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Abstract

In phylogenetic inference, we commonly use models of substitution which assume that sequence evolution is stationary, reversible,

and homogeneous (SRH). Although the use of such models is often criticized, the extent of SRH violations and their effects on

phylogenetic inference of tree topologies and edge lengths are not well understood. Here, we introduce and apply the maximal

matched-pairs tests of homogeneity to assess the scale and impact of SRH model violations on 3,572 partitions from 35 published

phylogenetic data sets. We show that roughly one-quarter of all thepartitionswe analyzed (23.5%) reject the SRHassumptions, and

that for 25% of data sets, tree topologies inferred from all partitions differ significantly from topologies inferred using the subset of

partitions that do not reject the SRH assumptions. This proportion increases when comparing trees inferred using the subset of

partitions that rejects the SRH assumptions, to those inferred from partitions that do not reject the SRH assumptions. These results

suggest that the extent and effects of model violation in phylogenetics may be substantial. They highlight the importance of testing

for model violations and possibly excluding partitions that violate models prior to tree reconstruction. Our results also suggest that

further effort in developing models that do not require SRH assumptions could lead to large improvements in the accuracy of

phylogenomic inference. The scripts necessary to perform the analysis are available in https://github.com/roblanf/SRHtests, and the

new tests we describe are available as a new option in IQ-TREE (http://www.iqtree.org).
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Introduction

Phylogenetics is an essential tool for inferring evolutionary

relationships between individuals, species, genes, and

genomes. Moreover, phylogenetic trees form the basis of a

huge range of other inferences in evolutionary biology, from

gene function prediction to drug development and forensics

(Eisen 1998; Farrell et al. 2000; M€aser et al. 2001; Gardner

et al. 2002; Yao et al. 2003, 2004; Grenfell et al. 2004;

Salipante and Horwitz 2006; Gray et al. 2009; Brady and

Salzberg 2011; Dunn et al. 2011).

Most phylogenetic studies use models of sequence evolu-

tion which assume that the evolutionary process follows sta-

tionary, reversible, and homogeneous (SRH) conditions.

Stationarity implies that the marginal frequencies of the

nucleotides or amino acids are constant over time, reversibility

implies that the evolutionary process is stationary and undi-

rected (substitution rates between nucleotides or amino acids

are equal in both directions), and homogeneity implies that

the instantaneous substitution rates are constant along the

tree or over an edge (Felsenstein 2004; Yang and Rannala

2012; Jermiin et al. 2017). However, these simplifying

assumptions are often violated by real data (Foster and

Hickey 1999; Tarr�ıo et al. 2001; Paton et al. 2002;

Goremykin and Hellwig 2005; Murray et al. 2005;

Bourlat et al. 2006; Hyman et al. 2007; Sheffield et al.

2009; Nesnidal et al. 2010; Nabholz et al. 2011; Martijn

et al. 2018). Such model violation may lead to systematic

error that, unlike stochastic error, cannot be remedied

simply by increasing the size of a data set (Felsenstein

2004; Ho and Jermiin 2004; Jermiin et al. 2004; Philippe

et al. 2005; Sullivan and Joyce 2005; Kumar et al. 2012;

Brown and Thomson 2017; Duchene et al. 2017). As phy-

logenetic data sets are steadily growing in terms of taxo-

nomic and site sampling, it is vital that we develop and

employ methods to measure and understand the extent to

which systematic error affects phylogenetic inference

(systematic bias), and explore ways of mitigating this sys-

tematic bias in empirical studies.
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One approach to accommodate data that have evolved

under non-SRH conditions is to employ models that relax

the SRH assumptions. A number of non-SRH models have

been implemented in a variety of software packages (Foster

2004; Lartillot and Philippe 2004; Blanquart and Lartillot

2006; Boussau and Gouy 2006; Jayaswal et al. 2007, 2011,

2014; Knight et al. 2007; Dutheil and Boussau 2008; Sumner

et al. 2012; Zou et al. 2012; Groussin et al. 2013; Nguyen

et al. 2015; Woodhams et al. 2015). However, such models

remain infrequently used as searching for optimal phyloge-

netic trees under these models is computationally demanding

(Betancur-r et al. 2013) and the implementations are often

not easy to use. As a result, the vast majority of empirical

phylogenetic inferences rely on models that assume sequen-

ces have evolved under SRH conditions, such as the general

time reversible family of models implemented in many of the

most widely used phylogenetics software packages (Swofford

2001; Drummond and Rambaut 2007; Guindon et al. 2010;

Ronquist et al. 2012; Bazinet et al. 2014; Bouckaert et al.

2014; Stamatakis 2014; Nguyen et al. 2015; Höhna et al.

