
Submitted 11 May 2020
Accepted 16 July 2020
Published 4 August 2020

Corresponding author
Oliver S. Zhao,
oliver.zhao@utexas.edu

Academic editor
Stephen Piccolo

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj.9674

Copyright
2020 Zhao et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Convolutional neural networks to
automate the screening of malaria in
low-resource countries
Oliver S. Zhao1, Nikhil Kolluri2, Anagata Anand1, Nicholas Chu2, Ravali
Bhavaraju1, Aditya Ojha2, Sandhya Tiku1, Dat Nguyen1, Ryan Chen1, Adriane
Morales1, Deepti Valliappan1, Juhi P. Patel3 and Kevin Nguyen3

1Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX,
United States of America

2Department of Electrical & Computer Engineering, The University of Texas at Austin, Austin, TX, United
States of America

3Department of Psychology, The University of Texas at Austin, Austin, TX, United States of America

ABSTRACT
Malaria is an infectious disease caused by Plasmodium parasites, transmitted through
mosquito bites. Symptoms include fever, headache, and vomiting, and in severe cases,
seizures and coma. TheWorld Health Organization reports that there were 228 million
cases and 405,000 deaths in 2018, with Africa representing 93% of total cases and
94% of total deaths. Rapid diagnosis and subsequent treatment are the most effective
means to mitigate the progression into serious symptoms. However, many fatal cases
have been attributed to poor access to healthcare resources for malaria screenings. In
these low-resource settings, the use of light microscopy on a thin blood smear with
Giemsa stain is used to examine the severity of infection, requiring tedious and manual
counting by a trained technician. To address the malaria endemic in Africa and its
coexisting socioeconomic constraints, we propose an automated, mobile phone-based
screening process that takes advantage of already existing resources. Through the use
of convolutional neural networks (CNNs), we utilize a SSD multibox object detection
architecture that rapidly processes thin blood smears acquired via light microscopy
to isolate images of individual red blood cells with 90.4% average precision. Then we
implement a FSRCNNmodel that upscales 32× 32 low-resolution images to 128× 128
high-resolution images with a PSNR of 30.2, compared to a baseline PSNR of 24.2
through traditional bicubic interpolation. Lastly, we utilize a modified VGG16 CNN
that classifies red blood cells as either infected or uninfected with an accuracy of 96.5%
in a balanced class dataset. These sequential models create a streamlined screening
platform, giving the healthcare provider the number of malaria-infected red blood
cells in a given sample. Our deep learning platform is efficient enough to operate
exclusively on low-tier smartphone hardware, eliminating the need for high-speed
internet connection.
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INTRODUCTION
Malaria in developing countries
Malaria is an infectious disease caused by Plasmodium parasites, which are transmitted
through female mosquito bites. P. falciparum is the most common and the deadliest
human malaria parasite in Africa, accounting for nearly all fatal cases in Sub-Saharan
Africa (WHO, 2019; McKenzie et al., 2008; Makanjuola & Taylor-Robinson, 2020). Typical
symptoms include fever, malaise, headaches, and vomiting, and in severe cases, seizures and
coma. TheWorld Health Organization (WHO) reports that in 2018, there were 228 million
cases and 405,000 deaths globally. Africa represents 93% of total cases and 94% of total
deaths (WHO, 2019). The most vulnerable group of infected individuals are children under
the age of five, where 67% of malaria deaths occur. The WHO suggests that rapid diagnosis
and subsequent treatment are the most effective means to mitigate the progression into
serious symptoms. However, less than 29% of children under the age of five in sub-Saharan
Africa receive antimalarial drug treatment (WHO, 2019), despite this demographic being
at the greatest risk (Ricci, 2012). TheWHO cites that significant factors driving this statistic
are poor access to healthcare and ignorance of malaria symptoms (WHO, 2019).

