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ABSTRACT Di-(2-ethylhexyl) phthalate (DEHP) is the most widely used plasticizer
worldwide, with an annual global production of more than 8 million tons. Because of its
improper disposal, endocrine-disrupting DEHP often accumulates in estuarine sediments
in industrialized countries at submillimolar levels, resulting in adverse effects on both
ecosystems and human beings. The microbial degraders and biodegradation pathways
of DEHP in O2-limited estuarine sediments remain elusive. Here, we employed an inte-
grated meta-omics approach to identify the DEHP degradation pathway and major
degraders in this ecosystem. Estuarine sediments were treated with DEHP or its derived
metabolites, o-phthalic acid and benzoic acid. The rate of DEHP degradation in denitrify-
ing mesocosms was two times slower than that of o-phthalic acid, suggesting that side
chain hydrolysis of DEHP is the rate-limiting step of anaerobic DEHP degradation. On
the basis of microbial community structures, functional gene expression, and metabolite
profile analysis, we proposed that DEHP biodegradation in estuarine sediments is mainly
achieved through synergistic networks between denitrifying proteobacteria. Acidovorax
and Sedimenticola are the major degraders of DEHP side chains; the resulting o-phthalic
acid is mainly degraded by Aestuariibacter through the UbiD-dependent benzoyl coen-
zyme A (benzoyl-CoA) pathway. We isolated and characterized Acidovorax sp. strain 210-
6 and its extracellular hydrolase, which hydrolyzes both alkyl side chains of DEHP.
Interestingly, genes encoding DEHP/mono-(2-ethylhexyl) phthalate (MEHP) hydrolase
and phthaloyl-CoA decarboxylase—key enzymes for side chain hydrolysis and o-phthalic
acid degradation, respectively—are flanked by transposases in these proteobacterial
genomes, indicating that DEHP degradation capacity is likely transferred horizontally in
microbial communities.

IMPORTANCE Xenobiotic phthalate esters (PAEs) have been produced on a consider-
ably large scale for only 70 years. The occurrence of endocrine-disrupting di-(2-ethyl-
hexyl) phthalate (DEHP) in environments has raised public concern, and estuarine
sediments are major DEHP reservoirs. Our multi-omics analyses indicated that com-
plete DEHP degradation in O2-limited estuarine sediments depends on synergistic
microbial networks between diverse denitrifying proteobacteria and uncultured can-
didates. Our data also suggested that the side chain hydrolysis of DEHP, rather than
o-phthalic acid activation, is the rate-limiting step in DEHP biodegradation within O2-
limited estuarine sediments. Therefore, deciphering the bacterial ecophysiology and
related biochemical mechanisms can help facilitate the practice of bioremediation in
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O2-limited environments. Furthermore, the DEHP hydrolase genes of active DEHP
degraders can be used as molecular markers to monitor environmental DEHP degra-
dation. Finally, future studies on the directed evolution of identified DEHP/mono-(2-
ethylhexyl) phthalate (MEHP) hydrolase would bring a more catalytically efficient
DEHP/MEHP hydrolase into practice.

KEYWORDS Acidovorax, di-(2-ethylhexyl) phthalate, anaerobic catabolic pathways,
denitrifying bacteria, endocrine disruptor, metagenomics, phthalate esters

Phthalate esters (PAEs) are commonly used as plasticizers to improve the flexibility
of plastics and their adhesive capacity in some aqueous products (1, 2). The annual

production of PAEs had increased up to 8 million tons in 2011 (2), although the num-
ber dropped to 5.5 million tons in 2018 (3). The side chains of PAEs are composed of
linear or branched aliphatic alcohols with various lengths (2, 4). Di-(2-ethylhexyl)
phthalate (DEHP), also named bis(2-ethylhexyl) phthalate, is the most widely used plas-
ticizer worldwide, accounting for approximately one-third and 80% of PAEs produced
in the European Union and China, respectively (2). Because of the daily use of plastic
worldwide and the easy diffusion of plastic polymers into the environment (5), PAEs
can be detected almost everywhere in industrialized countries (2) as well as in polar
regions (6).

