & Thorne, 2014). For these random parameteriza-
tions drawn from symmetric intervals, the feedback metric did not 
show any relation with food-web stability, neither for the 23 webs, 
nor for different parameterizations of a single web structure (Fig. 3A 
and C), while the pairwise metric showed some correlation (Fig. 3B 
and D).

Finally, we analyzed the effect of the empirical organization of the 
interaction strength values on stability, by disturbing this organization 
through randomly permuting pairs of interaction strengths (following 
Yodzis, 1981). The feedback metric was unable to explain the result-
ing loss of organization in a satisfactory way, although it did show 
some correlation with stability, within a diversity of pattern (Fig. 4A). 
However, by definition the pairwise metric could not explain any dif-
ference in organization (Fig. 4B).

4  | DISCUSSION

The importance of the patterning of weak and strong interactions for 
the stability of ecological communities (McCann et al., 1998; Neutel 

F IGURE  1 Comparison of the 
performance of Neutel and Thorne’s 
feedback metric 3

√
||a3||∕||a2|| (Neutel & 

Thorne, 2014) with Tang et al.’s pairwise 
metric 

√
SV(1+�)−E (Tang et al., 2014) 

across ecosystems, for empirically 
parameterized community matrices. For an 
explanation of the metrics, see Methods. 
Stability (λd) of the Antarctic dry (closed 
circle) and wet (closed square) tundra 
ecosystems and 21 soil food webs (cross 
signs) (see Neutel & Thorne, 2014, table 
S3; de Ruiter, Neutel, & Moore, 2016; 
Neutel & Thorne, 2016b; Neutel et al., 
2016). (A, B) Original interaction strengths 
(elements of Jacobian community matrix 
Α0, with dimension t−1). (C, D) Scaled 
interaction strengths (elements of scaled 
community matrix Γ0, dimensionless). 
(A: N = 23, adjusted R2 = .87, p < 10−9; 
B: N = 23, R2 = −.02, p = .48; C: N = 23, 
R2 = .84, p < 10−9; D: N = 23, R2 = .004, 
p = .31.) Note that all diagonal elements 
were set at zero
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et al., 2002; Paine, 1988, 1992; Polis & Strong, 1996; de Ruiter et al., 
1995; Wootton, 1994; Yodzis, 1981) merits the question of how 
much of the organization of interaction strengths has to be taken into 
account to capture community stability. Smith et al. (2015) argue that 

the metric proposed by Tang et al. (2014), which quantifies pairwise 
connectedness, will provide a better estimate of food-web stability 
than the metric proposed by Neutel and Thorne (2014), which quanti-
fies three-link and two-link feedback loops and imply that we do not 

F IGURE  2 Comparison as in Fig. 1, for 
synthetic, asymmetric parameterizations of 
the interaction strengths. (A, B) Food-web 
structures as in Fig. 1, but with nonzero 
matrix element values randomly drawn 
from asymmetric intervals (−10, 0) and 
(0, 0.1) (following Pimm & Lawton, 1978), 
for 100 individual samplings of each of 
the 23 food webs. (C, D) As in (A) and 
(B), but on a single network, using the 
food-web structure of the Antarctic dry 
tundra ecosystem, from Neutel and Thorne 
(2014) (A: N = 2300, R2 = .76, p < 10−15; 
B: N = 2300, R2 = .30, p < 10−15; C: 
N = 100, R2 = .77, p < 10−15; D: N = 100, 
R2 = −.0026, p = .39)
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Neutel and Thorne (2014) (A: N = 2300, 
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need to go beyond the pairwise interaction strengths, to explain the 
stability of complex natural communities.

