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Abstract: Cancer is an important factor threatening human life and health; in recent years, its
morbidity and mortality remain high and demosntrate an upward trend. It is of great significance to
study its pathogenesis and targeted therapy. As the complex mechanisms of epigenetic modification
has been increasingly discovered, they are more closely related to the occurrence and development of
cancer. As a reversible response, epigenetic modification is of great significance for the improvement
of classical therapeutic measures and the discovery of new therapeutic targets. It has become a
research focusto explore the multi-level mechanisms of RNA, DNA, chromatin and proteins. As an
important means of cancer treatment, radiotherapy has made great progress in technology, methods,
means and targeted sensitization after years of rapid development, and even research on radiotherapy
based on epigenetic modification is rampant. A series of epigenetic effects of radiation on DNA
methylation, histone modification, chromosome remodeling, RNA modification and non-coding
RNA during radiotherapy affects the therapeutic effects and prognosis. Starting from the epigenetic
mechanism of tumorigenesis, this paper reviews the latest progress in the mechanism of interaction
between epigenetic modification and cancer radiotherapy and briefly introduces the main types,
mechanisms and applications of epigenetic modifiers used for radiotherapy sensitization in order to
explore a more individual and dynamic approach of cancer treatment based on epigenetic mechanism.
This study strives to make a modest contribution to the progress of human disease research.

Keywords: radiotherapy; epigenetic modification; DNA methylation; histone modification; chromatin
remodeling; RNA modification

1. Introduction

In recent years, cancer is eroding human life, and its occurrence and development is
closely related to genetic and epigenetic changes. At the same time, the emergence of more
and more cancer patients and the diversity of cancer also force people to adopt a variety of
methods to treat and prevent cancer. Currently, surgery, radiotherapy and chemotherapy
are the main methods for cancer treatment. Additionally, immunotherapy has gradually
developed. Radiotherapy is one of the main treatments currently in use, and about 50% of
cancer patients receive radiotherapy [1]. Radiotherapy involves DNA damage caused by
ionizing radiation (IR), which aims to damage or kill cancer cells [2]. Radiotherapy can be
used alone or in combination with other treatments. Meanwhile, radiation treatment will
inevitably cause damage to normal tissue around the cancer [1]. Radiotherapy can remove
cancer cells in various ways: It can either directly act on the DNA or indirectly cause DNA
damage through free radicals produced by IR. In addition to genetic changes to DNA of
cells, IR can also affect their epigenetics.

Epigenetics refers to a stable heritable phenotype caused by chromosomal changes
without alterations to the DNA sequence [3]. Epigenetic modifications such as DNA methy-
lation, histone modification, chromatin remodeling, RNA modification and changes in
non-coding RNAs, including miRNA, govern epigenomic alterations (Figure 1) [4]. Studies
have found that the occurrence of cancer is closely related to changes in epigenetics [3];
meanwhile, IR can achieve the purpose of treatment by intervening the epigenetics of some
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types of cancer. Therefore, the study of epigenetics is of great significance to cancer. With
deepening research, it was observed that some epigenetic modifiers can be used as radia-
tion sensitizers, such as histone deacetylase(HDAC) inhibitors, DNA methyltransferase
(DNMT) inhibitors, EZH2 inhibitors BET inhibitors, etc. They can destroy DNA-damage
repair and cell cycle and increase oxidative stress to enhance the anti-tumor activity of
radiotherapy [5]. The drugs can be used as an important partner for cancer radiotherapy. In
this review, we will summarize the relationship between epigenetics and cancer occurrence,
and we explore some progress in radiotherapy based on epigenetics.
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Figure 1. Chromosomes are genetic material in cells and are composed of DNA and proteins,
and proteins are mainly histones. DNA can be transcribed and translated into RNA (coding RNA
and non-coding RNA) and proteins in cells. Chromatin, histone, DNA and RNA can undergo
epigenetic changes such as DNA methylation, histone methylation, histone acetylation and RNA
methylation. Studies found that IR can affect cell epigenetics, and it can be applied to DNA and cause
DNA methylation levels to be higher or lower. IR also can affect the level of histone methylation,
acetylation and tumor cells’ RNA adenosine levels of methylation by acting on enzyme. In addition,
it will also affect non-coding RNAs and chromatin remodeling.

2. Epigenetics

Epigenetics was first proposed by Conrad H. Waddington, a Scottish embryologist and
geneticist. With the development of modern science, epigenetics has developed from an
obscure beginning into a widely recognized branch of biology. The concept of epigenetics
has changed by time [6]. There is also a greater understanding of the molecular mechanisms
underlying epigenetic regulation.

