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Abstract

Bladder cancer (BC) is one of the most common cancers worldwide with a high progression rate and poor prognosis. The Hippo signalling path-
way is a conserved pathway that plays a crucial role in cellular proliferation, differentiation and apoptosis. Furthermore, dysregulation and/or
malfunction of the Hippo pathway is common in various human tumours, including BC. In this review, an overview of the Hippo pathway in BC
and other cancers is presented. We focus on recent data regarding the Hippo pathway, its network and the regulation of the downstream co-
effectors YAP1/TAZ. The core components of the Hippo pathway, which induce BC stemness acquisition, metastasis and chemoresistance, will
be emphasized. Additional research on the Hippo pathway will advance our understanding of the mechanism of BC as well as the development
and progression of other cancers and may be exploited therapeutically.
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Introduction

BC is the fourth most commonly diagnosed cancer in males. The inci-
dence of BC is about 4 times higher in men than in women [1]. More
than 70% of patients who have BC are newly diagnosed with non-
muscle-invasive disease [2]. However, after undergoing transurethral

resection of the bladder tumour (TURBT) followed by intravesical
chemotherapy (22%) or biological therapy with bacillus Calmette-
Guerin (29%) [3], up to 50–70% of cases will experience relapse, and
approximately 10–20% will invade into the muscularis propria layer
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(T2 or greater) [2]. For cases with muscle-invasive disease, treatment
options are limited. Cystectomy and chemotherapy combined with
radiation are two common options; the long-term prognosis is poor,
however, with a 5-year survival rate of 47%. For all stages combined,
BC patients can expect survival rates of 77% at 5 years and 70% at
10 years [1]. High recurrence (range, 50–90%) [4, 5] and progres-
sion rates [2] are major obstacles to the treatment of BC. Identifying
new therapeutic targets of BC is essential to developing further effec-
tive treatment.

The targeting of signalling pathways for cancer treatment has
increased in the last decades. However, more therapeutic targets for
BC are needed [6]. The Hippo signalling pathway, which functions in
organ size control, stem cell pluripotency and regeneration [7], has
been found to be dysregulated in various human cancers [8–13]. Fur-
thermore, a set of studies have demonstrated the dysregulation of the
Hippo pathway in BC [14, 15]. This emergence of the Hippo pathway in
BC progression may aid in identifying new pharmaceutical targets for
BC management. In this review, we first discuss several studies on the
roles of the Hippo signalling pathway in embryonic development and
human tumours. Then, we detail the various mechanisms of the Hippo
pathway in human tumours and in bladder tumours in particular.

The Hippo pathway

Overview of the Hippo signalling pathway

The Hippo signalling pathway, also known as the MST1/2-WW45-
LATS1/2 signalling pathway, is an important regulator of tissue

homeostasis, cell growth and organ size [16, 17]. It was initially iden-
tified in the fruit fly Drosophila in the search for genes essential for
cell proliferation, organ growth and decreased apoptosis [18, 19]. A
specific set of kinases are its key components, including Warts (Wts),
Salvador (Sav) and Hippo (Hpo) [18, 20, 21]. These genes function
as tumour suppressors in Drosophila, wherein mutation of these
genes leads to dysregulation of cell proliferation and apoptosis
(Fig. 1) [22]. Furthermore, these key components of the signalling
pathway are highly conserved in most eukaryotes, from flies to mam-
mals. Deregulation of this pathway, especially mutation of its key
components, can activate several oncogenes in cancer cells in various
human cancers [8–12, 23].

The network of upstream signals of the Hippo
pathway

Little is known of the exact mechanisms of the Wts, Sav and Hpo
kinases, but cellular polarity may be involved, as these components
localize to adherent junctions of polarized epithelial cells [24]. Wts
mutations lead to dysregulated tissue proliferation [18, 25], whereas
Hpo and Sav determine the survival and apoptosis of cells [21, 26,
27]. This signalling cascade is conserved from flies to mammals,
resulting in a similar network in mammals, including two homo-
logues of Hpo (MST1/2), one homologue of Sav (SAV1), two homo-
logues of Wts (LATS1/2), and two homologues of Yki (YAP1 and its
paralog TAZ) [28]. Both YAP1 and TAZ are critical transcriptional co-
activators and downstream effectors of the pathway [29], Activation
and inactivation of the Hippo pathway depend on activation and inac-
tivation of the kinase cascade. First, RASSF1-A, a member of the