2016).

Another approach to accounting for data that may have

evolved under non-SRH conditions is to test for model viola-

tions prior to tree reconstruction. Here, one first screens data

sets or parts of data sets, and reconstructs trees exclusively

from data that do not reject SRH conditions. A number of

methods have been proposed to test for violation of SRH

conditions in aligned sequences prior to estimating trees

(Bowker 1948; Stuart 1955; Rzhetsky and Nei 1995; Kumar

and Gadagkar 2001; Weiss and von Haeseler 2003; Ababneh

et al. 2006; Ho et al. 2006), and there are also a posteriori

tests for absolute model adequacy which are employed after

trees have been estimated (Goldman 1993; Bollback 2002;

Brown and ElDabaje 2009; Brown 2014; Duchene et al. 2017;

Brown and Thomson 2018).

Allowing the data to reject the model when the assump-

tions of the model are violated is an important approach to

reducing systematic bias in phylogenetic inference (Philippe

et al. 2005; Brown 2014). Knowing in advance which sequen-

ces and loci are inconsistent with the SRH assumptions will

allow us to choose more complex models or to omit some of

these sequences and loci from downstream analyses (Kumar

and Gadagkar 2001). The need for methods that assess the

evolutionary process prior to phylogenetic inference becomes

more important as the number of sequences and sites per

data set increases, because systematic bias has an increasing

effect on inferences from larger phylogenetic data sets (Ho

and Jermiin 2004; Jermiin et al. 2004; Phillips et al. 2004;

Delsuc et al. 2005).

In this article, we evaluate the extent and effect of model

violation due to non-SRH evolution using 35 empirical data

sets with a total of 3,572 partitions. We determine if the SRH

assumptions are violated by extending and applying the

matched-pairs tests of homogeneity (Jermiin et al. 2017) to

each partition. We then compare the phylogenetic trees for

each data set estimated from all of the partitions, the parti-

tions that reject the SRH assumptions, and the partitions that

do not reject the SRH assumptions, in order to evaluate the

effect violating SRH conditions on phylogenetic inference. Our

results suggest that violating SRH assumptions can have sub-

stantial impacts on phylogenetic inference.

Materials and Methods

Empirical Data Sets

In order to assess the impact of model violation in phyloge-

netics, we first gathered a representative sample of 35 parti-

tioned empirical data sets that had been used for

phylogenetic analysis in recent studies (table 1). Within the

constraints of selecting data that were publicly available and

suitably annotated, that is, such that all loci and all codon

positions within protein-coding loci could be identified, we

selected the data sets to provide as representative a sample

as possible of the data types, taxa, and genomic regions most

commonly used to infer bifurcating phylogenetic trees from

concatenated alignments. These data sets include nucleotide

sequences from nuclear, mitochondrial, plastid, and virus

genomes, and include protein-coding DNA, introns, inter-

genic spacers, tRNA, rRNA, and ultraconserved elements.

The number of taxa and sites in these data sets range from

27 to 355 and from 699 to 1,079,052, respectively. The

clades represented in these data sets include animals, plants,

and viruses. We partitioned all data sets to the maximum

possible extent based on the biological properties of the

data, that is, we divided every locus and every codon position

within each protein-coding locus into a separate partition. All

partitioning information is available at the github repository

(https://github.com/roblanf/SRHtests/tree/master/datasets),

and the full details of every data set are provided in table 1

and in supplementary extended table 5, Supplementary

Material online.

Workflow Summary

Figure 1 outlines the workflow. For each partition in each data

set, we used a new approach based on the three matched-

pairs tests of homogeneity to ask whether the evolution of the

aligned sequences in the partition rejects the SRH assump-

tions. The three matched-pairs tests of homogeneity, de-

scribed in more detail below, test three slightly different

assumptions about the historical process that generated

each aligned pair of sequences in a given partition. A signif-

icant result from any test suggests that the nature of the

evolutionary process required to explain the aligned sequen-

ces violates at least one of the three SRH conditions (Jermiin

et al. 2017). For each test, we classify each partition as pass if

the result of the test is nonsignificant or fail if the result of the

test is significant. We then denote the original data set as Dall,
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while the concatenation of pass partitions is denoted Dpass

and the concatenation of fail partitions as Dfail (fig. 1).

To investigate the impact of model violation on phyloge-

netic inference, we infer and compare three phylogenetic

trees, Tall, Tpass, and Tfail, estimated from Dall, Dpass, and Dfail,

respectively.

Matched-Pairs Tests of Homogeneity

The three matched-pairs tests of homogeneity that are ap-

plied to pairs of sequences are: the MPTS (matched-pairs test

of symmetry), MPTMS (matched-pairs test of marginal sym-

metry), and MPTIS (matched-pairs test of internal symmetry).