The endocrine-disrupting and carcinogenic activities of PAEs in higher animals have
raised substantial public concern (5, 7). For example, some studies have reported that
in some fishery species, embryo maturation and oogenesis are impeded by even a low
concentration of DEHP—0.1 to 0.2mg/liter (8, 9); the DEHP concentration in some
freshwater ecosystems is up to a much higher 21mg/liter (2). In addition, DEHP not
only affects endocrine and nervous systems but also is genotoxic to higher animals
and humans. Despite that the lowest effective dose of DEHP varies depending on
organs or cell types, it has been demonstrated that a DEHP concentration of 1mg/ml
causes DNA damage in human lymphocyte cell lines, and exposure to 0.39mg/ml of
DEHP was able to induce motility and proliferation of breast tumor cells (10).

Abiotically, DEHP can be photodegraded in surface water or the atmosphere with a
degradation half-life ranging from weeks to years (11, 12). However, DEHP does not
undergo photodegradation in aquatic sediments lacking sunlight exposure and O2 (2).
Moreover, the high hydrophobicity of DEHP (its water solubility is approximately 3mg/
liter) results in the adsorption of DEHP onto aquatic sediment particles (13), meaning
that the content of DEHP is considerably higher in aquatic sediments than in surface
water. For example, in South Africa, the DEHP concentration is approximately 6mg/liter
in river water, whereas it is up to 3,660mg/kg in sediments in the same river (2).
Moreover, the salinity of estuarine environments enhances the adsorption of DEHP
onto estuarine sediments because of salt fractionation (13).

Biodegradation is the primary process through which PAEs are removed in munici-
pal wastewater treatment plants (2). Several studies have reported aerobic microbial
degradation pathways for different PAEs (4). In the aerobic pathway, DEHP is initially
transformed into o-phthalic acid and 2-ethylhexanol through mono-(2-ethylhexyl)
phthalate (MEHP) by dialkyl phthalate hydrolase and monoalkyl phthalate hydrolase
(14–16) (Fig. 1). Subsequently, o-phthalic acid is converted to protocatechuate (3,4-
dihydroxybenzoate), which is followed by ring cleavage through either the ortho-cleav-
age (by intradiol dioxygenases) or meta-cleavage (by extradiol dioxygenases) pathway
(Fig. 1) (4, 17). In contrast, the anaerobic DEHP biodegradation pathway remains
unclear. Nevertheless, the anaerobic degradation pathway of o-phthalic acid has
recently been characterized in some denitrifying bacteria and sulfate-reducing bacteria
(18–20). Briefly, o-phthalic acid is activated by either type III coenzyme A (CoA) transfer-
ase or ATP-dependent CoA transferase to form the highly unstable phthaloyl-CoA; this
is followed by nonoxidative decarboxylation to form benzoyl-CoA by prenylated flavin
mononucleotide (FMN)-dependent phthaloyl-CoA decarboxylase in the UbiD family
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FIG 1 Proposed microbial degradation pathways of DEHP. (Left) Simplified aerobic degradation pathway with 4,5-dihydroxyphthalate
and protocatechuate as characteristic intermediates. An alternative aerobic pathway with 3,4-dihydroxyphthalate and protocatechuate as

(Continued on next page)
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(21). Subsequently, the core ring of benzoyl-CoA is cleaved through the well-estab-
lished benzoyl-CoA degradation pathway (17, 19, 20) (Fig. 1). However, whether these
o-phthalic acid-degrading anaerobes can degrade DEHP remains unclear.

Wetland sediments in estuaries provide essential ecosystem services (water purifica-
tion and toxin trapping) for urban environments and are major reservoirs of DEHP world-
wide. To identify autochthonous anaerobic DEHP microbial degraders and elucidate the
underlying biochemical and molecular mechanisms, we performed mesocosm experi-
ments by incubating Guandu estuarine sediments with DEHP under denitrifying condi-
tions. We used ultraperformance liquid chromatography (UPLC)–high-resolution mass
spectrometry (HRMS) to identify DEHP-derived metabolites. Subsequently, we adopted
next-generation sequencing approaches to identify DEHP-degrading bacteria and their
degradation genes. Furthermore, we isolated the DEHP-degrading Acidovorax sp. and
purified the DEHP/MEHP hydrolase from the sediment isolate. Both culture-independent
and culture-dependent results suggested that DEHP was mainly removed from the estu-
arine sediments through synergistic microbial degradation, and side chain hydrolysis
represents a bottleneck in the DEHP degradation process.