Malaria can be diagnosed based on clinical symptoms, although the Center for Disease
Control (CDC) always recommends confirming the diagnosis with a laboratory test (CDC,
2020). Laboratory tests can include the use of PCR to identify the specific strain of
Plasmodium in a confirmedmalaria case (Hong et al., 2013), antigen detection kits to detect
Plasmodium-derived antigens (Polpanich et al., 2007; Khan et al., 2010), and serology tests
such as ELISA to detect antibodies targeting malaria parasites (Murungi et al., 2019). These
methods are expensive and often infeasible to implement in low-resource settings due
to the required equipment and use of trained technicians (CDC, 2020). In low-resource
settings, the use of light microscopy on a thin or thick blood smear with Giemsa stain is
often used to confirm the presence of malaria parasites (Charpentier et al., 2020). Infection
severity is frequently measured through the percentage of red blood cells infected with
malaria parasites, also known as percent parasitemia or parasitemia burden. However, the
diagnostic accuracy of using Giemsa-strained thin blood smears depends heavily on the
level of expertise in the technician, who must manually classify and count the number
of malaria-infected red blood cells. This results in significant inter-observer variability
due to the different levels of expertise in technicians in low-resource settings, who often
have to learn other tasks and cannot be adequately trained for this specific task as a
result (Billo et al., 2013; Bowers et al., 2009). For example, one study in Nigeria found that
while both health providers and community members are familiar with malaria tests,
there has been significant concern with the reliability of test results due to technician
incompetency (Ezeoke et al., 2012). Meanwhile, microscopy-based diagnosis of malaria
at primary health care facilities in Tanzania had a sensitivity of 74.5% and specificity of
59.0%, also indicating that technicians may not have proper training (Ngasala et al., 2012).
A study in Angola also made similar conclusions that there is inadequate training for
technicians involved in microscopy-based diagnosis of malaria (Nazar-Pembele, Rojas &
ngel Nez, 2016).
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Table 1 Previous attempts by other research groups to classify infected red blood cells. A significant
number of groups used their own datasets, while other groups used the NIH dataset.

Source Accuracy Sensitivity Specificity Dataset

Ross et al. (2006) 73.0 85.0 NR Private
Das et al. (2013) 93.2 94.0 87.9 Private
Adi et al. (2016) 87.1 NR NR Private
Liang et al. (2017) 97.3 96.9 97.8 NIH
Dong et al. (2017) 98.1 97.3 98.7 Private
Peñas, Rivera & Naval Jr (2017) 92.4 95.2 84.7 Private
Gopakumar et al. (2017) 97.7 NR NR Private
Rajaraman et al. (2018) 98.6 98.1 99.2 NIH
Rahman et al. (2019) 97.7 97.4 97.9 NIH
Rajaraman, Jaeger & Antani (2019) 99.5 NR NR NIH

Notes.
NR, not reported.

Use of machine learning in clinical applications and malaria
screening
The use of machine learning methods, particularly neural networks, is rapidly growing in
many areas of clinical application. The two primary applications are involved with either
segmentation or classification in clinical images (Shen, Wu & Suk, 2017; Anwar et al., 2018;
Litjens et al., 2017) or histological images (Kan, 2017; Wang et al., 2019). In particular, the
use of machine learning to diagnose malaria is of interest, where various classification
models were developed by several groups to determine whether a red blood cell is infected
or uninfected, as shown in Table 1.

To address the severe malaria endemic in Africa and its related issues with medical
resources and clinical expertise, we propose a multi-step automated screening process that
takes advantage of readily available resources in low-income settings. Through the use
of convolutional neural networks (CNNs), we utilize a 300 × 300 Single Shot MultiBox
Detector (SSD300) multibox model for object detection (Liu et al., 2015) that rapidly
processes Giemsa-stained thin blood smears acquired from basic light microscopy in order
isolate images of individual red blood cells. Then we implement a separate FSRCNN image
resolution upscalingmodel to raise the low-resolution images of 32× 32 pixels to 128× 128
pixels (Dong, Loy & Tang, 2016). The Fast Super-Resolution CNN (FSRCNN) model is
only utilized if the images of individual red blood cells are of insufficient resolution due
to the possible use of low-end cameras to acquire the thin blood smear images. Lastly,
we utilize a variant of a VGG16 CNN that classifies every red blood cell as either infected
or uninfected. These sequential models create a streamlined mechanism from which our
screening platform takes in thin blood smear images as inputs to provide the healthcare
provider with the number of infected red blood cells and parasitemia burden in a given
sample. Taking advantage of the prevalent availability of low-end smartphones in the
African continent, our deep learning platform is lean and efficient enough to operate
exclusively on the smartphone hardware, eliminating the need for high-speed internet
access to transmit image information into a cloud-based neural network model.
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METHODS
Dataset and computing platform
Two datasets from different sources were used: (1) NIH malaria dataset and (2) Broad
Institute malaria dataset. The publicly available NIHmalaria dataset was acquired from the
Lister Hill National Center for Biomedical Communications (LHNCBC) at the National
Library of Medicine (NLM) located at https://lhncbc.nlm.nih.gov/publication/pub9932,
which contains 27,588 labeled and segmented cell images acquired from Giemsa-stained
thin blood smear slides. The dataset contains equal instances of uninfected red blood
cells and P. falciparium-infected red blood cells derived from 150 P. falciparium-infected
individuals and 50 uninfected individuals. Meanwhile, the Broad Institute dataset contains
1,364 blood smear images with 80,000 individually labeled blood cells that are either
uninfected or infected with P. vivax, found at https://data.broadinstitute.org/bbbc/
BBBC041/. In the Broad Institute dataset, only about 5% of the red blood cells are
infected. All infected red blood cells in the NIH dataset are infected with P. falciparum,
while all infected red blood cells in the Broad Institute dataset are infected with P. vivax.