The statistics are computed on an m-by-m (m is 4 for nucleo-

tides and 20 for amino acids) divergence matrix D with ele-

ments dij , where dij is the number of alignment sites having

nucleotide (or amino acid) i in the first sequence and nucleo-

tide (or amino acid) j in the second sequence.

The MPTS tests the symmetry of D by computing the

Bowker’s (1948) test statistic as the v2 distance between D

and its transpose:

S2
B ¼

X
1� i< j�m

ðdij � djiÞ2

ðdij þ djiÞ
;

where dij þ dji > 0. A P value is then obtained by a v2 test

with f degrees of freedom, where f is the number of i; jð Þ
pairs for which dij þ dji > 0. A small P value (e.g., <0.05)

indicates that the assumption of symmetry is rejected at

that significance level, suggesting that evolution is nonstation-

ary, nonhomogeneous, or both (Jermiin et al. 2017).

Table 1

Number of Taxa, Number of Sites, Clade, and Study Reference for Each Data Set That Have Been Used in This Study

Data Set Study References Data Set References Clade Taxa Sites

Anderson_2013 Anderson et al. (2014) Anderson et al. (2013) Loliginids 145 3,037

Bergsten_2013 Bergsten et al. (2013) Bergsten et al. (2013) Dytiscidae 38 2,111

Broughton_2013 Broughton et al. (2013) Broughton et al. (2013) Osteichthyes 61 19,997

Brown_2012 Brown et al. (2012) Brown et al. (2012) Ptychozoon 41 1,665

Cannon_2016a Cannon et al. (2016) Cannon et al. (2016) Metazoa 78 89,792

Cognato_2001 Cognato and Vogler (2001) Cognato and Vogler (2001) Coleoptera: Scolytinae 44 1,897

Day_2013 Day et al. (2013) Day et al. (2013) Synodontis 152 3,586

Devitt_2013 Devitt et al. (2013) Devitt et al. (2013) Ensatina eschscholtzii klauberi 69 823

Dornburg_2012 Dornburg et al. (2012) Dornburg et al. (2012) Teleostei: Beryciformes: Holocentridae 44 5,919

Faircloth_2013 Faircloth et al. (2013) Faircloth et al. (2013) Actinopterygii 27 149,366

Fong_2012 Fong et al. (2012) Fong et al. (2012) Vertebrata 110 25,919

Horn_2014 Horn et al. (2014) Horn et al. (2014) Euphorbia 197 11,587

Kawahara_2013 Kawahara and Rubinoff (2013) Kawahara and Rubinoff (2013) Hyposmocoma 70 2,238

Lartillot_2012 Lartillot and Delsuc (2012) Lartillot and Delsuc (2012) Eutheria 78 15,117

McCormack_2013 McCormack et al. (2013) McCormack et al. (2013) Neoaves 33 1,079,052

Moyle_2016 Moyle et al. (2016) Moyle et al. (2016) Oscines 106 375,172

Murray_2013 Murray et al. (2013) Murray et al. (2013) Eucharitidae 237 3,111

Oaks_2011 Oaks (2011) Oaks (2011) Crocodylia 79 7,282

Rightmyer_2013 Rightmyer et al. (2013) Rightmyer et al. (2013) Hymenoptera: Megachilidae 94 3,692

Sauquet_2011 Sauquet et al. (2012) Sauquet et al. (2011) Nothofagus 51 5,444

Seago_2011 Seago et al. (2011) Seago et al. (2011) Coccinellidae 97 2,253

Sharanowski_2011 Sharanowski et al. (2011) Sharanowski et al. (2011) Braconidae 139 3,982

Siler_2013 Siler et al. (2013) Siler et al. (2013) Lycodon 61 2,697

Tolley_2013 Tolley et al. (2013) Tolley et al. (2013) Chamaeleonidae 203 5,054

Unmack_2013 Unmack et al. (2013) Unmack et al. (2013) Melanotaeniidae 139 6,827

Wainwright_2012 Wainwright et al. (2012) Wainwright et al. (2012) Acanthomorpha 188 8,439

Wood_2012 Wood et al. (2013) Wood et al. (2012) Archaeidae 37 5,185

Worobey_2014a Worobey et al. (2014) Worobey et al. (2014) Influenzavirus A 146 3,432

Worobey_2014b Worobey et al. (2014) Worobey et al. (2014) Influenzavirus A 327 759

Worobey_2014c Worobey et al. (2014) Worobey et al. (2014) Influenzavirus A 92 1,416

