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The role of the immune system in cancer progression has beco
dent over the past decade. Chronic inflammation in the promot
is well established, and cancer-associated tolerance/immune ev
appreciated. Recent developments of immunotherapies targetin
inflammation and immune tolerance, such as cancer vaccines,
tralizing antibodies, and immune checkpoint inhibitors, have show
results. However, despite significant therapeutic advances, most
with metastatic cancer still succumb to their malignancy. Treatm
and the financial burden of novel therapies is significant. Thus, new
similar biological systems to compare complex biological process
hypotheses for combating cancer. One such approach is com
growth and regulation to tumor invasion and immune escape. Nove
immune activation in pregnancy, especially reactivation of the imm
through toll like receptor engagement by fetal derived DNA, may be
immunotherapy. This review summarizes mechanisms of inflammat
immunotherapies used in the clinic, and suggestions for looking 
novel methods to reverse cancer-associated tolerance and imm
utilizing mechanisms encountered in normal human pregnancy.
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host immune defenses. This last concept – the evasion of the host 
immune system – has become an increasingly recognized topic 
and therapeutic target in cancer biology. If the cellular machinery 
inside the cell cannot fix the mutations or cause apoptosis, the 
immune system must work to eradicate the developing cancer. 
However, tumor cells are “self,” making it more challenging for 
natural killer (NK) cells, cytotoxic T lymphocytes (CTLs), and 
other cellular effectors involved in immunosurveillance to target 
tumor cells compared to cells infected with a virus. Matzinger’s 
danger model states that the immune system is more concerned 
with damage (acute inflammation) signals than foreign antigens 
when eliciting a response (1). Since immune cells become toler-
ized by the tumor, they might not respond to danger signals the 
way a healthy immune system would. This interesting immuno-
logic paradox also exists in the setting of pregnancy, where the 
mother is continually exposed to haploidentical “foreign” cells 
from the fetus but does not mount an immunologic attack that 
would be deleterious to the pregnancy. Tumor cells may mimic 
trophoblastic cells of the placenta in that they downregulate dan-
ger signals while increasing expression of immunosuppressive 
mediators (2, 3).

Determining new methods to elicit strong, specific, and 
durable anti-tumor immune responses is the focus of many 
laboratories. However, a number of barriers to successful immu-
notherapy exist. The first barrier is the impaired baseline immu-
nologic function of cancer patients, even before they receive any 
therapy. For example, patients with advanced melanoma exist 
in a state of systemic chronic inflammation, which is driven, 
in part, by high levels of vascular endothelial growth factor 
(VEGF)-A secreted by the tumor to suppress the cancer targeting 
activity of immune cells (4, 5). The second barrier to successful 
immunotherapy is to determine which patients benefit from 
treatment. Analyzing blood from 21 patients on multiple vac-
cine trials who responded versus those that did not, researchers 
observed that melanoma patients who had a complete response 
were producing Th1-associated cytokines such as tumor necrosis 
factor (TNF) and interferon gamma (IFN-γ), unlike patients 
who had no response to the vaccine (6). It is well established 
that patients who have tumor-infiltrating lymphocytes (TILs) 
at the site of their malignancy tend to have better prognosis 
(7–10), and those who lack an organized immune response to 
melanoma have an extremely poor prognosis (11). The third 
barrier to successful immunotherapy is understanding when and 
how to couple immune-based therapies with standard cytotoxic 
chemotherapies or molecularly targeted treatments. Clinical and 
experimental data from our group and others have thus provided 
ample evidence that enriching our understanding of the host 
immune system’s interaction with malignancy is paramount to 
improving outcomes, regardless of mutational status and avail-
ability of targeted agents (12). The positive synergy accomplished 
by combining targeted therapy (i.e., BRAF or MEK mutations) 
with immunotherapy could also provide promising results and is 
currently being tested in a phase I clinical trial (NCT01767454) 
(13, 14). In this review, we will discuss the significance of immu-
nity in many different cancers, including melanoma, and current 
methods to modulate it. Then, we transition to immunologic 
mechanisms in pregnancy exploited by tumors, and conclude 

with emerging data regarding the potential benefit of cell-free 
(fetal) nucleic acids in the reconstitution and prolongation of 
anti-tumor immunity.