DNA methylation was discovered by Hotchkiss (1948) in calf thymocytes. It refers to
the chemical modification process in which specific bases on DNA sequence obtain a methyl
group by covalent bonding with S-adenosine methionine (SAM) as methyl donor under
the catalytic action of DNMT. DNA methylation is a kind of heritable symmetric epigenetic
mark, which almost only exists on the cytosine residue carbon 5 in high eukaryotes, and
the main target of methylation is CpG dinucleotide [7]. Histone modification was first
proposed in 1950. The main covalent histone modifications are acetylation, methylation,
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phosphorylation, ADP-ribosylation, ubiquitination, SUMOylation, citrullination, glycosyla-
tion, hydroxylation and isomerization. Acetylation, methylation and phosphorylation are
best studied in the context of gene expression regulation, chromatin structure establishment,
replication and DNA repair [7]. Chromatin needs to undergo a series of changes during
gene expression. For example, in eukaryotes, nucleosomes are the basic unit of chromatin.
Because genomic DNA is tightly wrapped around the histone octamer in the nucleosome,
its function is severely limited in chromatin. In order to overcome the nucleosome barrier,
nucleosome structure must change dynamically during genomic DNA function [8], such
changes in chromatin structure that occur during gene expression regulation are called
chromatin remodeling. RNA modification has always been considered as a relatively static
trimmer of RNA structure and function. However, studies have shown that RNA modifica-
tion is reversible and dynamically regulated, and the activity of RNA modification can be
regulated by many factors. Approximately half of mutations in RNA modifying enzymes
are known to be associated with human diseases, including cancer, cardiovascular disease,
inherited birth defects, metabolic diseases, neurological diseases and mitochondria-related
defects [9]. The central tenet of molecular biology states that RNA’s function revolves
around protein translation. Until the last decade, most studies focused on characterizing
RNA as a mediator of protein translation, emphasizing the functions of mRNA, tRNA
and rRNA. However, these processes account for less than 2% of the genome and are not
sufficient to explain 98% of the functions of transcribed RNAs. Recent discoveries have
revealed thousands of unique non-coding RNAs (ncRNAs) and have changed the view of
them from “junk” transcripts to “unexplained” and are potentially extremely important. In
major cancers, ncRNAs have been identified as carcinogenic drivers and tumor suppressors,
suggesting a complex regulatory network between these ncRNAs [10]. Thus far, studies
have shown that epigenetic changes are not only related to the occurrence of cancer but
they can also be affected by radiotherapy on the epigenetic changes of cancer cells.

3. Epigenetics in Cancer Occurrence and Cancer Radiotherapy
3.1. DNA Methylation
3.1.1. DNA Methylation and Carcinogenesis

DNA methylation is the earliest and most widely studied aspect of epigenetics. In-
creasing evidence shows that DNA methylation is closely related to the occurrence and
development of cancers [11]. CpG islands are located in the promoter region and tran-
scriptional initiation site of the gene, which are prone to DNA methylation and change
the expression of oncogenes and tumor suppressor genes [12]. In the development of
cancer, the methylation of specific gene promoter is considered to be a predictor of ra-
diosensitivity and a prognostic factor. The typing of molecular subtypes based on DNA
methylation is also closely related to the clinical characteristics of some cancers [13]. The
hypermethylation of CGI in the promoter region leads to the silencing of tumor suppressor
genes, while the overall hypomethylation of repetitive elements leads to the reactivation of
retrotransposons, both of which affect the stability of the genome and become risk factors
for cancer (Figure 2a) [14].

Promoter hypomethylation is the key mechanism of the upregulation of SLCO4A1-AS1
in colorectal cancer (CRC). SLCO4A1-AS1 promotes the occurrence of CRC by strengthening
the binding of Hsp90 and Cdk2 (Figure 2a) [15]. UNC5 receptor inhibition mediated by
the hypermethylation of the promoter plays an important role in the occurrence and
progression of CRC (Figure 2a) [16]. ZBTB28 is highly expressed in normal renal tissue,
but it is significantly downregulated in renal cell carcinoma (RCC) cell lines because
its promoter is often methylated. As a tumor suppressor gene, ZBTB28 can inhibit cell
proliferation and metastasis and promote apoptosis. Its silencing induces the development
of RCC (Figure 2a) [17]. The increase in UHRF1 in cervical cancer (CC) tissue promotes
the hypermethylation of the TXNIP promoter to downregulate the expression of TXNIP,
thus promoting carcinogenesis (Figure 2a) [18]. SULT2B1 can inhibit the proliferation
of esophageal squamous cell carcinoma (ESCC) cells, and the hypermethylation of its
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promoter can promote the progression of esophageal tumor by downregulating PER1
(Figure 2a) [12].
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We know that some cancers are thought to be associated with specific viruses, and
several recent studies have shown that epigenetic mechanisms may be involved in the
process of virus inducing cancer and the progression of cancer. LMP1 encoded by EBV can
inhibit the expression of RASSF10 and induce DNA methylation of RASSF10 by recruiting
DNMT1 to promote tumorigenesis (Figure 2a) [19]. In another study, the difference in
hTERT methylation patterns in CC specimens was related to the type of HPV [20].

3.1.2. Radiotherapy and DNA Methylation

Methylation or demethylation of DNA and changes of DNMT may be induced during
radiotherapy [21]. The characteristics of its changes in different cancer are also important
factors to comprehensively evaluate whether the treatment regimen can improve the quality
of life of patients. With the progress of treatment technology and the increase in long-term
survival rates, the risk of secondary diseases induced by radiotherapy has been paid more
and more attention [22]. In the study of rat breast cancer, it was found that the radiation-
induced polycomb repressive complex 2 (PRC2)-mediated DNA hypermethylation of
transcription factors may lead to cancer cell dedifferentiation and participate in radiation-
induced breast cancer (Figure 2b) [22].