Worobey_2014d Worobey et al. (2014) Worobey et al. (2014) Influenzavirus A 355 1,497

Worobey_2014e Worobey et al. (2014) Worobey et al. (2014) Influenzavirus A 340 699

Worobey_2014f Worobey et al. (2014) Worobey et al. (2014) Influenzavirus A 332 2,151

Worobey_2014g Worobey et al. (2014) Worobey et al. (2014) Influenzavirus A 326 2,274

Worobey_2014h Worobey et al. (2014) Worobey et al. (2014) Influenzavirus A 351 2,280
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The MPTMS tests the equality of nucleotide or amino acid

composition between two sequences. To do so, MPTMS com-

putes the Stuart’s test statistic S2
S ¼ uT V�1u using the dif-

ference between nucleotide or amino acid frequencies of two

sequences, u, and its variance–covariance matrix, V . In detail,

u is given by uT ¼ ðd1• � d•1; d2• � d•2; . . . ; dk• � d•kÞ
where di• is the sum of dij over j, d•j is the sum of dij over

i, and, k¼m�1. V , the estimated variance–covariance matrix

of u under the assumption of marginal symmetry, is defined

elementwise by:

vij ¼
di• þ d•i � 2dii; i ¼ j

� dij þ dji

� �
; i 6¼ j

:

(

A P value is obtained by a v2 test with m�1 degrees of free-

dom. A small P value (<0.05) indicates that the stationarity

assumption is rejected. Note that when V is not invertible, the

Stuart’s statistic S2
S is ill-defined and the MPTMS is not

applicable.

The MPTIS uses the test statistic as the difference between

Bowker’s and Stuart’s statistic:

S2
I ¼ S2

B � S2
S . S2

I is v2 distributed with f �mþ 1 degrees

of freedom. A small P value (<0.05) indicates that the homo-

geneity assumption is rejected.

The MPTS, MPTMS, and MPTIS test different aspects of the

symmetry with which differences accumulate between pairs

of sequences due to the substitution process. The MPTS is a

FIG. 1.—Flow chart of methodology. For each partition in the alignment, we choose the pair of sequences with the maximum divergence and apply the

matched-pairs tests of homogeneity on that pair.
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comprehensive and sufficient test to determine whether the

data comply with the SRH assumptions (Jermiin et al. 2017),

but it cannot provide any information about the source of this

violation. Some information on the underlying source of

model violation may be obtained by performing the other

two tests of symmetry: the MPTMS and the MPTIS. If the

violation of the SRH assumptions stems from differences in

base composition between the sequences, this should affect

the marginal symmetry of the sequence pair, which can in

principle be detected by the MPTMS. If the violation of the

SRH assumptions stems from changes in the relative substitu-

tion rates over time, this should affect the internal symmetry

of the sequence pair, which can in principle be detected by

the MPTIS. However, even after performing all three tests, it is

difficult to ascertain which of the three SRH assumptions is

violated during the evolutionary process because the relation-

ships between the SRH conditions and the three matched-pair

tests is neither bijective nor injective, that is, there is not a one-

to-one correspondence between the three tests and violation

of the three SRH conditions (Jermiin et al. 2017).

The three matched-pairs tests of homogeneity are appro-

priate to test for SRH assumptions as they consider the align-

ment on a site-by-site basis. The basic intuition that underlies

these tests is that two sequences diverging under SRH con-

ditions should accumulate differences symmetrically (e.g.,

both sequences are equally likely to accumulate at a C to T

change at a site in which both originally shared a C). This

symmetry of accumulation is reflected by symmetries in the

resulting difference matrix, violations of which can be

assessed statistically. However, these tests were designed to

ask whether any single pair of sequences rejects the SRH

conditions (Jermiin et al. 2017). To ask whether a given par-

tition rejects SRH conditions, we developed an approach to

extend the matched-pairs tests of homogeneity to accommo-

date data sets with more than two sequences.

Maximum Symmetry Test

In order to determine whether a given multiple sequence

alignment rejects SRH conditions, we consider only the pair

of taxa with the maximum divergence. In order to find the

maximum divergent pair, we sum the off-diagonal elements

of the divergence matrix and divide by the sum of all ele-

ments. We then randomly choose one pair from all the pairs

with the maximum divergence score (if there is more than one

pair). By using the most divergent sequence pair, we maxi-

mize our power to detect model violations without a priori

knowledge of the underlying tree topology and the depen-

dencies that it induces in the data. For the maximum diver-

gent pair, we then apply the matched-pair tests of

homogeneity and calculate their v2 P values. If the obtained

P value is<0.05, then we consider that the null hypothesis of

SRH evolution is rejected for the corresponding partition and

we add it to the Dfail data set. Otherwise, we add it to the

Dpass data set. We denote our applications of the MPTS,

MPTMS, and MPTIS based on the dmax Pair as MaxSymTest,

MaxSymTestmar, and MaxSymTestint, respectively.