Fig. 1 The Hippo signalling pathway in Drosophila and mammals. (A) The Drosophila Hippo pathway. In Drosophila, when Yki is relieved from inhibi-
tion through phosphorylation-dependent or phosphorylation-independent mechanisms, its nuclear translocation then drives target gene expression

to regulate cellular proliferation and apoptosis. The phosphorylation mechanism depends on the core kinase cascade including Hpo, Wts, Sav and

Mats. (B) The mammalian Hippo pathway. In mammals, YAP1 and TAZ localize to the nucleus to interact with TEAD, driving target gene expression

to regulate cellular proliferation and apoptosis. After phosphorylation, MST1/2 in turn phosphorylates LATS1/2, facilitated by scaffold proteins SAV1
and MOB1. MOB1 also phosphorylates and activates LATS1/2. Activated LATS1/2 phosphorylate YAP1 and TAZ. YAP1 interacts with Mask1/2 to

form complex.
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RAS association domain family (RASSF), is involved in the translo-
cation of MST1 to mitochondria. After the stimulation of stress elic-
its K-RAS, RASSF1-A binds to MST1/2 and results in their activation
[30, 31]. Then, MST1 and MST2 form a complex together with
SAV1, facilitating the interaction with LATS1/2 [32]. This interaction
between MST1/2 and LATS1/2 depends on a sequential phosphory-
lation process. Through suppression of protein phosphatase 2A,
MST1/2 are dephosphorylated and stimulate LATS1/2 activation
[33–36]. Recently, MOB1 has been shown to play a role in this inac-
tivation [34]. In turn, LATS1/2 regulate the interaction between
YAP1/TAZ and some important transcriptional target partners, such
as the TEA domain-containing sequence-specific transcription fac-
tors SMAD and RUNX, by regulating the phosphorylation of YAP1
and TAZ. TAZ has been reported to bind to YAP1 [37], thereby,
exerting their functions on the transcription of various target genes
[38, 39]. After phosphorylation, YAP1 is retained in the cytosol in a
depressed state [38, 40, 41]. New research has demonstrated that
the multiple ankyrin repeats single KH domain (Mask) is required for
the transcriptional output of Yki in Drosophila and YAP1 in mam-
mals [42, 43]. Mask is conserved in mammals with two homo-
logues, Mask1 (also known as ANKHD1) and Mask2 (also known as
ANKRD17)[44, 45].The full activity of Yki or the YAP1/TEAD complex
is dependent on the expression of Mask or its mammalian homo-
logue, Mask1. After Mask1 knockdown, YAP1 target genes were
substantially suppressed although non-target genes were not
affected [42]. (Fig. 1)

Regulation of YAP1 and TAZ

In addition to the key components of the Hippo pathway, several
other intrinsic and extrinsic regulators of YAP1/TAZ have been
observed (Fig. 2).

Extrinsic regulators
Cell contact and morphology. Some environmental cues affect
YAP1/TAZ activity. For example, in epithelial cells, apical signalling
modulates YAP1/TAZ expression through the canonical Crumbs/
CRB-Hippo/MST-Warts/LATS kinase cascade. When cells differenti-
ate an apical membrane domain, YAP1/TAZ are phosphorylated
and inhibited. Although contact occurs between the cells’ extracel-
lular matrixes (ECMs) and basal membrane domains, these two
effectors are stimulated [46]. The stiffness or elasticity of the ECM
has a dramatic effect on F-actin bundles [47]. In Drosophila cells,
Yorkie activation is positively associated with F-actin expression
[48]. In mammalian cells, the maintenance of YAP1/TAZ activity
requires a stable role of F-actin contractility [49]. Recent research
found that cell morphology can regulate YAP1 nuclear localization.
Piezo1, a channel that mediates calcium currents, is crucial for
YAP1 nuclear localization through the regulation of cytoskeletal
tension [50].