Previous studies have shown that IR can induce cognitive impairment [23]. Recent
studies have found that the expression of DNMT1 and other methylases related to con-
sciousness decreased after craniocerebral irradiation, suggesting that the occurrence of
disturbance of consciousness after radiotherapy may be related to the epigenetic mecha-
nism (Figure 2b) [24,25]. Another study found that in childhood cancer survivors (CCS,
>16 years old) after receiving total body irradiation (TBI) and hematopoietic stem cell
transplant (HSCT), CD4+ and CD8+T cells tended to show lower overall DNA methyla-
tion levels, while monocytes tended to show higher methylation levels, suggesting that
TBI/HSCT may be related to long-term immune disturbances (Figure 2b) [26].

In addition to radiation-induced complications, the efficacy of radiotherapy is also a
point of concern, and it is closely related to the radiosensitivity of tumor cells. Different
epigenetic characteristics may exist before irradiation, but during treatment, specific DNA
methylation changes may also be involved in the mechanism of regulating cell survival,
thus forming a target for radiosensitization [27]. Therefore, in the individualized treatment
of cancer, the detection of epigenetic status before and during radiotherapy is of great
significance. A recent study found that DNMT3B silencing restores the function of p53
and p21 through DNA demethylation, which induces cell cycle arrest and apoptosis. IR
can induce the increase in DNMT3B and the methylation of p53 and p21 to promote the
radiation resistance of nasopharyngeal carcinoma (Figure 2b) [28]. The average methylation
percentage of DAPK1 and BRCA1 genes decreased and the transcriptional levels of BRCA1
and DAPK1 genes increased significantly in the samples of CC patients before and after
radiotherapy and chemotherapy with 10 Gy. BRCA1 is involved in the repair of damaged
DNA, while DAPK1 is a pro-apoptotic gene and may inhibit metastasis (Figure 2b) [29].

Studies have shown that radiation may induce the increase or decrease in miRNA ex-
pression [30], which may also be related to the methylation status of its upstream promoter.
In a study, TET2 gene promotes radiation-induced demethylation of miR-378a promoter
through interactions with ATF2, while miR-378a-3p can reduce the cytotoxicity of NK cells
by inhibiting the expression of granzyme-B (Figure 2b) [31]. Interestingly, another kind of
miRNA, miR-10b, was found to be overexpressed in esophageal squamous cell carcinoma
and CRC [32,33], and it has a role in promoting cancer invasion and progression. However,
in some cancers, such as gastric cancer, it may be found as a new tumor suppressor and
partially silenced by hypermethylation of DNA in gastric cancer [34]. In a study of thyroid
cancer, miR-10b-5p reduced the growth rate and viability of irradiated 8505c cells (derived
from human thyroid cancer) [35]. More mechanisms of the interaction between cancer
radiotherapy and miRNA will be explained in more detail in the RNA section below.
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3.2. Histone Modification
3.2.1. Histone Modification and Carcinogenesis

Histone modification is another very important part of epigenetics, including histone
methylation, acetylation, phosphorylation and ubiquitin. Histone modification regulates
gene expression, which is closely related to transcription and DNA repair [36–38]. In these
processes, histone modification also interacts with DNA methylation [39].

The change of histone acetylation level is closely related to the occurrence of some
tumors, such as deacetylation may promote tumorigenesis by down-regulating the ex-
pression of tumor suppressor genes. A recent study reported that the decrease in H3K9ac
levels regulates the expression of related genes such as proliferation and migration of
pancreatic cancer cells through the Ras-ERK1/2 pathway [40]. In sporadic parathyroid
adenomas, promoter methylation and H3K9 deacetylation together lead to the silencing
of tumor suppressor gene PAX1 [41]. Another study examined the difference in H3K27ac
levels between papillary thyroid carcinoma (PTC) and benign thyroid nodules (BTN) and
found that the changes may be related to the occurrence and prognosis of papillary thyroid
cancer [42].

The role of histone methylation and its related enzymes in tumorigenesis has also
been widely reported. A recent study shows that H3K36me2 plays a key role in tumorigen-
esis [43]. However, some histone methyltransferases, such as SETD8, have been found to
be significantly overexpressed in RCC and can be positively correlated with tumor grade
and stage as a prognostic factor [44]. Another histone methyltransferase NSD2-mediated
H3K36me2 and carcinogenic Ras signal pathway synergistically drive the development of
lung adenocarcinoma (LUAD) and play an important role in transcriptional activation and
expression of multiple oncogenes in CRC [45,46]. The complete loss of H3K27me3 indicates
an increased risk of meningioma recurrence [47].

3.2.2. The role of Histone Modification in Radiotherapy

Bulleted lists look like this: It has been widely reported that radiation has a series of
effects on histone modification in tumor cells and normal cells [48]. H3K27me3 is related
to chromatin condensation, which affects DNA double-strand breaks (DSB) repair. In one
study, it was shown that radiation induced H3K27me3 loss, while GSKJ4 (H3K27 demethy-
lase inhibitor) inhibited radiation-induced DSB repair and enhanced radiosensitivity of
tumor cells, while histone demethylase UTX reduced radiosensitivity [49].