Phylogenetic Inference

We used IQ-TREE (Nguyen et al. 2015) to infer up to seven

phylogenetic trees for every data set: Tall (all partitions from

the original data set; Dall); and Tpass and Tfail based on the Dpass

and Dfail data sets from each of the three tests (MaxSymTest,

MaxSymTestmar, MaxSymTestint), provided that there was at

least one partition in each category. We ran IQ-TREE using the

default settings with the best-fit fully partitioned model

(Chernomor et al. 2016), which allows each partition to

have its own evolutionary model and edge-linked rate deter-

mined by ModelFinder (Kalyaanamoorthy et al. 2017) fol-

lowed 1,000 ultrafast bootstrap replicates (Hoang et al.

2018).

Distance between Trees

For each of the three tests (MPTS, MPTMS, MPTIS) we calcu-

lated the Normalized Path-Difference (NPD) and quartet dis-

tance (QD) (Steel and Penny 1993; Sand et al. 2014) between

all three possible pairs of trees (Tall vs. Tpass; Tall vs. Tfail; and

Tpass vs. Tfail), as long as Dpass and Dfail were nonempty and so

Tpass and Tfail had been estimated. The path-difference metric

(PD) is defined as the Euclidean distance between pairs of taxa

(Steel and Penny 1993; Mir and Russello 2010). In this study,

because we are interested only in differences between topol-

ogies, we use the variant of the PD metric that ignores branch

lengths. In order to compare path distances between trees

with different number of taxa, we normalized PD (to obtain

NPD) by the mean of a null distribution of PDs generated from

10K random pairs of trees with the same number of taxa

(Bogdanowicz et al. 2012). Thus, an NPD of 0 indicates an

identical pair of trees, an NPD of 1 indicates that a pair of trees

is as similar as a pair of randomly selected trees with the same

number of taxa; and an NPD >1 indicates a pair of trees that

are less similar than a randomly selected pair of trees with the

same number of taxa. Since path differences are always non-

negative, the NPD is also guaranteed to be nonnegative.

The QD metric is defined as the fraction of quartets (sub-

sets of four taxa) that induce different subtrees between the

two trees being compared. QD ranges between 0 and 1,

where 0 means that two trees are identical and 1 means

that they do not share any quartet subtrees. Compared

with PD, QD has the advantage that its distribution is less

sensitive to the underlying distribution of tree topologies

(Steel and Penny 1993).

Tree Topology Tests

The NPD and the QD give us measures of the differences

between pairs of trees, but they do not tell us whether the
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differences are phylogenetically significant in the three data

sets (Dpass, Dall, and Dfail) derived from a given test. For

example, trees that differ due to stochastic error associ-

ated with small data sets may be very different, but such

differences may not be statistically significant. To assess

the significance of the differences between Tpass, Tall, and

Tfail, we used the weighted Shimodaira–Hasegawa (wSH)

test (Shimodaira and Hasegawa 1999; Shimodaira 2002)

implemented in IQ-TREE with 1,000 RELL replicates

(Kishino et al. 1990). Given the alignment (Dpass), the

wSH test computes a P value for each tree, where a small

P value (<0.05) implies that the corresponding tree has a

significantly worse likelihood than the best tree in the set

of Tpass, Tall, and Tfail. We use Dpass for these tests because

it is, by definition, the only data set that does not reject

the underlying assumptions of the SH test. As such, we

only compute sWH P values when Dpass is nonempty.

Thus, we performed a wSH test for each of the three

MaxSymTest variants: each of which asks whether Tall

and/or Tfail can be rejected in favor of Tpass.

Correlation between Number of Substitutions and Model
Violation

We hypothesized that partitions with more substitutions

may be more likely to violate the SRH assumptions, since

substitutions form the raw data for the matched-pairs tests

of homogeneity. To assess this, we fitted a linear mixed-

effects model for each of the three tests using the glmer

function from the lme4 package in R (Bates et al. 2015). In

this model, we treat each partition as a datapoint, the

number of substitutions measured for that partition as a

fixed effect, and the data set from which that partition was

taken as a random effect. This allows us to estimate the

extent to which the number of substitutions in a partition

associates with whether a partition fails a given test of

symmetry, after accounting for differences between the

data sets. To calculate the R2 value, we use the

r.squaredGLMM function from the MuMIn package in R

(Barton 2009; Nakagawa and Schielzeth 2013).