TheGoogleCloudPlatform (Google LLC,MountainView,CA)was utilized for acquiring
the bulk of experimental data from training different variations of the neural network
models. Two Google Cloud Platform machine configurations were used: (1) N1 high
memory machine with 8 vCPU and 52 GB memory with 1 Nvidia Tesla V100 GPU for
experiments on partial datasets or (2) N1 high memory machine with 16 vCPU with 104
GB memory and 2 Nvidia Tesla V100 GPUs for experiments on full datasets. A boot disk
with a Deep Learning on Linux operating system with the GPU Optimized Debian m32
(with CUDA 10.0) version was used to run all software on the Google Cloud Platform. In
addition, the free online Google Colab interface with a T4 GPU was used for rapid code
write-up and subsequent preliminary testing.

Neural network performance metrics
In all neural network models used for classification and resolution enhancement, five-fold
cross-validation was performed to report the mean and standard deviation of the model
performance. The cross-validation groups were randomly split and distributed evenly
among the five groups, with the same set of cross-validation groups used to test different
model variants in a given experiment. Positive and negative samples were defined as
infected and uninfected red blood cells, respectively. Some experiments did not utilize the
full dataset, instead using a randomly selected subset of the dataset to reduce computational
burden.

The object detection model performance was measured through average precision and
average recall across different conditions, such as the intersection over union (IoU) values,
image sizes, and maximum number of detections. The IoU values indicate the degree of
overlap between the ground truth and predicted bounding boxes, with a high IoU indicating
high overlap. The following metrics were measured in the malaria classification model:
classification accuracy, sensitivity, specificity, area under the curve (AUC), F1-score, and
Matthews correlation coefficient (MCC). The MCC is equivalent to the Phi coefficient, and
is useful for evaluating imbalanced datasets such as the Broad Institute dataset (Chicco &
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Jurman, 2020). While average precision and average recall are performance metrics used to
describe object detection, we note that average precision corresponds to positive predictive
value and average recall corresponds to sensitivity. The image upscaling model measured
the mean squared error (MSE) and peak signal-to-noise ratio (PSNR) to examine the
quality of the image upscaling output. Bicubic interpolation was used as the baseline for
measuring comparing the performance of the CNN-based resolution upscaling model.
The training and testing code and results are publicly available on a Github repository at
https://github.com/oliver29063/MalariaDiagnosis.

Development of object detection model
SSD300 (Liu et al., 2015) was trained to detect both infected and uninfected red blood cells
from the thin blood smear images in the Broad Institute dataset. Because each red blood cell
will be classified by the VGG16 classificationmodel in later steps, the object detectionmodel
was not trained to distinguish between the two blood cell classes. The object detectionmodel
served primarily as a proof-of-concept to show that the mobile platform can sequentially
run the object detection, resolution enhancement, and cell classification models in tandem.
Consequently, the SSD300 model was not heavily fine-tuned to maximize performance.
The final SSD300 model was trained with an RMSProp optimizer (Ruder, 2016) with a
learning rate of 0.004. The batch size was 24 and the training process was run for 60,000
steps. All input images were scaled down via bilinear interpolation to the required 300
×300 image size before entering the object detection model. The outputted thresholds
from the 300 × 300 images were then rescaled to provide the original box coordinates of
each individual red blood cell to isolate cropped images of each individual red blood cell.