In another study of diffuse intrinsic pontine glioma (DIPG), the abundance of H3K9me3
increased in all four cell lines after radiotherapy. Radiotherapy combined with histone
methyltransferase G9a inhibitor was designed to reduce H3K9me3 levels and DSB repair.
Radiotherapy can induce some histone-modified cell-specific and peptide-specific changes,
which should be paid attention to when using modifiers [50]. It has been suggested that
radiation kills a large number of cancer cells and induces radiation resistance and more
aggressive epigenetic phenotypes. In this study, there are residual cells in human hep-
atocellular carcinoma xenografts after radiotherapy, and the up-regulation of CXCL12
mediated by histone modification in its promoter may be an important reason for the
occurrence of resistant phenotype in treatment. Interestingly, in co-cultured Huh7 cells,
radiation-induced CXCL12 mRNA seems to be larger than that of single cultured cells,
indicating that co-culture of tumor and normal cells is beneficial to tumor survival. At the
same time, it was found that IOX1 (histone demethylase) may inhibit radiation-induced
CXCL12 [51].

Some studies have suggested that radiation-induced autophagy is also related to
histone methylation, and H4K20me3 is the key to induce autophagy after irradiation.
Radiation-induced autophagy is a protective mechanism of non-small cell lung cancer
(NSCLC) cells. The inhibition of autophagy-associated histone modification will increase
cell death after radiation. DZNep (3-deazaneplanocin A), a broad-spectrum methyltrans-
ferase inhibitor, can inhibit H4K20me3, and its treatment significantly increased radiosensi-
tivity [52]. Irradiation triggered methylation of histone H3 on the promoter of aldehyde
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dehydrogenase 1A1 (ALDH1A1), a CSC marker in prostate cancer cell line, thus stimu-
lating its gene transcription. DZNep can also target histone 3 methylation, resulting in
the downregulation of ALDH1A1 expression and radiosensitivity of tumor cells, and the
anti-radiation effect is more obvious [53].

Zebrafish has 70% genetic similarity with humans and has become a widely used
organism in radiation research [54]. When zebrafish embryos were exposed to 10.9 mGy/h
gamma rays for 3 h, the levels of H3K4me3, H3K27me3 and H3K9me3 in all studied genes
were higher than those in the control group, indicating that these histone PTMs may be
potential biomarkers of IR. Another study of Atlantic salmon embryos in similar exposed
environments showed that the enrichment of H3K4me3 at the same site was conserved
between two species far apart in evolution [55]. It also provides valuable clues and new
ideas for the study of human epigenetics.

Histone acetylation activates gene transcription through the acetylation of lysine
amino acid residues on the histone tail. At 1 and 30 days after cranial irradiation, the
total level of acetylation of histone H3 decreased significantly [25]. In another experiment,
there was quite long-lasting and extensive deacetylation of lymphoblasts after radiation.
However, there were differences among individuals, and radiation-sensitive cell lines
showed more obvious and lasting H4K16 deacetylation [56]. Another recent study reported
that radiation-resistant populations showed overall histone deacetylation and changes in
HDACs and histone acetyltransferases(HATs) activity. However, HDAC activity also exists
heterogeneity among different individuals. Tumor HDAC activity should be evaluated
before radiotherapy. Patients with high activity are suitable for radiosensitization with
histone deacetylase inhibitors (HDACi) [57].

3.3. RNA Modification and Non-Coding RNAs
3.3.1. RNA Modification and Carcinogenesis

Post-transcriptional modifications of RNA molecules are widely available. Currently,
there are more than one hundred known RNA modifications, such as N6-methyladenine
(m6A), 5-methylcytosine, N1-methyladenosine and M7G, among which methylation modi-
fication is the most common. m6A is one of the most common post-transcriptional modifica-
tions of RNA in eukaryotes. Moreover, it can perform important functions that affect normal
living activities and disease. Most studies have shown that m6A can influence the com-
plexity of cancer progression by modulating cancer-related biological functions [58]. m6A
is present in mRNA, lincRNAs, pri-miRNA and rRNA [59], and it is involved in various
aspects of RNA metabolism including mRNA splicing, 3′-terminal processing, translation
regulation, mRNA decay and non-coding RNA processing. m6A is mainly regulated by
three regulators, namely methyl transferase (METTL3, METTL14 and METTL16, etc.),
demethylation transferase (FTO and ALKBH5) and methyl recognition protein (YTHDF1,
YTHDF2, YTHDF3, YTHDC1 and YTHDC2, etc.). As “writer”, “eraser” and “reader”,
respectively, they are proteins that can add, remove or recognize m6A sites and alter im-
portant biological processes accordingly [60]; when they are disordered, they are closely
associated with cancer initiation and progression.