Current Knowledge and Methods in 
Cancer Biology

Biology of Chronic inflammation in Cancer
Clinical and experimental data have revealed that patient out-
comes in advanced cancers are strongly influenced by the type 
of immune response that is established prior to initial treatment. 
There are two important types of responses in cancer: acute 
(anti-tumor) and chronic (protumor) inflammation. Dr. William 
Coley was a pioneer in immunotherapy who utilized heat killed 
bacteria named “Coley’s toxins” to induce an acute inflamma-
tory response in sarcoma patients. Coley’s toxins resulted in 
5–10+ years of survival for ~50% of patients (15). This was the 
first clinical evidence that an acute inflammatory response will 
destroy tumor cells. After exposure to foreign antigen, innate 
cells such as macrophages and dendritic cells (DCs) travel to the 
site of infection and begin processing and presenting antigens 
to adaptive immune cells. Adaptive immune cells, specifically 
T and B lymphocytes, with specificity against the antigen then 
undergo expansion until that antigen is eliminated. In the setting 
of cancer, an acute inflammatory response causes destruction of 
the tumor through the activation of a Th1 T-helper cell response 
driven by IFN-γ and tumor killing by CTLs and NK cells. The 
expansion of M1, or classically activated macrophages, contin-
ues to activate other lymphocytes against the tumor through 
secretion of IFN-γ and presentation of tumor antigens (16, 17). 
Thus, immunosurveillance in an immune competent host can 
eliminate a majority of transformed cells before they induce 
malignancy (18).

If there is a prolonged (or suboptimal) exposure to the 
foreign antigen, a chronic inflammatory response is generated, 
which is supportive of tumor development and growth (19). In 
chronic inflammation, Th2 T-helper cells promote anergy, a loss 
of T-cell mediated cytotoxicity and B-cell activation through 
the secretion of interleukin (IL)-4, IL-5, IL-6, IL-10, and IL-13 
(20). Regulatory T-cells (Tregs) expand and migrate to the site 
of the tumor and suppress DC, CTL, and NK cell anti-tumor 
effects (21). High numbers of FOXP3+ Tregs in the tumor were 
found to correlate with disease stage and poor overall survival 
(22). Tumor-associated macrophages (TAMs), or M2 alter-
natively activated macrophages, promote tumor progression 
through their ability to regulate VEGF and angiogenesis (23, 
24). M2 polarization is triggered by chronically activated B-cell 
secretion of granulocyte-macrophage colony stimulating factor 
(GM-CSF), IL-6, and IL-10 (25). Myeloid derived suppressor 
cells (MDSCs) bind directly to CTLs and inhibit their anti-
tumor effects through nitric oxide (NO) secretion (26). MDSCs 
also contribute to tumor blood vessel formation and metastasis 
through the production of matrix metalloproteinase (MMP)-9, 
which releases high levels of VEGF into the bloodstream (27, 
28). These series of events work in concert to create a posi-
tive feedback loop that supports, rather than inhibits, tumor 
growth.
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The hypothesis that tumors arise from sites of chronic inflam-
mation was initiated by Virchow in 1863 and increasing amounts 
of evidence have supported his claim (29–32). Disease progres-
sion, metastatic spread to lymph nodes, tumor size, and patient 
survival correlate with high levels of CD4+ T-helper cells and 
low levels of CD8+ CTLs at the primary tumor in many types 
of cancers (33–37). Interestingly, transcription factor NF-κB was 
determined to be crucial for inflammation, and more recently, 
tumorigenesis as numerous cancer types show constitutive acti-
vation of NF-κB (38–41). Moreover, Helicobacter pylori infection 
is one of the main risk factors for gastric cancer and is believed 
to promote tumorigenesis through NF-κB activated transcrip-
tion of IL-1, IL-6, IL-8, TNF-α, and cyclooxygenase-2 (COX2), 
which are all mediators of chronic inflammation (42, 43). Finally, 
chronic viral infections such as human papillomavirus (HPV) 
and hepatitis (both B and C) have been directly linked to cervical 
cancer, head and neck cancer, and liver cancer, respectively (44, 
45). A case-control study conducted in the United States found 
that long-term use of non-steroidal anti-inflammatory drugs, as 
means to dampen chronic inflammation, decreased a person’s 
risk of developing melanoma by almost 50% (46). Altogether, 
mediators of chronic inflammation support the tumor’s ability to 
proliferate, invade, and migrate within the host promoting tumor 
cell survival.