Software Implementation

We implemented a new option –symtest in IQ-TREE to per-

form the three MaxSymTest matched-pairs tests of symmetry.

In addition, the option –symtest-remove-bad allows users to

remove from the final analysis partitions that fail the

MaxSymTest. One can change the removal criterion to

MaxSymTestmar or MaxSymTestint via the –symtest-type

MARjINT option. In addition, the cutoff P value can be

changed using the –symtest-pval NUM option, where the de-

fault value is 0.05.

Reproducibility

The GitHub repository (https://github.com/roblanf/SRHtests)

contains the raw data and Python and R scripts necessary to

perform all analyses reported in this study.

Results

Violation of SRH Conditions Is Common across 35
Empirical Data Sets

Across all 3,572 partitions analyzed, 573 (16.0%) failed the

MaxSymTest, 728 (20.4%) failed the MaxSymTestmar, and

312 (2.8%) failed the MaxSymTestint. In total, 840 (23.5%)

of the partitions failed at least one test.

The proportion of partitions failing each test varied sub-

stantially among data sets (fig. 2), but on an average, 21.8%

of the partitions in each data set failed the MaxSymTest,

27.5% failed the MaxSymTestmar, and 5.1% failed the

MaxSymTestint.

The fraction of failing partitions also varied with the ge-

nome type (e.g., mitochondrial, chloroplast, or nuclear) and

context (e.g., protein-coding, UCE, tRNA) from which the

partition was sequenced (table 2) although we note that a

substantial proportion of the partitions from almost every cat-

egory failed at least one of the tests (table 2).

There were no clear differences in the substitution models

that were selected for the partitions that pass or fail the tests

(see supplementary extended tables 1–3, Supplementary

Material online). However, we note that the two most-

frequently selected substitution models (for 35% of the par-

titions) were relatively simple: K80 (Kimura 1980) and HKY

(Hasegawa et al. 1985).

Model Violation Has a Large Influence on Tree Topologies

Using both MaxSymTest and MaxSymTestmar, we compared

each tree inferred from each data set (Tall) to the correspond-

ing trees estimated from the failed (Tfail) and passed (Tpass)

partitions. Disturbingly, for each of the two tree distance

metrics that we considered (NPD and QD), we find that the

tree inferred from the original data set tended to be more

similar to the tree estimated from the failed partitions (table 3

and supplementary extended table 4, Supplementary Material

online). Furthermore, the mean NPD distance between Tpass

and Tfail across all 35 data sets for the MaxSymTest was 0.69,

that is, the two trees are 69% as dissimilar as random pairs of

trees. This suggests that violations of SRH assumptions drive

large changes in tree topologies.

The results of the wSH tests (table 4) confirm that the

differences between trees that we observe tend to be statis-

tically significant. For example, when using the

MaxSymTestmar, Tpass is a significantly better description of

the Dpass data than Tall in �37% of the data sets, and better

than Tfail in �89% of the data sets.
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The Number of Substitutions Explains Less than One-Third
of the Variance in Passing or Failing the Tests of Symmetry

The number of substitutions in a partition explained 27.5% of

the variation in whether or not a partition passed or failed the

MaxSymTest (supplementary extended fig. 7, Supplementary

Material online). This proportion is very similar for

MaxSymTestmar (24.4%) (supplementary extended fig. 8,

Supplementary Material online), but is dramatically lower for

the MaxSymTestint (1.8%) (supplementary extended fig. 9,

Supplementary Material online). Thus, although the number

FIG. 2.—The proportion of partitions that reject the null hypothesis of the MaxSymTest, MaxSymTestmar, and MaxSymTestint (P value<0.05) in each data set.

Table 2

The Proportion of Partitions That Failed At Least One of the Three Tests—

MaxSymTest, MaxSymTestmar, and MaxSymTestint

Type/Genome Nuclear Mitochondrial Plastid Virus

First codon positions 20.2% 27.6% 33.3% 25.0%

Second codon positions 21.0% 7.4% 0.0% 25.0%

Third codon positions 76.6% 44.8% 0.0% 75.0%

Other (e.g., intron) 27.8% 100.0% 0.0%

rRNA 30.0% 25.0%

UCE 22.5%

tRNA 0.0%

Table 3

The Proportion of Data Sets That Have the Highest NPD Metric (and QD

metric) between the Three Comparisons (All-fail, All-pass, Pass–fail) for

MaxSymTest, MaxSymTestmar, and MaxSymTestint

Tfail Tpass

MaxSymTest

Tall 14.3% (4.8%) 4.8% (4.8%)

Tpass 80.9% (90.4%)

MaxSymTestmar

Tall 8.3% (0.0%) 8.3% (4.2%)

Tpass 83.4% (95.8%)

MaxSymTestint

Tall 28.6% (28.6%) 0.0% (0.0%)

Tpass 71.4% (71.4%)
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of substitutions in a partition is a highly significant (P< 2e-16)

predictor of passing or failing any of the tests, that it explains

only about a quarter of the variation suggests that other fac-

tors, such as underlying differences in the extent to which

partitions violate the SRH assumptions, are driving the remain-

ing �75% of the variation.