(This article was submitted to an online preprint archive [22].)

RESULTS
DEHP biodegradation in denitrifying sediment mesocosms. Sediment mesocosms

(1 liter; two replicates in each treatment) composed of estuarine sediment (approxi-
mately 200 g) and river water (approximately 800ml) were treated with sodium nitrate
alone (10mM; sediment-nitrate [SN]), nitrate (10mM) and benzoic acid (1mM) (sedi-
ment-benzoic acid-nitrate [SBN]), nitrate (10mM) and o-phthalic acid (1mM) (sedi-
ment-o-phthalic acid-nitrate [SPN]), or nitrate (10mM) and DEHP (1mM) (sediment-
DEHP-nitrate [SDN]). Benzoic acid and o-phthalic acid have been proposed as crucial
intermediates of the established anaerobic DEHP degradation pathway (17). The con-
centrations of endogenous benzoic acid, o-phthalic acid, and DEHP in these sediment
mesocosms ranged from 0.001 to 0.01mM, approximately 100-fold lower than those in
exogenous substrates. Sediment mesocosms that received different treatments dis-
played discernible patterns in substrate depletion rate and total nitrate consumption.
The SN1 (nitrate alone, replicate 1) mesocosm had consumed 15.56 0.92mM nitrate in
total after 25 days of anaerobic incubation (Fig. 2AI). In the SBN1 mesocosm, exoge-
nous benzoic acid was largely depleted (approximately 80%) within 4 days of continu-
ous nitrate consumption (Fig. 2AII). Approximately 80% of o-phthalic acid in the SPN1
mesocosm was consumed within 1 week (Fig. 2AIII). Notably, the DEHP consumption
rate was lowest in the denitrifying sediment. Approximately 35% of the DEHP in SDN1
was consumed within 11 days, and the DEHP was depleted at day 21, together with a
total nitrate consumption of 29.86 0.16mM (Fig. 2AIV). The mesocosms in all dupli-
cates showed similar trends in the utilization of exogenous substrates (see Fig. S1 in
the supplemental material). We noted that the DEHP in SDN2 was completely
degraded at day 25, with a total nitrate consumption of 25.86 0.22 mM (Fig. S1D).

DEHP-derived metabolites in the SDN1 samples were then identified through UPLC-
atmospheric pressure chemical ionization (APCI)-HRMS (Fig. 3). We observed the pro-
duction and subsequent consumption of two non-CoA thioester metabolites (MEHP
and o-phthalic acid) (Fig. 3A). These DEHP-derived metabolites were not detected
within the first week of denitrifying incubation, whereas MEHP (0.086 0.01mM) and o-
phthalic acid (0.196 0.02mM) had temporarily accumulated after 16 days of incuba-
tion (Fig. 3B).

FIG 1 Legend (Continued)
characteristic intermediates has also been identified. (Right) Proposed anaerobic degradation pathway for PAEs established in denitrifying
Aromatoleum, Azoarcus, and Thauera. Proteins involved in this anaerobic pathway are shown in red.*, Dialkyl phthalate and monoalkyl
phthalate hydrolases were functionally characterized in aerobic Gordonia and anaerobic Acidovorax sp. strain 210-6 prior to this study.
Fd, ferredoxin; TCA, tricarboxylic acid.
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FIG 2 Estuarine sediments treated with benzoic acid, o-phthalic acid, and DEHP in denitrifying mesocosms. (A) Substrate utilization and nitrate
consumption in anoxic sediments incubated with nitrate only (I), sediments incubated with benzoic acid and nitrate (II), sediments incubated with

(Continued on next page)
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Betaproteobacteria and gammaproteobacteria as key DEHP degraders in
denitrifying sediment mesocosms. In total, 5,582 operational taxonomic units (OTUs)
were generated in all the sediment communities of replicate 1. PC1 (55.9% of total
explained variance) and PC2 (19.0% of total explained variance) in the principal-coordi-
nate analysis (PCoA) clearly distinguished the microbial communities among SN1,
SBN1, SPN1, and SDN1. Most of the SN1 communities—together with communities
from the early incubation stage (day 2 to day 4) of the SBN1, SPN1, and SDN1 meso-
cosms—were clustered in the lower-left corner of the coordinate, slightly distant from
the sediment communities at the beginning of the experiment (incubation time of
30min). However, communities from the middle and late incubation stages (day 9 to
30) of SBN1, SPN1, and SDN1 mesocosms were clustered separately (Fig. 2B). The
results of permutational multivariate analysis of variance (PERMANOVA) revealed that
the weighted UniFrac distance of overall bacterial genera in each community was sig-
nificant (F value = 12.405, global R2 = 0.45823, P value, 0.001).