therapeutics designed to enhance immunity 
against Cancer
Many strategies exist to treat patients with various types of can-
cer. Targeting and destroying tumors using the host’s immune 
system is the basic principle of modern cancer immunotherapy. 
However, many patients do not respond to immunotherapy, 
the drugs are costly, and patients may suffer immunologic 

taBLe 1 | therapeutic efficacy and related toxicities of drugs developed for cancer treatment.

therapeutic strategy target Clinical benefit toxicity reference

iMMUnotHerapy

Ipilimumab Anti-CTLA-4 Increased OS from 6.4 to 10 months 15% had grade 3 or 4 AE (55)
Pembrolizumab Anti-PD-1 Response rate of 38% Grade 1 or 2 AE (56)
Ipilimumab + Nivolumab Anti-CTLA-4 plus Anti-PD-1 Objective response 53% 50% had grade 3 or 4 AE (57)
BMS-93655 Anti-PD-L1 Objective response 6%–17% 9% had grade 3 or 4 AE (58)

MonoCLonaL antiBodies

Trastuzumab Anti-HER2/neu Increased OS from 20.3 to 25.1 months 27% had cardiac toxicity (59)
Bevacizumab Anti-VEGF Increased OS from 15.6 to 20.3 months Grade 3 hypertension (60)
Rituximab Anti-CD20 Clinical remission in 46% of patients Grade 1 or 2 AE (61)

VaCCines

Provenge PAP plus GM-CSF Increased OS from 21.7 to 25.8 months Grade 1 or 2 AE (62)
Gardasil HPV type 6, 11, 16, and 18 Efficacy was 98% Grade 1 or 2 AE (63)
Pemetrexed MAGE-A3 + TLR4 + TLR9 No difference in OS 9% had grade 3 or 4 AE (64)
Synthetic long-peptide HPV-16 E6 plus HPV-16 E7 Response rate of 79% Grade 1 or 2 AE (65)

adoptiVe CeLL transFer

T-cells MART-1 or gp100 Response rate of 46% Autoimmune events (66)
Naïve T-cells LY6K-177 peptides Response rate of 22% Grade 1 or 2 AE (67)
Memory T-cells MCF-7 cell lysate antigen Increased OS to 33.8 months No toxicity noted (68)
CAR therapy Modified CD19 Response rate of 90% Cytokine release syndrome (69)
CAR therapy GD2 antigen Median OS 931 days 15% had grade 1 or 3 AE (70)

AE, adverse event; HPV, human papillomavirus; OS, overall survival; PAP, prostatic acid phosphatase.

adverse events (AEs) that can be severe or life threatening. 
Table  1 summarizes results from clinical trials and the tox-
icities associated with therapy. Checkpoint inhibitors have 
revolutionized immunotherapy and are considered one of the 
most effective therapies for utilizing the immune system against 
tumors. Examples include anti-cytotoxic T lymphocyte antigen 
4 (CTLA-4), anti-program death 1 (PD-1), and anti-program 
death ligand 1 (PD-L1) reviewed by Topalian et al. (47). The use 
of antibodies to block proteins known to promote tumor growth 
is of significant current interest in cancer therapy. Many of these 
drugs have shown to induce a response as a single agent or in 
combination with chemotherapy. Anti-VEGF)-A, anti-human 
epidermal growth factor receptor 2 (HER2/neu), and anti-CD20 
are a few monoclonal antibodies used in oncology, but there are 
many more being studied (48). Immune-stimulating vaccines 
have also been developed for cancer patients. Therapeutic vac-
cines require a tumor specific antigen and an activation signal 
(immune adjuvant), such as a toll like receptor (TLR) agonist, 
in order to stimulate an immune response against an already 
established tumor. Common tumor antigens include melan-A, 
NY-ESO-1, B7C, and MAGE-1 (49–52). However, the challenge 
with many of these peptides is that they can be easily cleared 
without activating DCs. In addition, tumor antigen heterogeneity 
and changing expression of these antigens makes targeting inef-
fective. The most successful cancer vaccines include Provenge 
and Gardasil. Yet, the challenges with developing therapeutic 
vaccines include the many differences that are documented 
between trials, including vaccine strategy, antigen dose, tumor 
and patient heterogeneity, severity of disease, and vaccine adju-
vants, which can all confound the results. These variables must 
be considered when developing therapeutic vaccines and testing 
their efficacy in clinical trials. Adoptive cell transfer (ACT) is 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