Development of the image classification CNN
All input images of the individual red blood cells from the NIH dataset were scaled to
128 × 128 resolution. In order to expand the number of hyperparameters examined,
the CNN model was developed through sequential hyperparameter tuning rather than
a traditional grid searchd or random search. First, the feature extraction architecture
was optimized before developing the classification architecture. Then, hyperparameters
involved with the training of the model—such as the optimizer, learning rate, and
batch size—were fine-tuned to give the final model. All experiments with the image
classification CNN were performed on a subset of 10,000 randomly selected images to
reduce computational burden. After the final classification CNN was developed, the
optimized hyperparameters were used to train on the entire dataset of 27,558 images to
provide an accurate representation of the model performance.

Fine-tuning the feature extraction architecture
During the fine-tuning of the feature extraction architecture, the following conditions
were maintained for all experiments: (1) feature extraction layers were succeeded with two
fully connected dense layers containing 512 nodes each with rectified linear unit (ReLU)
activation functions and 50% dropout, and (2) an Adam optimizer with a learning rate
of 10−6 and batch size of 64 was used. The following pre-trained CNN architectures with
weights initialized from the ImageNet dataset were used: ResNet50V2, VGG16, VGG19,
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InceptionV2, Xception, InceptionResNetV2, DenseNet121, andMobileNetV2. VGG16 and
VGG19 are traditional deep CNNs (Simonyan & Zisserman, 2015), while ResNet50V2 uses
residual connections to allow for deeper convolution layers (He, Zhang & Shaoqing Ren
and, 2016). Other architectures such as Xception (Chollet, 2016), InceptionV2 (Szegedy et
al., 2014), InceptionResNetV2 (Szegedy et al., 2016), MobileNetV2 (Howard et al., 2017),
and DenseNet121 (Huang et al., 2016), build upon the use of residual connections. It is
also worthwhile to note that MobileNetV2 is designed specifically for mobile phone use,
sacrificing accuracy for the sake of speed. The top-performing model was chosen based
on its overall accuracy and AUC. In the event of having similarly performing models, the
model with the fewest parameters was selected to maximize model efficiency.

Fine-tuning the classification architecture
The number of nodes in each of the two fully connected dense layers was tested with 128,
256, 512, and 1024 nodes each, with the set of dense nodes that resulted in the highest
accuracy and convergence speed chosen. Then, the following dropout rates were examined:
25%, 50%, and 75%. The dropout rate resulting in the highest convergence speed and lowest
testing loss was chosen. Lastly, the ReLU and Tanh activation functions were examined.
When the given hyperparameter had yet to be fine-tuned, the experiments contained the
following conditions: (1) 512 nodes in both dense layers, (2) 50% dropout, and (3) ReLU
activation functions.

Optimizing the learning conditions
The following optimizers were examined: stochastic gradient descent (SGD) with Nesterov
momentum , Adam, RMSProp, AdaMax, and Nadam (Kingma & Ba, 2014; Ruder, 2016).
The following learning rates were tested: 10−6, 10−5, 10−4, and 10−3. Graphical results
have not been shown for learning rates that failed to train the model, although tabular
results are available on the Github repository. The optimal learning rates were selected
from each optimizer. Then, the performances of each optimizer were compared with the
best optimizer chosen on the following three criteria: (1) final testing accuracy, (2) final
testing loss, and (3) rate of convergence.

Development of CNN-based image resolution upscaler
The FSRCNN model was developed in 2016 as an improvement over the previous SRCNN
model introduced in 2014 (Dong, Loy & Tang, 2016; Dong et al., 2014). In short, the
FSRCNN model performs feature extraction and shrinks a high dimensional feature map
into a low dimensional feature map. Then a series of mapping layers process the features
before the low dimensional feature map expands back to the high dimensional feature
map. Finally, a deconvolution layer generates the high-resolution images. Consequently,
the three main hyperparameters are: (1) number of mapping layers, (2) the dimension
of the high feature map, and (3) the dimension of the low feature map. Consequently,
we tested the FSRCNN using 2–4 mapping layers, 48 or 56 filters for high dimensional
features, and 12 or 16 filters for low dimensional features.

In addition, we created two separate train and test sets to evaluate the effectiveness of the
FSRCNN model: (1) FSRCNN-derived high-resolution train and test sets and (2) bicubic
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Table 2 SSD300 performance metrics. Average precision (AP) and average recall (AR) across different
IoUs, area sizes, and maximum number of detections. Top performing conditions for maximizing average
precision and recall are bolded.