The high expression of methyltransferase-like 3 (METTL3) can promote tumor angio-
genesis in gastric cancer tissues [61]. In contrast, METTL14 inhibits the occurrence and
progression of gastric cancer by regulating the pathway [62]. In acute myeloid leukemia,
m6A demethylases, FTO plays a key role in the development of leukemia. Some oncogenic
proteins, such as MLL fusion protein, can up-regulate FTO, thus enhancing the activity
of AML cells, promoting proliferation and inhibiting apoptosis [63]. In pancreatic cancer,
METTL3 protein and mRNA levels are significantly increased, which promote cell prolifera-
tion, invasion and migration [64]. In CC, METTL3 is significantly upregulated in CC, which
is closely associated with lymph node metastasis and poor prognosis in patients. METTL3
enhances the stability of HK2 (hexalokinase 2) through YTHDF1-mediated m6A [65], and
FTO is often overexpressed in human CC tissues and is highly associated with promoting
the progression of CC [66]. In addition, the occurrence of other cancers is also closely related
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to the dysregulation of regulatory proteins, such as endometrial cancer [67], glioblastoma,
etc., [60].

3.3.2. Effects of Radiotherapy on RNA Modification

RNA modification of tumor epigenetic also has an impact on radiotherapy, which
is also an important part of our research, in order to obtain new ideas and directions
in radiotherapy. In nasopharyngeal carcinoma (NPC), YTHDC2 is highly expressed in
radiation-resistant NPC cells. The knockout of YTHDC2 can improve therapeutic effects
of radiotherapy in vitro and in vivo. While the overexpression of YTHDC2 in radiation-
sensitive NPC cells is the opposite [68]. Experiments showed that the expression of FTO was
increased in cervical squamous cells. After radiotherapy, it is found that the overexpression
of FTO would increase the survival rate of tumor cells and have a certain radioresistance [69].
In pancreatic cancer, METTL3 knockdown cells are highly sensitive to radiation, so it
can be speculated that METTL3 levels will affect radiotherapy [70]. In glioblastoma,
METTL3 expression increased, and for METTL3-silenced glioma stem cells (GSCS), their
radiosensitivity was enhanced and DNA repair was reduced. METTL3 can be used as a
potential molecular target for GBM therapy and METTL3 alters the DNA repair efficiency
and radiation sensitivity partially via SOX2 in GSCs [71]. In hypopharyngeal squamous
cell carcinoma (HPSCC), METTL3 mediates m6A methylation and stabilized the expression
of circCUX1, a specific circRNA, and knocking down circCUX1 promotes the sensitivity of
hypopharyngeal cancer cells to radiotherapy. In addition, circCUX1 binds to caspase1 and
inhibits its expression, resulting in reduced release of inflammatory cytokines and, thus,
tolerance to radiotherapy [72].

3.3.3. Non-Coding RNAs Are Closely Related to the Occurrence and Development
of Cancer

Non-coding RNA (ncRNA) is an RNA that does not encode a protein, which is not
translated into a protein, and can perform their respective biological functions at the level
of RNA. It can be divided into three categories: less than 50 nucleotides (nt), including
microRNA, siRNA and piRNA; 50 nt to 500 nt, including rRNA, tRNA, snRNA, snoRNA,
SLRNA and SRPRNA; more than 500 nt, including long mRNA-like non-coding RNA,
etc. [73–75]. Micro-RNAs (miRNAs) is a short RNA molecule of 19–25 nt in length. They
can restrain translation and trigger the degradation of the target RNA, which plays an
important role in regulating gene expression [76].

MiRNAs are able to target hundreds of transcripts as the regulators. They are very
powerful so their abnormal expression can disturb massive cellular signaling pathways
and affect cancer initiation and progression [77]. MiRNAs is a potential regulator of the
oncogenic potential of urinary bladder cancer (BC) cells. MiR-23a-3p is involved in the
cancerous network of BC through up-regulation [78,79]. The up-regulation of miR-21
and miR-9 promote cancerous progression of BC and cause the poor patient prognosis
(Table 1) [78,80]. The down-regulation of miR-495 enhances the value-added and invasive-
ness of BC [81]. In ovarian cancer (OC), miR-135a-3p, miR-200c, miR-216a and miR-340 can
regulate the invasiveness of OC cells by regulating the epithelial-mesenchymal transition
(EMT) program [82–85]. In addition, miRNAs are closely associated with the occurrence
and development of many malignant tumors, such as lung cancer, pancreatic cancer and
breast cancer [86–91].
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Table 1. The effect of different types of miRNA on cancer and the effect of radiotherapy on miRNA.

MiRNA Cancer Changes and Effects in Cancer
before Radiotherapy

Radiation Therapy
Affects Its Expression References

MiR-21 Bladder cancer,
breast cancer

Up-regulation, promoting cancer
progression, migration

and invasion
Increase or decrease [79,92,93]

MiR-155
Bladder cancer, breast

cancer and
nasopharyngeal cancer

Up-regulation, promote cancer
proliferation and poor prognosis Increase [79,80,94,95]

MiR-224

Non-small-cell lung
cancer, colorectal

cancer and
bladder cancer

Up-regulation, promoted cancer
proliferation and predicted disease

course markers
- [79,96,97]

MiR-196a Prostate cancer,
gastric cancer

Up-regulation, with increased
radiosensitivity Decrease [98,99]

Let-7 Breast, lung,
colorectal cancer

Up-regulation, with increased
radiation sensitivity Decrease [93,100,101]

MiR-142-3p Breast cancer and
Colon cancer

Up-regulation, to stimulate the
apoptosis-related genes Increase [102–104]

MiR-142-5p Gastric cancer,
esophageal cancer

Down-regulation, promotes
macrophage apoptosis and is

closely related to
cancer development

Increase [103,105,106]

Studies have shown that m6A regulatory proteins can regulate m6A modification
in ncRNA to produce various biological functions; for example, METTL3 can promote
miR-221/222 processing and BC cell proliferation; in turn, ncRNA can also regulate m6A
methylation of mRNA in cancer. For example, miRNA regulates m6A formation on mRNA
and promotes cell reprogramming into pluripotent stem cells [107].