August 2015 | Volume 6 | Article 4244

Enninga et al. Fetal DNA to activate anti-tumor immunity

Frontiers in Immunology | www.frontiersin.org

another modality of cancer immunotherapy where cells, which 
can be unmanipulated, antigen-specific, or stimulated, are uti-
lized to kill cancer cells in lymphodepleted patients. ACT has 
been successful at breaking tolerance in many cancers. Chimeric 
antigen receptor (CAR) therapy utilizes both targeting antibod-
ies and cytotoxic CD8 T-cells for destroying cancer cells in a 
similar manner as ACT. For CAR therapy, T-cells are collected 
from cancer patients, expanded in vitro and their receptors are 
modified to more specifically target the tumor when given back 
to the patient (53). Despite some of these incredible response 
rates, ACT is expensive, requires that the patient have adequate 
lymphocytes for collection, needs specialized manufacturing 
facilities, regulatory hurdles, and is time prohibitive (54).

novel insights of immune tolerance from 
pregnancy Biology

immunology of pregnancy: Breaking tolerance 
prior to Labor
Exploring similar systems, such as immune tolerance of a 
haploidentical fetus, takes another approach to understanding 
complex immune regulation in tumorigenesis. The maternal 
immune system must effectively balance tolerance to paternal 
antigens while continuing to protect the mother from infec-
tion; failure to do so can result in negative pregnancy outcomes 
(71). Thus, a T-helper 2, or Th2, immune response has been 
defined as the dominant phenotype during pregnancy, and this 
phenotype is also evident in metastatic cancer (4, 72). The most 
profound similarity is that both must evade immune recognition 
and destruction by the host/maternal system while expressing 
foreign antigens (tumor versus paternal). Yet, how a fetal 
allograft is not rejected although the maternal immune system 
continues to be capable of responding to other foreign antigens 
remains of significant scientific interest today. Many have made 
the observation that tumors mimic the tolerant immune state 
required by a trophoblast for successful implantation (early 
pregnancy) (3, 73, 74). However, a modification occurs in late 
pregnancy leading to an acute inflammatory response driven by 
proinflammatory cytokines, hormones, and chemokines, which 
traffic effector leukocytes to the myometrium and initiate labor 
(75). The exact mechanism as to how labor is initiated in human 
beings remains unclear. Placental tissue derived from women 
with recurrent pregnancy loss showed signs of inflammation, 
such as elevated NK cells, thromboembolism, insufficient 
trophoblast invasion, and lesions compared to placental tissue 
from healthy pregnancies (76). In a murine model, complement 
activation decreased VEGF-A, which leads to miscarriage 
or growth restriction, and blocking complement activation 
reversed this affect (77). This demonstrates the necessity of 
careful immune regulation at the fetal–maternal interface in 
order to establish a viable pregnancy. Others have studied 
pregnant women and found that tumor-associated antigens 
(TAAs) like MUC1, HER2/neu, WT-1, and PRAME, which are 
highly expressed in placental tissue, elicit the strongest immune 
response during the first and second trimester, declining after 
delivery and the completion of nursing; however, history of 

delivery was not correlated with increasing immune responses 
(78). This suggests that although the fetus is being tolerated by 
the mother’s immune response, maternal immunity is still fully 
capable of reactivating when given a strong enough stimulus. 
Through better understanding of the mechanisms that drive 
immune reactivation (labor), we can gain valuable insight into 
possible tools to use for promoting tumor destruction in cancer 
patients.