In the benzoic acid and o-phthalic acid mesocosms, we observed enrichment of the
betaproteobacteria Thauera and Azoarcus (Fig. 2C); this enrichment was associated with
the consumption of the substrates within 1week (Fig. 2AII and AIII). These two bacterial
genera were not enriched in the SN1 mesocosm treated with nitrate alone. In the SBN1
community, the relative abundance of Thauera increased from,0.1% at day 0 to 12.5% at
day 7. The abundances of Thauera and Azoarcus in the SPN1 community had increased to
5.8% and 3.9%, respectively, at day 11. Although o-phthalic acid was identified as a major
DEHP metabolite in the SDN1 mesocosm (Fig. 3), the enrichment of the aforementioned
two genera was considerably less (;1%) in the SDN1 community. Instead, we observed
large enrichment ($10%) of three gammaproteobacterial genera—namely, Sedimenticola,
MBAE14 (uncultured Gammaproteobacteria), and SS1_B_06_26 (belonging to the order
Oceanospirillales)—in the SDN1 community. In addition, the relative abundance of other
bacteria, such as C1_B045 (gammaproteobacterial family Porticoccaceae) and an unclassi-
fied Burkholderiaceae (Betaproteobacteria), increased but to a lower extent (approximately
5%) (Fig. 2C).

In the SN2, SBN2, SPN2, and SDN2 mesocosms (replicate 2), 5,708 OTUs were identi-
fied. The results of PCoA and temporal changes in the relative abundance of the afore-
mentioned genera were similar to those observed for replicate 1 (see Fig. S2 and S3).

Putative carboxylesterase and b-oxidation genes involved in alkyl side chain
degradation in the DEHP-treated mesocosms. In differential gene expression (DGE)
analysis, only 1,800 genes were observed to be upregulated in the SPN sediments,
whereas up to 40,867 genes were upregulated in the SDN mesocosms (see Fig. S4). In the
SDN mesocosms, 205 alpha/beta hydrolase and esterase genes belonging to the carboxy-
lesterase superfamily were annotated on the basis of eggNOG annotation in the DEHP-
treated sediments. Only six genes—k141_3815848_2, k141_2812817_2, k141_4060503_4,
k141_138169_2, k141_2938615_2, and k141_853245_1—were similar to the functionally
characterized hydrolase gene encoding NCU65476 of the denitrifying Acidovorax sp. strain
210-6 according to the hidden Markov model (HMM) search (the isolation and characteri-
zation of strain 210-6 and its DEHP/MEHP hydrolase are described later). Proteins encoded
by these genes belonged to the IPR029058 carboxylesterase superfamily, and signal
peptides were present on the proteins of k141_3815848_2, k141_2812817_2, k141_
4060503_4, and k141_853245_1 (Table 1). After examining the binned genomes recovered
from metagenomes (described in the next section), these genes were distributed in Bin6,
Bin13, Bin14, Bin18, and Bin44, and their taxonomic affiliations were Acidovorax sp.

FIG 2 Legend (Continued)
o-phthalic acid and nitrate (III), and sediments incubated with DEHP and nitrate (IV). The values are shown as means from three independent
measurements with standard deviations for mesocosm replicate 1. (B) PCoA for the determination of similarities between the bacterial communities
of mesocosm replicate 1 based on UniFrac distance matrix data (genus level) obtained from the sediment incubated with nitrate (SN1), sediment with
benzoic acid and nitrate (SBN1), sediment with o-phthalic acid and nitrate (SPN1), and sediment with DEHP and nitrate (SDN1). (C) Relative
abundance changes of genera of Betaproteobacteria (blue) and Gammaproteobacteria (orange) from sediment incubated with nitrate (SN1), with
benzoic acid and nitrate (SBN1), with o-phthalic acid and nitrate (SPN1), and with DEHP and nitrate (SDN1) in mesocosm replicate 1. SS1_B_06_26
belongs to the order Oceanospirillales, and C1_B045 belongs to the family Porticoccaceae.
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FIG 3 Metabolite profile analysis of DEHP-treated sediment mesocosm (replicate 1). (A) APCI-HRMS spectra
of non-CoA metabolites detected in the mesocosm. PA, o-phthalic acid. (B) Time course of DEHP