Model Violation Due to Non-SRH Evolution Affects the
Inferred Relationship between Even-Toed and Odd-Toed
Ungulates in the Tree of Mammals

To examine the effects of model violation in more detail, we

selected two data sets for more detailed consideration.

Conflicting support for the placement of Xenacoelomorpha,

the clade that contains Xenoturbella and Acoelomorpha, in

the tree of life across different analyses has led to various

hypotheses about the evolution of Bilateria (Cannon et al.

2016). In addition, the interordinal relationships in

Laurasiatheria, especially the relationships between

Fereuungulata (Perissodactyla, Cetartiodactyla, Carnivora,

and Pholidota), in the tree of placental mammals is controver-

sial (Cao et al. 1998; Zhou et al. 2012). It has been suggested

that such inferences might be strongly affected by model vi-

olation and systematic error (Cao et al. 1998; Delsuc et al.

2005; Philippe et al. 2011; Tsagkogeorga et al. 2013). To

assess whether data that pass or fail the MaxSymTestmar

show different signals regarding the evolution of the

Bilateria and the superorder Laurasiatheria, we examined in

more detail the Tall, Tpass, and Tfail trees from recent studies

that explored the tree of placental mammals (Lartillot and

Delsuc 2012) and the tree of all animals (Cannon et al.

2016). The mammals’ data set comprises 78 mammalian

taxa, including 73 placental mammals with 51 partitions rep-

resenting the first, second, and third codon positions of the

17 genes (Lartillot and Delsuc 2012). The tree recon-

structed from all of the partitions (Tall) and the tree recon-

structed from the partitions that pass the MaxSymTest

(Tpass, 29 partitions) both show Perissodactyla (odd-toed

ungulates) as a sister group to Cetartiodactyla (even-toed

ungulates) (fig. 3a and supplementary extended figs. 4 and

5, Supplementary Material online). Even so, the bootstrap

support for this branch is not high: 73% for Tall and 34%

for Tpass. On the other hand, the tree reconstructed from

the data that fail the MaxSymTest (Tfail, 22 partitions)

shows Perissodactyla as the sister group to the clade that

contains Carnivora þ Pholidota with 49% bootstrap sup-

port (fig. 3b and supplementary extended fig. 6,

Supplementary Material online).

The animal data set comprises 76 metazoan taxa, 2 choa-

noflagellate outgroups, 212 genes, and 424 partitions repre-

senting first and second codon positions (Cannon et al. 2016).

The tree reconstructed from all of the partitions (Tall) is iden-

tical to the trees reconstructed from the 381 partitions that

pass the MaxSymTest (Tpass), the partitions that fail the

MaxSymTest (Tpass, 43 partitions), and the tree shown in the

original paper from both DNA and amino acid data (Cannon

et al. 2016), which places Xenacoelomorpha as the sister

group of Nephrozoa (Deuterostomia and Protostomia) with

100% bootstrap support (supplementary extended figs. 1–3,

Supplementary Material online).

Discussion

In this article, we show that model violation is prevalent and

has a strong impact on tree reconstruction in many phyloge-

netic data sets. This impact varies substantially between dif-

ferent data sets and different types of partitions. The trees

inferred from different groups of partitions from the same

data set often have topologies that are biologically and statis-

tically significantly different.

Our results show great heterogeneity in the extent of model

violation among different data sets and partitions. This is dem-

onstrated by the varying proportion of partitions that failed the

matched-pairs tests of homogeneity in each data set and in

each genomic context (codon position, rRNA, tRNA, UCE, or

other) and type of genome (nuclear, mitochondrial, plastid,

and virus). Model violations are most frequently observed in

the third codon positions for viral, mitochondrial and nuclear

genomes, and intergenic spacers in plastid sequences. Yet, our

results affirm that non-SRH evolution is far from constrained to

these genomic regions. For example, in a data set of placental

mammals, of the 22 partitions that failed the MaxSymTest,

only 11 are third codon positions. The tree inferred from the

partitions that show significant violation of the SRH conditions

(Tfail) differs in its topology from the tree inferred from the

partitions that do not show significant violation of the SRH

conditions (Tpass) with respect to the interordinal relationships

in Laurasiatheria (fig. 3). The tree inferred from partitions that

violate the SRH conditions (Tfail) is consistent with the results

from the original paper in that it places Perissodactyla as a

sister group to Carnivora þ Pholidota (Lartillot and Delsuc

2012). However, other studies using ML analysis show

Perissodactyla to be a sister group to Cetartiodactyla (Graur

et al. 1997; Murphy et al. 2001; Tsagkogeorga et al. 2013; Liu

et al. 2017), which is also the relationship we find in this study

with the tree inferred from partitions that do not show signif-

icant violation of the SRH assumptions.