Metric Type IoU Area size Maximum detections Performance

Average Precision (AP) 0.50:0.95 all 100 AP = 0.436
Average Precision (AP) 0.50 all 100 AP = 0.904
Average Precision (AP) 0.75 all 100 AP = 0.491
Average Precision (AP) 0.50:0.95 small 100 AP =−1.00
Average Precision (AP) 0.50:0.95 medium 100 AP = 0.082
Average Precision (AP) 0.50:0.95 large 100 AP = 0.440
Average Recall (AR) 0.50:0.95 all 1 AR = 0.114
Average Recall (AR) 0.50:0.95 all 10 AR = 0.295
Average Recall (AR) 0.50:0.95 all 100 AR = 0.639
Average Recall (AR) 0.50:0.95 small 100 AR =−1.00
Average Recall (AR) 0.50:0.95 medium 100 AR = 0.144
Average Recall (AR) 0.50:0.95 large 100 AR = 0.605

interpolated high-resolution train and test sets. These train and test sets were then used to
train and validate the final malaria classification model to examine how the differences in
image quality impact the effectiveness of the classification CNN. Five-fold cross-validation
with the full NIH dataset was used in these evaluations.

Implementation of tensorflow lite android platform
TensorFlow Lite is an open-source platform focused on on-device model inference (Abadi
et al., 2015). Unlike previously reported studies that utilize phone apps formodel prediction
(Rajaraman, Jaeger & Antani, 2019), this allows the models to run directly on the Android-
based smartphones rather than relying on cloud-based computing resources. While all
models were developed and trained with the TensorFlow and Keras packages, the final
model deployments are subsequently converted into a .tflite file that allows the models to
be run on the TensorFlow Lite package.

RESULTS
Red blood cell object detection model
The SSD300 object detection model trained on the Broad Institute dataset was able to
detect the presence of red blood cells with an average precision of 90.4% when the IoU is
0.50 for all area sizes with 100 maximum detections, while the average recall was 63.9%
at an IoU of 0.50:0.95 for all area sizes with 100 maximum detections, as shown in Table
2. We see that the model had high precision, but relatively poor recall. In Fig. 1 we see an
example of the bounding boxes and confidence levels of detected red blood cells from a
sample image from the Broad Institute dataset.
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Figure 1 Sample image of Broad Institute dataset with object detection model outputs, such as bound-
ing boxes and confidence thresholds.

Full-size DOI: 10.7717/peerj.9674/fig-1

Table 3 Transfer learning performance metrics (mean± std). The partial NIH malaria dataset size contained 10,000 images with dense nodes set
to 512 with ReLU activation functions. Adam optimizer with a learning rate of 10−6 and batch size of 64 was used.

Model Accuracy Sensitivity Specificity AUC F1 MCC

ResNet50V2 0.938± 0.009 0.935± 0.012 0.940± 0.010 0.982± 0.003 0.935± 0.012 0.940± 0.014
VGG16 0.960± 0.003 0.956± 0.014 0.964± 0.010 0.992± 0.002 0.956± 0.014 0.964± 0.010
VGG19 0.959± 0.004 0.956± 0.009 0.963± 0.010 0.991± 0.001 0.955± 0.009 0.963± 0.011
InceptionV3 0.928± 0.001 0.925± 0.005 0.930± 0.005 0.976± 0.003 0.925± 0.005 0.930± 0.005
Xception 0.946± 0.007 0.943± 0.008 0.948± 0.010 0.979± 0.004 0.943± 0.008 0.948± 0.010
InceptionResNetV2 0.935± 0.006 0.932± 0.008 0.938± 0.007 0.980± 0.005 0.932± 0.008 0.938± 0.007
DenseNet121 0.956± 0.008 0.948± 0.014 0.965± 0.009 0.990± 0.003 0.948± 0.014 0.965± 0.009
MobileNetV2 0.948± 0.008 0.941± 0.012 0.955± 0.015 0.987± 0.003 0.948± 0.008 0.897± 0.016

Malaria classification model
Evaluating pre-trained neural network architectures
The malaria classification models were trained on the NIH dataset. Both the pre-trained
neural network VGG16 and VGG19 architectures performed the best, both achieving
approximately 0.9600 accuracy and an AUC of at least 0.9900, as shown in Table 3 and
Fig. 2. However, we see that VGG16 was slightly less prone to overfitting than VGG19,
despite the slightly slower decline in testing loss. In addition, VGG16 required slightly
fewer processing cycles to fit a slightly smaller amount of parameters. Consequently, the
VGG16 model was selected for further hyperparameter tuning.
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Figure 2 CNN performance with different pre-trained architectures. (A) displays the testing accuracy
for pre-trained CNNs. (B) displays the testing loss for pre-trained CNNs.