(Continued on next page)
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HMWF018 (Betaproteobacteria), Burkholderiales bacterium 68-12 (Betaproteobacteria),
Sedimenticola selenatireducens (Gammaproteobacteria), Ketobacter alkanivorans (gammap-
roteobacterial Ocea-nospirillales), and Aestuariibacter aggregatus (Gammaproteobacteria),
respectively (Table 2). In addition, differentially expressed b-oxidation genes were identi-
fied in these binned genomes (Fig. 4A). Bin13, Bin14, and Bin18 contained genes involved
in nitrate and nitrite reduction, chemotaxis, and flagellar synthesis (see Data Set S1); some
of them were differentially expressed (Table 3). Differentially expressed hydrolase or ester-
ase genes were not identified in the SPN mesocosms.

Binned genomes with complete o-phthalic acid degradation capacity in the
DEHP-treated mesocosms. In the SDN mesocosms, 23 genes belonging to the UbiD-
like decarboxylase family were upregulated. According to blastp results, only eight
UbiD homologs identified in eight contigs share high amino acid sequence identity
(AAI; 74% to 85%) to phthaloyl-CoA decarboxylase of Aromatoleum aromaticum EbN1
(DSM 19081), Azoarcus toluclasticus ATCC 700605, and Thauera chlorobenzoica 3CB-1
(DSM 18012) (Data Set S1). Furthermore, we discovered genes annotated as flavin pre-
nyltransferase (UbiX) (23), CoA-transferase, TRAP transporter, and transposase in some
of these contigs (Data Set S1); however, none of these genes were differentially
expressed in the SDN mesocosms.

We selected binned genomes containing the phthaloyl-CoA decarboxylase gene to
determine whether they could anaerobically degrade o-phthalic acid. Up to 394 binned
genomes were generated by MaxBin 2.0, but 115,543 contigs were unbinned. We
observed that three contigs with phthaloyl-CoA decarboxylase genes were binned into
Bin44, whereas in other binned genomes—Bin54, Bin60, and Bin116—only a single con-
tig with the phthaloyl-CoA decarboxylase gene was binned (Fig. 4B). However, two con-
tigs—K141_1830739 and K141_260687—with this gene were not binned (Data Set S1).

Two genes involved in o-phthalic acid uptake were also identified in these binned
genomes (except for Bin116) and two unbinned contigs. Moreover, crucial genetic
components for anaerobic benzoyl-CoA degradation, including benzoyl-CoA reductase
(brcABCD), dienoyl-CoA hydratase (dch), hydroxyacyl-CoA dehydrogenase (had), and
oxoacyl-CoA hydrolase (oah), were identified in Bin44, Bin54, and Bin60; in Bin116, only
one gene encoding benzoyl-CoA reductase subunit A (brcA) was recovered (Fig. 4B
and Data Set S1). In addition, we noted that most of the genes related to nitrate reduc-
tion, chemotaxis, and flagellar synthesis were differentially expressed in Bin44, Bin54,
and Bin60 (Table 3 and Data Set S1).

The closest taxonomic affiliations of Bin44, Bin54, Bin60, and Bin116 were Aestuariibacter
aggregatus (Gammaproteobacteria), Azoarcus communis (Betaproteobacteria), Aestuariibacter
aggregatus, and unclassified Gammaproteobacteria bacterium BRH_c0, respectively. The

TABLE 1 Hydrolases potentially involved in the degradation of DEHP alkyl side chain in DEHP-treated sediments