Extrinsic stress signals. Considering that the most important role
of YAP1/TAZ is to promote cell proliferation and survival [51], a set of
extrinsic stress signals, such as endoplasmic reticulum stress, energy
stress and hypoxia, has been observed to regulate the Hippo signal
pathway. Carbohydrates are the main energy source for cell metabo-
lism. Deran et al. have observed that YAP1 and TAZ phosphorylation
is rapidly induced by energy stress caused by glucose deprivation
[52]. Lack of glucose stimulates AMPK activation, which affects the
interaction between TEAD and YAP1/TAZ [53]. In contrast to oxidative
stress, hypoxia seems to affect the interaction between LATS and
YAP1/TAZ. Hyperactivity of SIAH2 caused by hypoxia inhibits LATS in
a xenograft animal model [54].

G protein-coupled receptors (GPCRs). Extracellular molecules,
such as growth factors and hormones, have been hypothesized to

Fig. 2 Schematic overview of YAP1/TAZ

regulation and function in tumorigenesis.
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regulate the Hippo signalling pathway so as to control homeostasis.
Furthermore, it has been demonstrated that regulation of the Hippo
signalling pathway by GPCRs is indeed a common response of cells
to hormonal cues [55–58]. GPCRs, along with Rho GTPase and the
actin cytoskeleton, can promote or suppress Hippo signalling path-
way activity. Whether this results in positive or negative regulation
depends on the class of G protein involved. For instance, Ga12/13- and
Gaq/11-coupled GPCRs promote YAP1 and TAZ activity by regulating
the actions of Rho-GTPases, whereas, Gas-coupled GPCRs inactivate
YAP1 by increasing the activities of LATs [28, 59].

Intrinsic regulators
Despite these extrinsic regulators, intrinsic transcriptional regulators
and signalling pathways are still crucial mediators of the Hippo
pathway.

E proteins. E proteins are members of the basic helix-loop-helix
(bHLH) family that mediate cell proliferation, differentiation and com-
mitment in many tissues [60, 61]. After binding to the E-box
sequence (CANNTG), E proteins can inhibit ID protein expression.
Furthermore, either elevated expression of E proteins or loss of ID
proteins can promote Hippo signalling [62]. Previous studies have
demonstrated that the interaction between E and I proteins can affect
various transcriptional factors associated with the Hippo pathway,
such as SMAD, TEAD, PAX, HTH and TBX5. These regulators are
required for the phosphorylation of YAP1/TAZ and are involved in
reducing the activation of the Hippo pathway [39, 63–66].

Cell cycle. LATS1/2 are not only critical components of the Hippo
pathway, but they are also regarded as regulators of the cell cycle
(G1/S, G2/M and mitosis) [67]. Furthermore, the cell cycle can influ-
ence the activities of YAP1/TAZ. For instance, during the G2-M phase,
YAP1 and TAZ are phosphorylated at multiple sites by CDK1, which
increases cell migration and invasion ability [68].

Other signalling pathways. The Hippo signalling pathway is
involved in cross-talk with a number of other signalling pathways,
such as the Notch [69], transforming growth factor b (TGF-b) [70]
and Wnt/b-catenin pathways [71, 72]. Among these signalling path-
ways, most previous studies have focused on the interaction
between the Hippo signalling pathway and the Wnt/b-catenin sig-
nalling pathway (Wnt pathway) owing to their obvious roles in
tumorigenesis. The Wnt pathway plays critical roles in almost every
aspect of embryonic development as well as in homeostasis in vari-
ous adult tissues. Its germline mutations are associated with a set
of human cancers [73]. This cross-interaction was originally
reported in 2010 [37]. In the cytoplasm, both YAP1 and TAZ can
directly interact with b-catenin and suppress b-catenin nuclear
translocation [74], whereas in the nucleus, YAP1 can cooperate with
the Wnt pathway to enhance tumorigenicity[75, 76]. In the cyto-
plasm, TAZ interacts with CK1d/e and DVL and thereby inhibits the
WNT3a-induced phosphorylation of DVL2. Consequently, the Wnt/b-
catenin signalling pathway is inhibited. Meanwhile, the cytoplasmic
accumulation of TAZ can also interact with MST and LATS to inhibit
Wnt/b-catenin pathway-mediated reporter activity [77]. Furthermore,

an inhibitory role of the Hippo pathway on the Wnt/b-catenin path-
way in heart development has been demonstrated. Chromatin
immunoprecipitation (ChIP) assay results have shown that YAP1-
TEAD and b-catenin-TCF/LEF cooperatively regulate some target
genes, such as SOX2 and SNAIL2 in heart development [78]. In the
nucleus, previous studies have demonstrated that the tumorigenicity
of deregulated Wnt signalling is dependent on at least two distinct
transcriptional complexes: b-catenin-YAP1-TBX5 and b-catenin-TCF4
[76]. Furthermore, the co-localization of YAP and b-catenin in the
nucleus has been observed in several colorectal cancer cell lines
[75].