Full-size DOI: 10.7717/peerj.9674/fig-2

Optimizing classification layers
Changing the number of nodes in the two dense layers after the convolution blocks did
not affect the final convergence accuracy, as shown in Fig. 3A. However, increasing the
number of nodes did allow the model to converge faster. Consequently, 1024 nodes were
used for each dense layer during further hyperparameter tuning. A dropout rate of both
0.25 and 0.50 outperformed a dropout rate of 0.75 based on the slightly higher convergence
accuracy and faster training. This suggests that a dropout rate of 0.75 may be too heavy
of a regularizer. However, the dropout rate of 0.25 began to overfit significantly more
than the dropout rate of 0.50. Consequently, a dropout rate of 0.50 was used for each
dense layer during further hyperparameter tuning. Lastly, the ReLU activation function
appeared to achieve a lower testing loss, compared to the Tanh activation function, so
a ReLU activation function was used in subsequent model variants. Visualization of the
effects of these hyperparameters on model training is provided in Fig. 3.

Fine-tuning training hyperparameters
In Figs. 4B–4F, the optimal learning rate for the SGD, RMSProp, Adam, Nadam, and
Adamax optimizers are shown to be 10−4, 10−6, 10−6, 10−6, and 10−5, respectively. The
best learning rates of each optimizer are shown in Fig. 4A, where we see that SGD with
Nesterov momentum has the fastest rise to peak accuracy, while maintaining a low testing
loss even after convergence. This suggested that SGD with Nesterov momentum with a
learning rate of 10−5 was the best optimizer tomove forward with. Meanwhile, Figs. 4G and
4H show that a batch size of 64 provides the fastest convergence while avoiding overfitting.

Image resolution upscaling
There was a general increase in performance of the FSRCNN model trained on the NIH
dataset in terms of PSNR as the number of mapping convolutions (m), high-resolution
feature dimension (d), and low-resolution feature dimension (s) increased, as shown in
Table 4. The results were derived from the most recent epoch without a dip in testing loss,
as some epochs saw a temporary and drastic drop in MSE.
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Figure 3 Performance of models with different classification layer hyperparameters. Sections (A–B)
display the testing accuracy and loss with different number of nodes in each of the two dense layers. Sec-
tions (C–D) display the testing accuracy and loss with different dropout rates after the dense layers. Sec-
tions (E–F) display the testing accuracy and loss of the ReLU and Tanh activation functions in the dense
layers.

Full-size DOI: 10.7717/peerj.9674/fig-3

The best performing FSRCNN had a PSNR of 30.79 and a MSE of 54.66. In contrast, the
traditional method of bicubic interpolation yielded a PSNR of 24.10 and a MSE of 254.67,
as shown in Fig. 5 with sample images. The performance values for the bicubic interpolated
images were derived from the entire NIH dataset. In addition, the FSRCNN-derived images
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Figure 4 Performance of models with different optimizers and learning rates. Section (A) displays the
testing accuracy and testing loss of the best performing learning rates of each optimizer, defined as having
a fast convergence speed with minimal overfitting. Sections (B–F) displays the testing accuracy and loss of
individual optimizers across different learning rates. Results from learning rates that resulted in a lack of
improvement were omitted for clarity. Sections (G–H) display the testing loss and testing accuracy across
different batch sizes when using a SGD w/ Nesterov optimizer with a learning rate of 10−5.

Full-size DOI: 10.7717/peerj.9674/fig-4
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Table 4 PSNR of different FSRCNN variants.MSE in parenthesis.

Settings m= 2 m= 3 m= 4

d = 48,s= 12 30.09 (64.12) 30.07 (64.42) 30.18 (62.85)
d = 48,s= 16 30.30 (61.10) 30.59 (57.18) 30.72 (55.53)
d = 56,s= 12 30.10 (64.03) 30.25 (61.95) 30.21 (62.39)
d = 56,s= 16 30.42 (59.51) 30.65 (56.48) 30.79 (54.66)

Notes.
m, number of mapping layers; d , high feature dimension space; s, low feature dimension space.

Figure 5 Sample of resolution enhanced images. Three individual P. falciparum-infected red blood cells
from the NIH dataset. Section (A) shows the original 128×128 pixel images, while Section (B) shows the
downscaled 32× 32 pixel images. Section (C) displays the upscaled images via bicubic interpolation and
Section (D) displays the upscaled images via the FSRCNN model.