Gene or accession no. Genome InterPro superfamily Signal peptide (aa)a

k141_3815848_2 Acidovorax Bin6 IPR029058 AB_hydrolase Secretory signal peptide (1–25)
k141_2812817_2 Burkholderiales Bin13 IPR029058 AB_hydrolase Secretory signal peptide (1–37)
k141_4060503_4 Burkholderiales Bin13 IPR029058 AB_hydrolase Secretory signal peptide (1–23)
k141_138169_2 Sedimenticola Bin14 IPR029058 AB_hydrolase ND
k141_2938615_2 Ketobacter Bin18 IPR029058 AB_hydrolase ND
k141_853245_1 Aestuariibacter Bin44 IPR029058 AB_hydrolase lipoprotein signal peptide (1–20)
OGB81769.1b Burkholderiales bacterium IPR029058 AB_hydrolase Secretory signal peptide (1–23)
WP_132980767.1b Pigmentiphaga sp. D-2 IPR029058 AB_hydrolase Secretory signal peptide (1–23)
WP_130355623.1b Pigmentiphaga kullae IPR029058 AB_hydrolase Secretory signal peptide (1–23)
aaa, amino acid position of the signal peptide; ND, not determined.
bProteins displayed.70% amino acid identity to DEHP/MEHP hydrolase (NCU65476) of Acidovorax sp. strain 210-6. Details may be found in “Phylogenetic analysis of
phthaloyl-CoA decarboxylases and DEHP/MEHP hydrolases.”

FIG 3 Legend (Continued)
consumption and production of DEHP-derived metabolites in the sediment mesocosm. Quantification of the
DEHP metabolites was based on pesudomolecular ([M1H]1) ion counts corresponding to individual
compounds by using UPLC-HRMS. Data shown are the means 6 standard deviations from three
experimental measurements.
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FIG 4 Abundance of differential expression genes involved in alkyl side chain degradation (A) and o-
phthalic acid uptake and degradation (B) in DEHP-treated sediments. Genes identified in the same
contig in each binned genome were grouped in the same square brackets. Blue blocks and bars
indicate the differentially expressed genes and their abundance (log CPM). White blocks denote
genes that were identified but not differentially expressed. The red blocks indicate genes not
recovered. The contig number, fold change, CPM, and annotation of these genes are listed in Data
Set S1 in the supplemental material. ubiD, UbiD-like phthaloyl-CoA decarboxylase; ubiX, flavin
prenyltransferase; brcABCD, benzoyl-CoA reductase; dch, dienoyl-CoA hydratase; had, hydroxyacyl-CoA
dehydrogenase; oah, oxoacyl-CoA hydrolase.
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CheckM result revealed that the Bin60 and Bin116 genomes showed the highest (93.65%)
and lowest degrees of completeness, respectively. The overall information and quality of
these selected binned genomes are detailed in Table 2. We also recovered Thauera Bin97
and Azoarcus Bin394 with transport and degradation capacity for o-phthalic acid in the o-
phathalic acid-treated sediments (see Table S2). The details are described in Text S1.

Acidovorax sp. strain 210-6 isolated from the DEHP-enriched mesocosm
displayed degradation capacity for the alkyl side chains of DEHP. To elucidate the
functionality of the DEHP-enriched sediment bacteria, we cultured and isolated the
DEHP degrader Acidovorax sp. strain 210-6 from the SDN1 mesocosm and sequenced
its genome (accession number [no.] GCA_010020825.1). The growth curve measure-
ment and metabolite profile analysis showed that strain 210-6 utilized DEHP, MEHP,
and 2-ethyl-1-hexanol as sole carbon and energy sources in a denitrifying medium
(Fig. 5). Notably, we observed the accumulation of o-phthalic acid in the DEHP- and
MEHP-fed cultures concomitant with the consumption of these substrates (Fig. 5A).
The optical density (OD) at 600 nm did not increase when either o-phthalic acid or ben-
zoic acid was present as the sole carbon and energy sources, and these substrates
were not apparently consumed.