Fetal derived nucleic acids for immune 
activation
Cell-free fetal DNA (cff-DNA) and RNA strands are shed into 
the maternal system during pregnancy. The concentration of 
these nucleic acids increases in the circulation with the length 
of gestation (79, 80). During early gestation, the concentration 
of cff-DNA in plasma ranges between 0.022 and 0.46 ng/mL, 
which increases to 5.08ng/mL by late pregnancy (81). Clinically, 
these sequences have been used to determine chromosomal 
abnormalities or genetic mutations that a child might have 
inherited (82). A new hypothesis recently arose suggesting 
that the increase in cff-DNA at term could activate TLRs on 
maternal cells, which leads to the breakage of immune toler-
ance, the activation of innate immune cells, and finally the onset 
of labor (83). It has been well documented that foreign DNA 
is recognized by TLR9, and RNA is recognized by TLR3 on 
immune cells, which activate inflammatory processes (84, 85). 
TLR9 is found in the endosome of peripheral blood mononu-
clear cells, such as monocytes, macrophages, T, B, and NK cells, 
whereas TLR3 is expressed only in the endosomes of myeloid 
derived cells such as DCs and monocytes (86). Fetal RNA is 
derived from the placenta and was shown to be surprisingly 
stabile in plasma, although lower levels are detected compared 
to cff-DNA (87). Apoptosis of placenta and trophoblastic cells 
are believed to be the major source of cff-DNA in the maternal 
bloodstream (88, 89).

Studying pregnancy disorders may also provide important 
mechanisms to reactivating inflammation for cancer patients. 
Three weeks before onset of symptoms, cff-DNA was increased 
between two- and five-fold in plasma of women suffering from 
preeclampsia compared to women with healthy pregnancies 
(90). Timing of the measurement and maternal health (BMI) 
are known confounders of cff-DNA measurement, thus 
another group found no difference between cff-DNA levels in 
preeclamptic women (91–93). From these discrepancies, a new 
idea was proposed: cff-DNA may be proinflammatory and high 
levels may send a danger signal to the maternal immune system 
(83). Using a mouse model of pre-term birth and preeclampsia, 
high levels of cff-DNA stimulated TLR9 to initiate acute inflam-
mation, which caused fetal reabsorption at days 10–14, and 
knocking out TLR9 diminished this result (94). In general, TLRs 
and proinflammatory cytokines are overexpressed in women 
suffering from preeclampsia versus those with healthy pregnan-
cies (95). In women suffering from hyperemesis gravidarum, 
cff-DNA levels were found to be 2.5-fold higher than healthy 
controls, and this is believed to be due to the increased activa-
tion of the maternal immune system, specifically the increased 
levels of cytotoxic T-cells and NK cells in the decidua and blood 
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of the mother which target the haploidentical fetus (96, 97). 
Figure 1 shows a schematic of this possible process RNA and/
or DNA could use to activate the labor process in pregnancy and 
how this mechanism could be manipulated for tumor rejection 
in cancer patients. Fetal DNA or RNA, at a critical concentration 
in maternal plasma, could be recognized by TLRs and processed 
by myeloid cells such as DCs or NK cells. These cells could then 
present this fetal antigen to lymphocytes resulting in an acute 
inflammatory response that leads to labor. This mechanism 
might also be applicable to reactivating anti-tumor immunity 
in cancer patients. Taken together, understanding of cff-DNA 
as possible proinflammatory mediator and predictive marker 
for disease onset during pregnancy could become a powerful 
resource for obstetrics research with translational value to 
oncology.

Sequence length, epigenetic modification, and/or confirma-
tion of DNA may also be a critical factor when it comes to the 
ability of soluble DNA to activate immune cells. CpG motifs 
derived from Escherichia coli were the first sequences character-
ized, which bind and activate TLR9 in B-cells and plasmacytoid 
dendritic cells (pDCs) (84, 98). These unmethylated, often 
palindromic CpG motifs are more frequently found in bacterial 
DNA compared to DNA from human beings and short oligode-
oxynuleotide (ODN) have been synthesized showing the same 
ability to activate TLR9 as bacterial DNA, suggesting sequence, 
not length, is imperative to achieve TLR9 activation (84). 

FiGUre 1 | overview of how cell-free fetal derived rna or dna from pregnancy can activate an inflammatory immune response through toll like 
receptors, which could be applied to novel cancer treatments.