Full-size DOI: 10.7717/peerj.9674/fig-5

Table 5 Classification model performance metric with different datasets (mean± std). The original dataset contains original 128×128 images.
The FSRCNN and bicubic intepolation datasets consist of downsampled 32×32 images that were rescaled upwards with their respective methods.

Dataset Accuracy Sensitivity Specificity AUC F1 MCC

Original High-Resolution 0.9653± 0.0043 0.9500± 0.0067 0.9807± 0.0025 0.9940± 0.0010 0.9648± 0.0043 0.9330± 0.0082
FSRCNN 0.9628± 0.0035 0.9441± 0.0052 0.9815± 0.0027 0.9935± 0.0008 0.9621± 0.0034 0.9283± 0.0064
Bicubic Interpolation 0.9486± 0.0043 0.9093± 0.0106 0.9878± 0.0048 0.9913± 0.0008 0.9464± 0.0050 0.9022± 0.0078

were classified more accurately than the raw low-resolution images or bicubic interpolated
images in the finalized CNN classification model, as shown in Table 5.

Integration of CNNs on mobile platform
The Android app takes in an unprocessed photo of a Giemsa-stained thin blood smear, that
the user manually selects on the app. Consequently, the image may either be taken directly
with the phone camera or electronically acquired through other means. The SSD300 model
then isolates individual images of the red blood cells and discard images of white blood
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Figure 6 Example of user interface for malaria screening app. On the top left is the original thin blood
smear image with the object detection bounding boxes overlaid on it. Individual images of red blood cells,
as well as cell counts, are also provided.

Full-size DOI: 10.7717/peerj.9674/fig-6

cells. The image resolution of these individual images is examined to determine whether to
upscale the image resolution via the FSRCNNmodel. Finally, the images are resized to 128
× 128 pixels and run through the VGG16 classification CNN, giving an output indicating
the number of uninfected and infected red blood cells, as shown in Fig. 6. Each of the three
models is self-contained within .tflite files. Any newly developed model can be similarly
exported as a new .tflite file to replace older models. This allows for the mobile app to run
different models by only replacing the .tflite files.

DISCUSSION
Evaluation of individual deep learning components
The high average precision and relatively low average recall from the SSD300 object
detection model indicate that while the detected red blood cells are rarely false positives,
a significant portion of red blood cells remain undetected. Because the object detection
model does not distinguish between infected and uninfected red blood cells, it is unclear
whether one class of red blood cells are more likely to be go undetected by the SSD300
model. However, it would be ideal that both infected and uninfected red blood cells are
equally likely to be detected by the object detection model, because the severity of a malaria
infection is often measured in percent parasitemia rather than the absolute number of
infected red blood cells.
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In the FSRCNN image upscaler, we see that while the resolution enhancement process
generates significant improvements in the CNN classification model performance,
compared to the traditional scaling method bicubic interpolation. This shows that even
for simplistic structures such as red blood cells, low-resolution images will cause the
classification model to perform significantly more poorly even with traditional image
upscaling methods such as bicubic interpolation. This is a critical consideration to keep
in mind, as image resolution may be insufficient during the image acquisition process if
the camera has poor resolution and the cropped images of individual red blood cells are
smaller than 128× 128 pixels. Additionally, we see that increasing the number of mapping
layers, the high-resolution feature dimension, and low-resolution feature dimension, all
tend to promote an increase in the effectiveness of resolution upscaling. However, it is
worth noting that the central purpose of the FSRCNN model is to demonstrate whether
improved resolution upscaling methods can positively impact subsequent classification.
Recent developments suggest that the use of novel generative adversarial networks (GANs)
- such as the SRGAN - yield a better PSNR, and may be better models to implement during
further development (Ledig et al., 2017).