The Hippo pathway and its role in
cancers

Clinical correlation between the upstream Hippo
pathway and human cancers

Numerous retrospective analyses of tumour specimens have
demonstrated a significant association between aberrant expression
of Hippo pathway components and cancer clinical stages (Table 1).
For instance, MST1/2 and LATS1/2, the upstream kinases of the
Hippo pathway, function as tumour suppressors in multiple human
cancers [79]. In three different murine syngeneic tumour models
(B16, SCC7 and 4T1), knockout of LATS1/2 in tumour cells inhibits
proliferation. Mechanistically, LATS1/2-null tumour cells secrete
nucleic acid-rich extracellular vesicles, which induce a type I inter-
feron response via the Toll-like receptor MYD88/TRIF pathway, thus
improving tumour immunogenicity [80]. MST1/2 expression is
explicitly correlated with increased clinical stage in gastrointestinal
cancers [81–85]. Mask1/2 play a crucial role in various human can-
cers. Mask1 is critical in prostate cancer, myeloma and leukaemia
[86–88], whereas elevated Mask2 expression has been observed in
BC [89].

YAP1/TAZ are key co-effectors of the Hippo
pathway in human cancers

As the most important effectors, YAP1 and its closely related par-
alog TAZ act as oncogenes in various human cancers. Up-regula-
tion of YAP1 has been observed in gastric cancer, colorectal
cancer, squamous cell carcinoma (SCC), non-small cell lung cancer
(NSCLC), ovarian cancer, uveal melanoma, endometrial cancer,
hepatocellular cancer (HCC), pancreatic ductal adenocarcinoma,
cholangiocarcinoma, and head and neck cancer [9, 82, 84, 90–96].
Meanwhile, overexpression of TAZ is observed in HCC, retinoblas-
toma, gastric cancer, colon cancer, NSCLC, ovarian cancer,
endometrial cancer, osteosarcoma, glioma and oral cancer [84, 94,
97–106].

In liver cancer, several studies have demonstrated that elevated
expression of YAP1/TAZ is associated with higher pathological grades
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and poor clinical differentiation [97, 107]. In transgenic mice, YAP1
overexpression results in hepatomegaly and liver cancers similar to
human HCC [108]. By interacting with b-catenin, hydrodynamic trans-
fection of YAP1 promotes liver tumour development [109]. In line
with this, up-regulation of YAP1/TAZ in a normal human liver cell line,
MHIA, endows tumorigenic properties [110].

Among a database of breast cancer patients, a significant correla-
tion was observed between high pathological grade, metastatic pro-
clivity, carcinoma stemness and poor outcome [111–113]. Breast
cancer originates in the epithelial cells of the mammary gland, and
YAP1 can promote epithelial-mesenchymal transition (EMT) and pro-
liferation in breast cancer cell lines [114]. In a mouse model, YAP1/
TAZ cooperate with Her2, Polyoma-middle T and Wnt1 to induce
breast cancer development [115].

In NSCLC, significant correlations have been demonstrated
between up-regulation of YAP1/TAZ and malignant features (high his-
tological grade, late TNM stage and poor prognosis) [116, 117]. By
binding with OCT4 through its WW domain, YAP1 promotes SOX2
activity and thus leads to maintenance of tumour stemness [118].
Furthermore, after knockdown of the oncogene KRASG12D, non-meta-
static tumours in LAC mice display weaker YAP1/TAZ staining com-
pared with that in metastatic samples [119, 120].

In gastric cancer, deregulation of the Hippo signalling pathway is
significantly correlated with initiation, development and distant
metastasis of gastric cancer[84]. Elevated expression of YAP1 mRNA

and YAP1 protein levels both in the nucleus and the cytoplasm was
originally observed in high-grade or metastatic gastric cancer sam-
ples [121]. The up-regulation of YAP1 can promote RAF/MEK/ERK
pathway activities and thus enhance the expression of c-FOS in gas-
tric cancer cells [8]. Furthermore, RUNX2, a Runt box domain DNA-
binding transcription factor, interacts with YAP1 to inhibit p21 expres-
sion, increasing oncogenic properties [122]. Similarly, high expres-
sion of TAZ has been observed in human gastric cancer [123].
Following the disruption of the interaction between TAZ and TEADs,
the proliferation of gastric cells is inhibited both in vivo and in vitro
[124].