Examining the results of the two other tests

(MaxSymTestmar and MaxSymTestint) we noticed that all the

Table 4

The Proportion of Data Sets That Have a Significant P Value in the

Weighted SH Test When Using Dpass As the Input Alignment for the Test

Tall Tfail

MaxSymTest 25% 79%

MaxSymTestmar 37% 89%

MaxSymTestint 4% 28%
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partitions that failed the MaxSymTest also failed the

MaxSymTestmar, suggesting that those partitions are violating

the models mainly due to nonstationarity. Based on this ob-

servation, GC content may drive the differences between the

trees inferred from all partitions and those inferred from par-

titions that failed neither MaxSymTest nor MaxSymTestmar.

Trees with partitions that violate the models tend to group

together clades with similar GC content (e.g., as in Betancur-r

et al. 2013). However, it is hard to discern any clear evidence

for this from examining the GC content of the clades (fig. 3).

Yet, our results show that all the clades in the partitions that

failed the MaxSymTest have on an average a higher GC con-

tent (fig. 3).

The results of our study also provide some insight into the

likely cause of model violation in the data sets we examined.

Figure 2 shows that violation of marginal symmetry (assessed

with MaxSymTestmar) was much more common than violation

of internal symmetry (assessed with MaxSymTestint). This sug-

gests that nonstationarity, which is associated with marginal

symmetry, is likely a more common cause of systematic bias

than nonhomogeneity in the data sets that we examined (see

also Jayaswal et al. 2005; Ababneh et al. 2006; Song et al.

2010). Yet, the difference between the proportion of parti-

tions that failed the MaxSymTestmar and the proportion of

partitions that failed the MaxSymTestint could also be due to

the higher power of the MaxSymTestmar. Either way, this re-

sult hints that the development and application of nonsta-

tionary models (Yang 1994; Roberts and Yang 1995; Yap

and Speed 2005) may be an important avenue toward reduc-

ing systematic bias in future analyses. Moreover, our results

show a clear preference for simple substitution models with a

single transition/transversion ratio over more complex models

such as general time reversible. This suggests that developing

nonstationary models with a single parameter for the transi-

tion/transversion ratio might be sufficient to reduce systematic

bias in phylogenetic analysis.

One limitation of using the tests that we propose in this

article is that their power will be limited if there are few differ-

ences between the sequences being examined. Indeed, our

analyses show that in our representative sample of >3,500

partitions from published data sets, roughly �25% of the

variance in whether a partition passes or fails a given test

can be attributed to the number of observed differences be-

tween the sequences. Nevertheless, this implies that the

remaining �75% of the variance in whether a partition

passes or fails a test could be attributable to other processes,

such as variation in the extent of model violation among

partitions. This suggests that we should be cautiously optimis-

tic: although a lack of power on small or slowly evolving

partitions may induce some false negatives (i.e., failures to

identify partitions that have evolved under non-SRH condi-

tions), the tests we propose still have significant power to

identify partitions that show the evidence of model violation.

It is possible that removing such partitions from phylogenetic

analyses may improve the accuracy of results by reducing the

overall burden of model violation on the inference of the tree

topology. We hope that our implementation of these tests in

the user-friendly software IQ-TREE will allow empirical phylo-

geneticists to continue to explore whether this is the case.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.

Acknowledgments

The authors would like to thank Lars Jermiin, David Bryant,

Jeremy Brown, and one anonymous referee for providing

thoughtful comments on this article. This work was supported

by an Australian Research Council and Australian National

University Future Scheme Grants to RML.

FIG. 3.—Maximum-likelihood trees of mammalian relationships based on analysis of Lartillot 2012 data set. (a) The tree inferred from all 51 partitions

and from the 29 partitions that passed the MaxSymTest. (b) The tree inferred from 22 partitions that failed the MaxSymTest. Red numbers at the internal

branches indicate the bootstrap support values that are <100% under the best fitting model. Numbers in curly brackets show the GC content (in panel a,

%GC and bootstrap support values are for Tall and Tpass, respectively).
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