Interestingly, cff-DNA is comprised of mostly short sequences 
of 0.3  kb compared to maternal DNA (99). It is possible that 
this shorter length of cff-DNA may contain similar palindromic 
CpG sequences to the ODN sequences, which can effectively 
activate TLR9 signaling. Methylation typically occurs in CpG-
rich regions (or promotor sites) in the mammalian genome and 
results in the suppression of transcription (100). Cff-DNA also 
has distinct methylation patterns based on differentiation during 
embryogenesis that are unlike the maternal genome (101). Poon 
et al. utilized the IGF2-H19 locus to distinguish chimeric fetal 
DNA from maternal since this region is only methylated on the 
paternal allele (102). Another example is the maspin gene promo-
tor, which was found to be hypomethylated in placental tissue 
compared to hypermethylated in maternal blood cells (103). Since 
cff-DNA is likely derived from the placenta, utilizing methylation 
status in plasma could be a more effective way to distinguish fetal 
derived DNA irrespective of the sex of the fetus or polymor-
phisms. This finding is similar to unmethylated ODN sequences 
used to activate TLR9 signaling. When the ODN sequence was 
methylated, researchers found no immune stimulatory effects 
compared to the unmethylated sequence, demonstrating the 
importance of this epigenetic marker (84). Further research into 
whether these epigenetic markers make a difference in affinity 
for TLR binding and activation of innate immunity needs to be 
completed. Additionally, the folding pattern of cff-DNA may 
also be important for effective receptor triggering and signaling. 
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tumor-derived circulating dna.

Characteristic Cell-free fetal dna Circulating tumor 
dna

Methylation status Hypomethylated Hypermethylated

Size ~300 bp 70–200 bp or 21 kb+

Plasma concentration Early: 0.02–0.46 ng/mL; Late: 
0.46–5.08 ng/mL

180 ng/mL

Origin Apoptosis of placenta or fetal 
cells

Necrosis of tumor 
cells
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DNA can self-assemble into many different structures based on 
nucleic acid abundance and/or intrinsic atom properties (104). 
Thus, specific folding patterns of nucleic acids could be better at 
activating innate immune receptors compared to other patterns. 
Taken together, understanding the multiple factors that could be 
pivotal to circulating DNA may help us better understand hap-
loidentical cell-free DNA or RNA and how it could be utilized in 
cancer patients to activate anti-tumor effects.

Circulating nucleic acids and toll like receptor 
signaling in Cancer
Interestingly, there are cell-free nucleic acids found in healthy 
individuals and these levels were found to be elevated in blood of 
patients with many different cancers (105–109). It is unclear how 
this DNA gets into the bloodstream, but it is believed to be the by-
product of macrophage engulfment of necrotic and/or apoptotic 
cells (110). Since tumors have areas of high necrosis, this hypoth-
esis would explain the increase in circulating tumor (ct)-DNA 
fragments found in cancer patients. In addition, particle associ-
ated RNA was also found at increased levels in cancer patients 
compared to healthy individuals, although much less studied 
(111). The size of these DNA fragments is also important to note, 
varying from small fragments (70–200  bp) to large fragments 
around 21 kb (112). Serum from cancer patients has an average of 
180 ng/mL of cell-free DNA compared to healthy subjects having 
an average of only 30 ng/mL (107, 113). Determining which DNA 
sequences have tumor origin versus background circulating 
DNA fragments is difficult and the use of these fragments for 
diagnostic or prognostic value remains controversial. In breast 
cancer, high levels of ct-DNA correlated with tumor size, grade, 
staging, lymph node status, and metastasis (105, 109). Survival 
was also reported to correlate with ct-DNA levels: breast cancer 
patients with high levels of ct-DNA in their blood had a lower OS 
than those with low levels of ct-DNA (114). Yet, others find no 
correlation between level of ct-DNA and survival in lung cancer 
or colorectal cancer (115, 116). Some of these differences could be 
due to the challenges and methods of isolating these short frag-
ments including blood collection and processing methods, time 
elapsed between draw and isolation, and the isolation technique 
(117). Epigenetics of ct-DNA was also found to be important 
in the development of carcinogenesis, and new methods are 
being developed for measuring differentially methylated tumor 
DNA. Methylation studies have demonstrated transcriptional 
repression at CpG islands of tumor suppressor genes that lead 
to cancer progression (118). Thus, many new technologies are 
being developed to find hypermethylated promotors, especially 
proto-oncogenes regions, which are not present in healthy per-
sons. CDKN2A, PARP-1, and GSTP1 are just a few genes that 
were found to be hypermethylated in ct-DNA and tumor tissue, 
and are being studied for biomarker use (119–121). In many 
instances, hypermethylation has been found to correlate with 
worse survival; therefore, many groups are working on develop-
ment of epigenetic therapy, which has been reviewed by Jones 
and Baylin (122). Although the results of ct-DNA studies remain 
inconclusive, the promise of using a minimally invasive method 
to diagnosis and treat cancer patients makes it worth continually 
pursuing.