Elevated expression of YAP1 has been observed among cases in
four databases of colorectal cancer patients [125]. In line with this
finding, associations between YAP1/TAZ overexpression and poor
prognosis and drug resistance have also been reported [126]. Dereg-
ulation of the Wnt/b-catenin signalling pathway is commonly
observed in colorectal cancer, which is significantly correlated with
the Hippo pathway [127]. Among 36 colorectal cancer specimens, up
to 86% scored positively for YAP1 and b-catenin expression [75]. In
HCT 116 and advanced colorectal cell lines, activation of Wnt/b-cate-
nin is dependent on endonuclear YAP1 expression [75].

Above all, the key co-effectors YAP1/TAZ are responsible for vari-
ous key attributes of many different human cancers. YAP1/TAZ func-
tion in tumour cell proliferation, survival, metastasis and stemness
(Fig. 2).

Table 1 Dysregulated Hippo pathway components in human tumours

Hippo pathway
component

Cancer type Role in human tumours Reference

MST1/2 Gastric cancer Invasion, metastasis, higher clinical stage, and poorer
prognosis

[10, 79–85, 133]

Colorectal cancer

Hepatocellular cancer

Breast cancer

Gastric cancer

LATS1/2 Prostate cancer Proliferation, metastasis, increased clinical stage,
reduced overall survival, and recurrence-free survival

[79, 80, 82, 84, 130, 133]

Renal cancer

Non-small lung cancer

Colorectal cancer

Gastric cancer

Bladder cancer

Mask1/2 Prostate cancer Proliferation, migration [86–89]

Myeloma

Leukaemia

Bladder cancer
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Table 1. Continued

Hippo pathway
component

Cancer type Role in human tumours Reference

YAP1 Bladder cancer Proliferation, invasion, metastasis, higher clinical
stage, reduced overall survival, metastasis-free
survival, and chemotherapy resistance

[12, 14, 15, 89, 134, 136]

Gastric cancer [8, 84, 124, 132]

Colorectal cancer [75, 82, 125, 126]

Squamous cell carcinoma [116]

Non-small cell lung cancer [9, 92, 119]

Ovarian cancer [11, 85]

Uveal melanoma [93]

Endometrial cancer [94]

Hepatocellular cancer [69, 95, 107, 109, 110]

Pancreatic ductal adenocarcinoma [68, 96]

Cholangiocarcinoma [91]

Head and neck cancer [90]

Breast cancer [58, 115]

Malignant mesothelioma [70]

Prostate cancer [86]

Endometrial cancer [94]

Medulloblastomas [114]

Meningiomas [139]

TAZ Hepatocellular cancer Proliferation, invasion, metastasis, higher clinical
stage, shorter overall survival, disease recurrence,
poor prognosis and chemotherapy resistance

[97, 107]

Retinoblastoma [102]

Gastric cancer [84, 123]

Colon cancer [82, 101]

Oral cancer [98]

Ovarian cancer [104]

Endometrial cancer [94, 103]

Osteosarcoma [105]

Non-small cell lung cancer [100, 117, 119]

Breast cancer [40, 58, 111, 138]

Tongue squamous cell carcinoma [99]

lioma [106]

Bladder cancer [136]
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Deregulation of the Hippo pathway
and its role in bladder cancer

The Hippo pathway in urinary tract development

The most important step in urinary tract development is the move-
ment of the ureter from its initial branch point on the nephric duct
(ND) to its final insertion site in the cloaca (primitive bladder and ure-
thra) [128]. Proteins in the Hippo signalling pathway, especially YAP1
and TAZ, play an essential role in urinary tract development. After
silencing of YAP1 in the ND, most newborn mice die within 24 hrs
owing to bladder absence or kidney anomalies [129]. Furthermore,
YAP1 is essential in the progress of the ureter from ND insertion to
the bladder and the development of bladder. YAP1 deletion also
results in an abnormal junction between the ureter and bladder [129].
These studies highlight the crucial role of the Hippo pathway in uri-
nary tract development.