Meanwhile, our classification CNN model has an accuracy of about 96.53% and an
AUC of 0.994, which is lower than the accuracies of other groups who have also trained
their model on the NIH dataset. However, it is worth noting that the highest performance
reported by Rajaraman, Jaeger & Antani (2019) was due to the use of ensemble networks,
which may not be feasible for mobile phone use due to its heavier computational burden.
Meanwhile, the highest performance reported by Rahman et al. (2019) was from a model
trained on a modified NIH dataset, in which the group reports that incorrectly labeled
images were removed from the dataset prior to training. Top-performing non-ensemble
models reported by Liang et al. (2017) and Rajaraman et al. (2018) report classification
accuracies of about 97.4% and 98.6%, respectively. However, neither group tested their
final models on a separate independent dataset to examine the generalizability of their
models. The performance of our NIH dataset-trained classification model significantly
dropped when tested on the Broad Institute dataset, with AUC of 0.945±0.025, compared
to an AUC of 0.994±0.001 with the cross-validated NIH dataset. This suggests that the
current classification model is overtrained on the three following differences between the
NIH and Broad Institute datasets: (1) unsegmented vs segmented images, (2) P. falciparum
vs P. vivax parasites, and (3) overlapping vs non-overlapping cells in individual images.

Eliminating the need for internet access and manual segmentation in
the mobile app
We present a proof-of-concept with our streamlined, mobile phone-powered screening
platform. A flexible Android app framework has been developed, with an easily upgradable
modular architecture. Additionally, the code outside of the .tflite files within the Android
app is basic and brief, performing basic tasks such as transferring the outputs of the
resolution upscaling model to the classification model for diagnostic results. While other
groups such as Rajaraman et al. (2018) have reported similarly designed mobile phone
apps, the apps transmit images to a cloud-based model for classification. This poses an
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additional barrier in areas with low or non-existent mobile phone internet connectivity. To
our knowledge, our phone app is the only malaria screening app that is currently reported
to run entirely on the mobile phone without the need for internet access. In addition, our
mobile phone app requires only a thin blood smear image, rather than already segmented
images of each individual red blood cell. This removes the need for the technician to
manually crop images of each red blood cell to run the single-cell classifier model, a task
that is arguably more tedious than the traditional method of classifying each cell manually.

Immediate barriers to deployment
The two major barriers towards employing the phone-based deep learning models are: (1)
the lack of a comprehensive malaria blood smear dataset and (2) the generalizability of the
models.

Lack of comprehensive dataset
The NIH dataset contains images of individual P. falciparum-infected red blood cells that
are already segmented. Meanwhile, the Broad Institute dataset contains images of P. vivax-
infected red blood cells with bounding boxes but no segmented images. Consequently,
this results in a dilemma for realistic application in developing countries. In order to
effectively utilize a classification CNN trained on segmented images, we must develop a
corresponding cell segmentationmodel. However, the lack of a dataset with both segmented
and unsegmented images makes it impossible to develop such a model. This is problematic
for our current models, in which the SSD object detection model was trained for object
detection rather than image segmentation, while the classification model was trained on
segmented images. Alternatively, a classification CNN could be trained on unsegmented
images and only bound images of individual red blood cells, as seen in the Broad Institute
dataset. However, the Broad Institute dataset contains P. vivax parasites, rather than the
predominant and deadlier P. falciparum parasites found in African regions. Consequently,
an important immediate objective is to acquire a comprehensive dataset that alleviates
these issues.

Generalizability of deep learning models
Although P. falciparum accounts for the majority of malaria infections in African regions,
P. vivax is indeed the secondmost common parasite. In a low-resource setting, it is difficult
if not impossible to discern which specific parasite is present in a thin-blood smear outside
of manual observation of the thin blood smears. Consequently, an important improvement
over current advances would be developing a generalizable deep learning model that is
able to indiscriminately detect malaria-infected red blood cells, regardless of the specific
parasite present. It seems that no group has attempted this yet. Lastly, as seen in the Broad
Institute dataset, there is often significant overlap between individual red blood cells, which
may interfere with the accuracy of our current classification model, which was trained on
non-overlapping individual red blood cells.
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CONCLUSIONS
While many groups have attempted to use machine learning algorithms to automate
the detection and classification of malaria-infected red blood cells, there has not been
significant effort towards object detection and image resolution upscaling in the context of
the malaria screening process.

By introducing a proof-of-concept, with a preliminary SSD300 object detection model
and FSRCNN resolution upscaling model in tandem with a single-cell classification model,
we show that a streamlined and sequential approach towards automating the diagnosis of
malaria from input of the blood smear to output of the number of infected and uninfected
red blood cells may be possible as the individual models are further developed.

With the rapid advancements made every year in deep learning technology, faster
and more accurate models developed in the near future can easily be switched with the
models used our phone app due to the modularity of our code. This allows us to move
closer towards real implementation in developing countries without the need for trained
technicians or internet-based computing resources.
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