As suggested above, TLR signaling could be significant for 
the reactivation of immunity in pregnancy and possibly cancer. 
However, biology tells us that a patient’s cell-free DNA does not 
activate TLR signaling on their immune cells; if it did, autoim-
munity would occur. Table 2 compares and contrasts cff-DNA 
to ct-DNA. Major known differences include methylation 
status and size; however, sequence and structure have yet to be 
considered as possible differences between the two. Overall, a 
better understanding of TLR adjuvants is critical to improve 
patient care. Clinically, there are several TLR agonists which 
have been tested for the treatment of cancer. TLR9 is expressed 
on chronic lymphocytic leukemia cells and will undergo 
apoptosis when given CpG ODN 2006 (TLR9 agonist) in vitro 
(123). TLR3 agonist bacillus Calmette–Guerin (BCG) given 
to mice prior to tumor injection, were less likely to develop 
tumors than their untreated littermates and this was due to the 
increase in TNF (124). Clinically, TLR agonists have not been 
as impressive as their pre-clinical results. In phase II studies 
of CpG ODN 2006, anti-tumor effects were modest in T-cell 
lymphoma and melanoma as a single agent (125, 126). BCG 
was approved for early stage bladder cancer after randomized 
studies showed that 88% of patients had a complete response 
and a reduction in tumor recurrence (127, 128). The challenge 
with development of TLR agonists includes understanding 
which TLRs are involved in protumor versus anti-tumor effects 
and how to target these agonists to the site of the tumor more 
effectively. Although the effects have been moderate, there is 
hope that combination with other drugs along with specifically 
targeting the anti-tumor T-cells will improve clinical efficacy 
(129). Immune responses are tightly regulated; just as TLR 
stimulation will activate responses it will also suppress them as 
to prevent autoimmunity. TLR7/8 and TLR4 agonists promote 
expression of negative co-stimulatory PD-L1 on DCs, which 
inhibits anti-tumor effects (130). However, a combined PD-1/
PD-L1 blockade with a TLR3 agonist resulted in an increase 
of CD8 T-cell effectors and anti-tumor responses in a murine 
melanoma model (131). Maternal microenvironment may 
also play a key role in regulating responses to nucleic acids. 
During pregnancy, IL-27, a Th1 promoting cytokine, increases 
with length of gestation and decreases just after delivery in a 
very similar fashion to fDNA in maternal plasma (132). Thus, 
along with a critical concentration of DNA, other factors, such 
as known proinflammatory cytokines, are likely required to 
further drive activation of lymphoid and myeloid cells against a 
haploidentical fetus and an altered-self tumor.

FiGUre 2 | activation of tLr signaling cascade on Cd14+ monocytes 
with addition of cff-dna. Venn diagrams showing similar genes involved in 
the TLR signaling pathway having a fold change cut off of 2. (a) Three 

different healthy CD14+ monocyte populations treated with the same cff-DNA. 
(B) One healthy CD14+ monocyte population treated with three different 
cff-DNAs.
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Conclusion

The role of the immune system in cancer progression and 
response to therapy has become increasingly appreciated in the 
past decade. Research into the development of chronic inflam-
mation and the promotion of tumor growth has shed light on 
the need for immunologic intervention in order to cure cancer. 
Advancements in immunotherapies, including vaccines, cell 
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ing outcomes.
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