The role of the Hippo signalling pathway in
bladder cancer

Deregulation of the Hippo pathway is significantly correlated with
the initiation, development and metastasis of BC (Table 2) [14].
MST1/2 and LATS1, the most upstream proteins in the Hippo sig-
nalling pathway, act as tumour suppressors of human cancers.
Down-regulation of LATS1 and MST1/2 has been demonstrated in
human BC [130, 131]. LATS1 mRNA levels were remarkably low in
12 urinary BC specimens from Egyptian patients[130]. Another
tumour suppressor, Runt-related transcription factor 3 (RUNX3), is

also an conserved component of this signalling pathway [131,
132]. The interactions among RUNX3, MST1/2 and SAV1 are very
complicated. SAV1 initially promotes the interaction between
RUNX3 and MST2. In turn, MST2 re-enhances the activation of
SAV1 and RUNX3. Finally, activation of these three components
inhibits cell proliferation. After RUNX3 knockdown using siRNA,
MST1/2-mediated cell death was abolished [131, 133]. The TEAD-
YAP1 complex is crucial for YAP1 function in various cancers.
Research has demonstrated that RUNX3 abrogates the ability of
TEAD to bind DNA and thus deregulates TEAD-YAP activity [132].
Recently, a novel cofactor of the TEAD-YAP complex, named
Mask1/2, was identified. Elevated YAP1 expression is able to
enhance expression of the target genes (CTGF, cyr61,et al.) and
promote BC cell growth and migration, whereas Mask2 knockdown
suppresses these genes [89].

As the key downstream effector, YAP1 and its paralog TAZ also
play crucial roles in human BC. YAP1 mRNA and YAP1 protein levels
were first observed to be dramatically up-regulated in urothelial carci-
noma of the bladder, especially in high-grade and metastatic samples
[14]. Furthermore, this study also provided evidence that YAP1 can
act as an biomarker for BC because of the significant correlation
between elevated YAP1 expression and adverse patient survival.
Interestingly, another study observed that nuclear YAP1 and cytoplas-
mic pYAP1 levels are lower in BC tissues compared to those of nor-
mal urothelial tissues [134]. I have also explored the mechanism of
YAP1 in BC [15]. In my opinion, total YAP1 expression is up-regu-
lated in bladder tumours. After being phosphorylated by LATS, pYAP1
remains in the cytoplasm. Only unphosphorylated YAP1 translocates
into the nucleus and functions as an oncogene [135]. This can explain
differences in the expression of YAP1 and pYAP1 in the cytoplasms
and nuclei of carcinoma cells. The co-partner of YAP1, TAZ, is also
activated in BC. In BC, KLF5 acts as an oncogene that promotes cell

Table 2 Summary of clinical correlations between dysregulated Hippo pathway components and bladder cancer

Hippo pathway component Role in bladder cancer development References

MST1/2 MST1/2 and RUNX3 collaborate and mediate BC cell death [132–134]

RUNX3 Complicated interaction among MST1/2, RUNX3 and SAV1 deregulate
the YAP-TEAD activity and is crucial in BC cell proliferation
and apoptosis

LATS1 Remarkably low level in BC tissues [131]

Alterations of single base pairs in this gene are observed

Mask2 Mask 2 is required for YAP-induced BC cell growth and migration [89]

YAP1 Elevated YAP1 expression significantly associates with
poor clinicopathologic stage and adverse patient survival

[14, 15]

Further, YAP1 expression is inversely correlated with chemotherapy
sensitivity

[142]

TAZ TAZ together with YAP1 protect KLF5 from degradation in BC [137]

Knockdown of KLF5 induces BC cell apoptosis
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proliferation; YAP1/TAZ are capable of preventing KLF5 protein degra-
dation [136].