3.3.4. Influences of Radiotherapy on Non-Coding RNA

Bulleted lists look like this: Currently, radiotherapy has become the main means of
cancer treatment, and miRNAs are also widely used. In the radiotherapy of CRC, miRNAs
are involved in regulating the radiosensitivity of CRC cells, where miR-195 suppresses the
expression of CARM1 and enhances the radiosensitivity of CRC cells; miR-124 can improve
the radiosensitivity of CRC cells by blocking the expression of PRRX1 [108–110]. Saeid
Afshard et al. detected the up-regulation of miR-185 could down-regulate the expression of
IGF-1R and IGF2 and increased the sensitivity of CRC cells to IR by transferring miR-185
cells [111]. IGF-1R protein was amplified in CRC, and Pouria Samadi et al. found that
up-regulation of let-7 of the miRNAs’ family could inhibit the expression of IGF-1R and
increase radiosensitivity (Table 1) [100].

However, not all miRNAs could increase the IR sensitivity of CRC cells. The overex-
pression of miR-106b reduces the expression of PTEN and p21 and induces resistance to IR
in poorly differentiated cells in vitro and in vivo. Moreover, radiation observations in lung
cancer show that the low expression of miRNA-21 inhibits the proliferation of A549 cells
and sensitizes the cells to IR. The high-level expression of miRNA-214 is related with the
resistance of NSCLC cell lines to radiation and protects the cells from radiation-induced
apoptosis [112,113]. In breast cancer, miR-122 can reduce the survival of cancer cells and
promote their sensitivity to IR, whereas the overexpression of miR-122 is associated with
radiation resistance [114]. LncRNA HOTAIRM1 (a type of long non-coding RNA) plays
a role in glioblastoma proliferation and invasion, and its downregulation can regulate
glioblastoma radiosensitivity in vitro and in vivo [115].

Thus, it shows that different expression forms of miRNAs in cancer may cause different
effects, some leading to increased sensitivity to radiation therapy and others leading to
radiation resistance, which makes treatment more difficult.
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3.4. Chromosomal Remodeling
3.4.1. Chromosome Remodeling and Cancer

Nucleosomes, the basic structural unit that constitutes the chromatin, consist of ap-
proximately 146 base pairs of DNA surrounding a histone octamer core that contains two
molecules of the core histones H2A, H2B, H3 and H4. The linear arrays of nucleosomes
of chromatin primary structures fold and condense to varying degrees in the nucleus and
chromosomes to form “advanced structures” [116,117]. Chromatin remodeling refers to the
packaging state of chromatin, histones and corresponding DNA molecules in nucleosomes
in the process of replication and recombination of gene expression. Chromatin remodeling
proteins aim to alter nucleosome structure to expose genes that are hidden in transcriptional
machinery. Nucleosome reorganization can be performed by two mechanisms: by ATP-
dependent chromatin remodeling complexes and modification of core histones by histone
acetyltransferases, deacetylases, methyltransferases and kinases [118,119]. Enzymes associ-
ated with chromatin remodeling play important roles in the repair of DNA damage, gene
expression and transcription. Thus, damage to chromatin remodeling is closely related to
the development of cancer [38,120,121].

Chromatin remodeling factors have four major families, including SWI/SNF, ISWI,
Mi-2 and IN080 families. Alterations of their many subunits (e.g., inactivating mutations,
homozygous deletions, silencing and overexpression) are associated with cancer occurrence
and development [38,122]. Among them, SWI/SNF is a widely studied remodeling factor,
and the inactivating mutation of its core subunit SNF5 is very common in malignant
rhabdoid cancer, and attenuated SNF5 expression also promotes BC progression through
the activation of the STAT3 gene [123,124]. There are also many malignancies tumorigenesis
associated with SWI/SNF, such as the association between Ini1 changes and clear cell renal
cell carcinoma, atypical central system teratomas [125,126], mutations in the BAF250A gene
are associated with OC, endometrial cancer, liver cancer, etc. [127–130]. The overexpression
of MTA1 in the Mi-2 family compared with NPC, carcinoma of uterine cervix, pancreas
cancer and so on [131–134].

3.4.2. Changes in Chromosome Remodeling during Radiotherapy

Chromatin remodeling is very important in cancer. Radiotherapy treats cancer by
using IR to induce DSB in cancer. Targeting BRG1 chromatin remodeling enzymes can
improve the radiosensitivity of many cancers (such as CRC). BRG1-BRD makes cancer
cells more sensitive to IR, which pass BRG1 explicit negative activity, thereby destroying
the γ-H2AX and 53BP1 pathway. This can cause the low efficiency of DNA repair, G2-M
checkpoint defects and enhance apoptosis [135]. Chromatin remodeling protein MORC2
can be acetylated by NAT10 to regulate DNA damage, G2 checkpoint capture through
acetylation and improve radiosensitivity in breast cancer [136]. More experiments and
methods targeting chromatin remodeling in radiotherapy are still being updated and
studied, and they will be more widely used in clinical practice.