Our results show, however, that Tang et al.’s metric does not 
explain the stability of models parameterized with empirical data. 
For food-web structures in the size range for which empirical 
data are available, Neutel and Thorne’s feedback metric (Neutel & 
Thorne, 2014) is a good comparator of stability, whether the interac-
tion strengths are scaled, as analyzed by Neutel and Thorne (2014), 
or not. Furthermore, even for synthetic parameterizations with an 
asymmetry between effects of predators on prey and vice versa, the 
feedback metric is a better comparator and estimator of stability 
than the pairwise metric. This is remarkable, because the pairwise 
metric has been particularly aimed at dealing with this type of syn-
thetic parameterizations (Tang et al., 2014). Our application of both 
metrics to different parameterizations of a single food-web structure 
shows that the pairwise metric is not able to capture the structure 
of a system (Fig. 2C). The correlation between the pairwise metric 
and comparative stability of the different food-web structures is an 
artifact of the synthetic parameter values—the metric effectively 
measures system size. Furthermore, this comparison of different 
synthetic asymmetric parameterizations of a single web (Fig. 2C) 
also shows that Neutel and Thorne’s feedback metric cannot be 
approximated by a connectance-based analogue, such as suggested 
by Smith et al. (2015). Their approximation is a simplification of the 
feedback metric resulting from assumptions on random parameter 
values. It cannot, by definition, explain the differences in stability 
shown in Fig. 2C, because all these model samples share the same 
connectance.

Only parameterizations sampled randomly from symmetric inter-
vals for predator–prey and prey–predator effects are not captured by 
the feedback metric. This confirms the findings of Neutel and Thorne 
(2014), who show that it is the dominance of positive feedback in the 
three-link loops, which underlies the relation between the feedback 
metric and system stability. As they show, this dominance of positive 
feedback is brought about by the well-known asymmetry within pairs 

of predator–prey interaction strengths (see Pimm & Lawton, 1978 and 
de Ruiter et al., 1995).

When we performed a pairwise disturbance of the empirically 
parameterized food webs (following Yodzis, 1981), the feedback met-
ric, while showing some correlation within a diversity of pattern, was 
unable to explain the effects on stability in a satisfactory way, indicat-
ing that more understanding is needed. However, pairwise metrics do 
not provide an alternative, because they cannot capture the complex 
organization of strong and weak links in a trophic network. It is logi-
cally impossible for any pairwise metric (Allesina & Tang, 2012; May, 
1972; Tang et al., 2014) to explain the effect on stability of a pairwise 
disturbance experiment (Yodzis, 1981). For a better understanding of 
how organization affects stability, it may be necessary to look at the 
spectrum of strengths of three- and two-link loops, instead of just the 
total strength of three-link versus two-link loops (see Neutel & Thorne, 
2014; Neutel et al., 2002).

Quantifying the feedback structure of ecological networks is not 
only necessary to compare the stability of ecological systems, but also 
provides a way forward to understand the underlying assumptions 
on the functionality and adaptive strategies of populations (Neutel & 
Thorne, 2016a).

It should be emphasized that the empirical data on biomass and 
energy flow for each of the food webs in this study are of the highest 
quality available, and were obtained not with one specific method for 
all the webs, but with different methodologies (Neutel & Thorne, 2014). 
At present, such data only exist for systems in the size range presented 
here, of 10–30 trophic groups. There is a pressing need to obtain real-
istic, empirical, data for a wider and larger range of systems, to test 
the feedback metric and, if needed, make further improvements. This 
heuristic approach will prevent us from being wrong-footed by an arti-
ficial generality brought about by a random parameter space (Neutel & 
Thorne, 2014). It is already clear from the existing empirical evidence, 
however, that in order to capture the “organized complexity” of com-
munities which characterizes the functioning of real ecosystems, the 
only way forward is to take the step beyond pairwise interactions.

F IGURE  4 Stability (λd) after disruption of the empirical patterning of interaction strengths by random permutation of the nonzero matrix 
element pairs (�ij,�ji) of Α0 (following Yodzis, 1981), using the Jacobian matrix of the Antarctic dry tundra ecosystem (for stability of the intact 
pattern, see closed circle in Fig. 1A,B). (A) Feedback metric 3

√
|
|a3||∕||a2|| (Neutel & Thorne, 2014) (A: N = 105, R2 = .38, p < 10−15) and (B) the 

pairwise metric 
√
SV(1+�)−E (Tang et al., 2014). Note that in these randomly permuted webs, the topology, sign structure, and pairwise 

structure of the empirical food web stayed intact
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