Previous studies have demonstrated that YAP1/TAZ play crucial
roles in cancer stem cells [137]. Indeed, carcinoma cells with acti-
vated YAP1/TAZ are resistant to chemotherapeutic drugs. In a set of
human tumours including breast cancer, meningiomas and lung can-
cer, YAP1/TAZ are capable of maintaining cancer cell stemness and
protecting carcinoma cells from chemotherapeutic drugs [116, 138–
140]. In BC, platinum-based chemotherapy is required for treatment
of muscle-invasive BC patients in the perioperative period. In urothe-
lial carcinoma patient-derived xenograft models, YAP1 expression is
inversely correlated with cisplatin sensitivity. Furthermore, in vitro
experiments found that DNA damage is not efficiently repaired in
YAP1 knock-down cells. Furthermore, in YAP1-silenced cells, a signif-
icant increase in cell death was observed after cisplatin treatment
[141]. A more thorough understanding of the mechanisms leading to
YAP1 activation during the acquisition of drug resistance would be
helpful in developing new treatment strategies.

Furthermore, a set of essential oncogenes in BC can be regulated
by the Hippo pathway. P53[142] and c-Myc[143] are significantly
associated with BC progression. YAP1 is also a cofactor of p73, a
member of the p53 tumour suppressor family [144]; upon DNA dam-
age, p73 interacts with YAP1 through its PPPY motif [145]. A recent
study revealed a unique positive auto-regulatory feedback loop under-
lying the interaction between YAP1 and c-Myc in liver cancer [146].
EMT has been identified as a crucial event in the pathogenesis of BC
[147] and is also mediated by YAP1 [148]. Recently, the long non-
coding RNA H19 (lncRNA H19) has been regarded as an important
biomarker in BC [149]. We have previously explored the correlation
between YAP1and H19 in BC [15].

Conclusions

The Hippo signalling pathway is an evolutionarily conserved regulator
of cell proliferation, apoptosis, organ growth and tissue homeostasis.
The function of the Hippo signalling pathway is regulated by a set of
intrinsic and extrinsic regulators and also involves cross-talk with
multiple other signalling pathways. Most components of the Hippo
pathway, especially the key downstream effectors YAP1/TAZ, act as
crucial regulators in various human cancers. In BC, deregulation of
the Hippo signalling pathway is correlated with clinicopathological
characteristics and prognoses. The Hippo signalling pathway has an
essential effect on the proliferation, metastasis and drug resistance of
BC. We therefore suggest that the Hippo signalling pathway could be
a potential source of functional biomarkers and new therapeutic tar-
gets in BC, as well as in many other cancers.

Future perspectives

Much more research needs to be done on various aspects of BC.
First, the Hippo signalling pathway, which has already received

much attention, demands greater investigation in the field of oncol-
ogy. Furthermore, the upstream components of the Hippo sig-
nalling pathway (other than YAP1/TAZ) in particular require further
research and may be important in tumour development. Second, in
addition to its effects on cell proliferation, metastasis and
chemotherapeutic drug resistance, the effects of the Hippo pathway
on lymphangiogenesis, autophagy, angiogenesis and the Warburg
effect in BC cells should also be defined. Third, the detailed mecha-
nisms or other factors that are involved in BC processes should be
explored further, even though some oncogenes and signalling path-
ways have already been confirmed to cooperate with the Hippo sig-
nalling pathway in BC progression, as multiple intrinsic and
extrinsic regulators can affect the activities of the Hippo pathway.
It is not clear why so many different factors join to activate the
same signalling pathway. A possible explanation is that there are
distinct molecular gatekeepers that must be bypassed. Some fac-
tors ensure the activity of entry-level pathway effectors, whereas
others inhibit their functions. Thus, different combinations of regu-
lators participate in regulating the signalling pathway in cancer pro-
gression. Furthermore, under some specific conditions, YAP1 may
switch from an oncogene to an anti-oncogene. The mechanisms of
YAP1 and phosphorylated YAP1 activity in the cytoplasm and
nucleus require further investigation. Finally, and most importantly,
the Hippo signalling pathway is involved in the development of
chemotherapeutic resistance. Specific blockers or antagonists that
specifically act on certain components of the Hippo signalling path-
way with few side effects should be developed to translate basic
research findings into clinical applications. The currently available
agents that primarily act on the Hippo pathway are not fully satis-
factory as some have limited effects and some are not specific,
causing various adverse clinical effects. The development of new
drugs that act on the Hippo signalling pathway is urgently needed,
although large-scale studies should be developed before clinical
applications are implemented in BC patients.

Above all, the use of proteins the Hippo signalling pathway as
diagnostic, prognostic or therapeutic targets for BC is recommended.
Although some progress has been achieved in this area, more work
remains to be carried out, especially regarding the development of
new agents for BC treatment.
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