4. Application of Epigenetic Modifiers in the Sensitization of Radiotherapy

Certain drugs that can be selected to make cancer more sensitive to IR are described as
radiation modifiers because of their ability to alter the cancer response to irradiation [137].
Radiosensitizers are used to describe drugs that selectively enhance radiation killing to
cancer cells and do not exhibit single-drug toxicity to cancer or normal tissues [138]. In
the treatment process of cancer inhibition by radiotherapy, the application of epigenetics
is very important, providing targets and ideas, and it can function as a sensitizer for the
combination therapy of cancer.

Currently, HDACi can play the role in radiotherapy sensitization by inducing apopto-
sis, inhibiting DSB repair, blocking cell cycle and other multiple ways, radiotherapy may
also affect the number and activity of HDAC to a certain extent (Figure 3) [139]. HDACi has
entered the clinical trials of radiotherapy for various tumors (Figure 3) [140,141]. SAHA
(vorinostat), an HDACi, could significantly increase radiosensitivity compared to treatment
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alone and could significantly delay lung metastasis by inhibiting MMP-9 activity in vivo
and in vitro [142,143]. Entinostat is also an HDACi; McLaughlin et al. found that, in a
model of NSCLC, entinostat could sensitize a proportion of NSCLC cells to IR by effectively
down-regulating FLIP expression and the capacity to boost caspase-8 activation [144]. TSA
is also used as an HDACi; the results showed that TSA pretreatment could enhance DNA
damage induced by IR and make esophageal cancer cells more sensitive [145]. Cisplatin
therapy is a common clinical treatment for tumor chemotherapy. The combination of
SAHA and cisplatin can re-sensitized cisplatin resistant bladder cancer cells. Cisplatin
resistant human bladder cancer cell lines can be re-sensitized through cell cycle arrest and
the induction of Caspase-dependent apoptosis [142,146]. In addition, Seiichiro Komatsu
et al. demonstrated that SAHA combined with bortezomib and clarithromycin showed
therapeutic support for breast cancer cell lines [147].

Other sensitizer effects are DNMT inhibitors, which can increase chromatin accessibil-
ity and radiation sensitivity through chromatin breakdown or complete combination thera-
pies with radiation by promoting DNA damage and inducing apoptosis (Figure 3) [38,148].
In clinical trials on OC, the use of decitabine can show the biological activity of low DNA
methylation and improve the sensitivity of cancer cells during radiotherapy, largely re-
solving the late insensitivity of OC therapy (Table 2) [149]. DNMT inhibitor has also been
shown to re-sensitized cisplatin in platinum-resistant ovarian cancer patients [148]. In a
related phase II clinical trial, it was shown that low doses of Decitabine altered the DNA
methylation of genes and cancer pathways. Sensitivity to carboplatin was restored in
patients with ovarian cancer who had received extensive pretreatment [150,151].

Table 2. Epigenetic modifiers currently used in cancer.

Sensitizer Type Target Spot Cancer Reference

5-Aza DNMT inhibitor DNMT Ovarian cancer, sarcoma [149,152]
5-Aza DNMT inhibitors P62/SQSTM1 Head and neck cancer [153]

SGI-110 DNMT inhibitor DNMT Sarcoma [152]
MS-275 HDAC inhibitors P62/SQSTM1 Head and neck cancer [153]

Entinostat HDAC inhibitors FILP Non-small cell carcinoma [144]
5-Aza-Cdr DNMT inhibitors RUNX3/TLR9 Carcinoma of the lungs [154]
C-7280948 PRTM1 inhibitors PKP2 Carcinoma of the lungs [155]

JQ1 BRD4 inhibitors PD-L1 Non-small cell carcinoma [156]
JQ1 BRD4 inhibitors RAD51AP1 Cervical carcinoma [157]

RRX-001 G-6-PD inhibitors G -6-PD U87 tumor [158]

The full name represented by the abbreviation in the Table 2: 5-Aza: 5-Aza-2’-deoxycytidine (Decitabine);
SGI-110: Guadecitabine; MS-275: Entinostat (MS-275); 5-Aza-Cdr: 5-Aza-2’-deoxycytidine (Decitabine); JQ-1:
JQ-1 (carboxylic acid); G-6-PD: Glucose-6-phosphate dehydrogenase; FILP: FLICE inhibitory protein; PD-L1:
Programmed cell death-Ligand 1.

Sensitizers related to RNA modification are also widely studied, such as the target of
m6A methylation of RNA; the METTL3-METTL14 heterodimer is involved in the biological
behavior of malignant bone marrow cells and glioblastoma, breast cancer, hepatocellu-
lar carcinoma, leukemia, etc. The expression levels of demethylase FTO and methylase
(METTL3 and WTAP) are positively correlated with cancer cell resistance to chemotherapy
and radiotherapy, and the downregulation of these genes can increase the radiosensitivity
of glioma, pancreatic cancer and colon cancer [159].
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Figure 3. In normal growth and proliferation of tumor cells, histone is regulated by HAT and HDAC
acetylation and deacetylation; DNA methylation is regulated by DNMT; BRD4 and CD274 acetylation
histone binding to regulate PD-L1 expression, indirectly playing a role in regulating tumor growth.
Radiotherapy is an important treatment for tumor, which can promote tumor cell apoptosis by
affecting the activities of HDAC, DNMT and PD-L1 to a certain extent. Enhanced activity of HDAC
and DNMT promotes histone deacetylation and DNA methylation, leading to accelerated DSB repair.
At the same time, radiotherapy can induce the up-regulation of PD-L1 and lead to the escape of tumor
cells. In combination with radiotherapy and epigenetic modifiers, HDACi combined with HDAC
decreased the activity of HDAC and inhibited DSB repair. DNMT inhibitors promote cell damage by
binding DNMT; as a BRD4 inhibitor, JQ1 plays a role in reducing the expression of PDL1 induced
by radiotherapy. All of them can enhance the apoptosis effect and play the role of radiotherapy
sensitization. DNMTi: DNMT inhibitors.
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Cisplatin-based therapy is the recommended therapy for locally advanced CC, Meng-
dong Ni et al. by conducting in vivo and in vitro experiments confirmed that bromodomain
protein 4 (BRD4) can combine with the promoter area of RAD51AP1. It can accelerate
RAD51AP1 transcription, and BRD4 inhibitors can inhibit RAD51AP1 transcription by
inhibiting BRD4 activity, leading to significant radiosensitization and enhancement of
CC cells (Table 2) [157]. In addition to the above pathways, BRD4 can also regulate the
expression of PD-L1 by binding to CD274 acetylated histones, and indirectly play a role
in regulating tumor growth [160]. In the treatment of NSCLC, radiotherapy-induced up-
regulation of PD-L1 leads to treatment resistance and treatment failure (Figure 3). Both
JQ1 and ARV-771 belong to BRD4 inhibitors, which may enhance chemotherapy sensitivity
and anti-tumor immunity of chemoradiotherapy by reducing treatment-induced PD-L1
expression in NSCLC (Table 2) (Figure 3) [156].

There are also many epigenetically modified targets associated with radiotherapy
resistance as the potential radiosensitization strategy. For example, histone lysine demethy-
lase 4C (KDM4C) can encode related histone demethylases, and its de-ubiquitination
improves radiotherapy resistance in lung cancer cells. Therefore, there is likely to be a
potential association between targeted KDM4C and radiosensitization, which is still under
investigation [161].

Thus far, there are still many epigenetically targeted drugs that are used as sensitizers
during the radiotherapy, while some are radiotherapy resistant. There are also many
drugs based on epigenetic basis that are still being discovered and tested, providing more
methods and feasibility to improve the therapeutic effect of cancer and avoiding its drug
resistance and the insensitivity of chemotherapy.

5. Summary and Prospect

Currently, many research studies on the relationship between epigenetics and cancer
have been conducted, and a substantial amount of progress has been made. Our review
focuses on the latest advances in the epigenetic mechanism of carcinogenesis and the
interaction between epigenetic modification and cancer radiotherapy. Moreover, the latest
findings of some modifiers for radiosensitization based on epigenetic targets are listed.
Epigenetics has many individual and tissue differences, which limits the scope of appli-
cation of some conclusions. However, we believe that with the progress of science and
technology and the emergence of more and more extensive studies, treatments based on
the combination of epigenetics and radiotherapy will play a greater role. Based on this
paper, we draw the following three conclusions.

(1) The study of epigenetics contributes to the discovery of new pathways for tu-
morigenesis. With the more in-depth and extensive study of cancer, we found that both
epigenetics and genetic changes are important factors in the occurrence and development
of cancer. More and more studies have found that the mechanism of cancer induced by
exposure to drugs, viruses, organic chemicals and other risk factors may be related to
various epigenetic pathways. This may provide a new target for us to prevent or reduce
the harm caused by various risk factors.

(2) The combination of reversible regulation and radiotherapy may lead to a better
prognosis. As a reversible regulation, epigenetic regulation also brings more possibilities
for the treatment of cancers. According to the current research on cancer epigenetics,
it has been found that many targets can be combined with radiotherapy to change cell
radiosensitivity and disease prognosis. The epigenetic code is complex and numerous, but
with the emergence of more studies on its molecular mechanisms, this complex information
network is bound to introduce greater surprises to cancer treatment.

(3) Individualized and dynamic tumor therapy based on epigenetic mechanism has
a bright future. For the research of cancer radiotherapy, individualized specific therapy
has garnering increasing attention. The radiation resistance of cancer cells is dynamic in na-
ture [53]. Epigenetic differences may exist before radiotherapy, but both radiation resistant
phenotypes and radiation sensitive phenotypes may change again during radiotherapy. As
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a result, the prognosis of the tumor changes continuously with various epigenetic changes
induced by repeated treatment and radiation. This makes the treatment of cancers more
complicated, but it also provides more new treatment ideas.
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