The strain 210-6 genome contained three identical copies of 16S rRNA genes, which
displayed 97.7% sequence similarity to the 16S rRNA gene of Acidovorax valerianellae
DSM 16619. The chromosome and plasmid harbor 29 genes encoding alpha/beta hydro-
lase. Consistent with their growth profiles, genes involved in the degradation of o-
phthalic acid were not identified in the genome of strain 210-6. We did not observe any
DEHP degradation activity when we used the soluble proteins of Acidovorax sp. 210-6.
However, SDS-PAGE analysis of the active fraction obtained from extracellular proteins
showed a protein band corresponding to an approximate molecular mass of 50 kDa
(Fig. 5Bi). The purified protein transformed DEHP into o-phthalic acid within 12 h
(Fig. 5Bii), underscoring its side chain hydrolysis activity. Moreover, the temporal accu-
mulation of MEHP was not observed, suggesting the hydrolysis of DEHP into MEHP as
the rate-limiting step. The results of liquid chromatography (LC)-tandem mass spectrom-
etry (MS/MS) analysis revealed that one alpha/beta hydrolase, NCU65476 (encoded by a
chromosomal gene), displayed the highest posterior error probabilities (PEP) score for
tryptic peptides originating from the active fraction. Notably, the genes for NCU65476
and for its two identical copies, namely, NCU65467 and NCU65472, were located in the
same gene cluster on the chromosome (Fig. 5C); each gene carried the predicted signal
peptide and was flanked by transposase elements.

Phylogenetic analysis of phthaloyl-CoA decarboxylases and DEHP/MEHP hydrolases.
The unrooted maximum likelihood tree of phthaloyl-CoA decarboxylase showed that
eight genes annotated as phthaloyl-CoA decarboxylase in the gammaproteobacterial
bins (except for k141_3428055_1, k141_2680687_1, and k141_1830739_7) formed a
distinct clade, whereas another phthaloyl-CoA decarboxylase gene (k141_1104744_1)
recovered in Azoarcus Bin394 was placed in the same clade with phthaloyl-CoA decar-
boxylase genes derived from denitrifying betaproteobacteria (A. aromaticum DSM
19081, A. toluclasticus ATCC 700605, T. chlorobenzoica DSM 18012, and Azoarcus sp.
PA01). These two clades were distinct from the phthaloyl-CoA decarboxylase of
sulfate-reducing Deltaproteobacteria (Desulfosarcina cetonica DSM 7267, and Desulfo-
bacula toluolica DSM 7467) (Fig. 6). Other UbiD family decarboxylases, namely, 2,5-fur-
andicarboxylate decarboxylase, 3-octaprenyl-4-hydroxybenzoate decarboxylase, phe-
nolic acid decarboxylase subunit C, phenylphosphate carboxylase subunit alpha, and
phenylphosphate carboxylase subunit beta, were placed into the same clades along
with their homologs identified in DEHP-treated mesocosms (see Fig. S5). In addition,
we noted that UbiD from Acidovorax sp. strain 210-6 (protein identifier [ID] NCU67919)
was grouped into the clade with other 3-octaprenyl-4-hydroxybenzoate decarboxylase
sequences in line with its inability to degrade o-phthalic acid.

In the unrooted maximum likelihood tree of hydrolases (Fig. 7), hydrolases involved in
the aerobic side chain degradation of monoalkyl PAEs (from aerobic Rhodococcus spp. and
Gordonia spp.) formed a distinct lineage. Most of the hydrolases involved in the degradation
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FIG 5 Functional characterization of Acidovorax sp. strain 210-6 and its DEHP/MEHP hydrolase. (A) Anaerobic growth of the strain 210-6 with DEHP (Ai),
MEHP (Aii), and 2-ethylhexanol (EH) (Aiii). DEHP, MEHP, and o-phthalic acid (PA) were quantified using UPLC-APCI-HRMS, whereas EH was quantified using
GC-MS. (B) Purification and characterization of DEHP/MEHP hydrolase. (Bi) SDS-PAGE (4% to 12%) indicated the purification of the DEHP/MEHP hydrolase

(Continued on next page)
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of dialkyl PAEs from several aerobes—Acinetobacter sp. M673, Gordonia sp. YC-JH1,
Sulfobacillus Acidophilus DSM 1032, and Sphingobium sp. SM42, and PAMC26605—were also
placed into the same clade, except for hydrolases involved in side chain degradation of di-n-
butyl phthalate (from Sphingobium sp. SM42) and DEHP (from Gordonia sp. 5F). In contrast,
we observed that all DEHP/MEHP hydrolases from denitrifying bacteria and bins formed a
distinct clade. Moreover, four DEHP/MEHP hydrolases (NCU68007, NCU65467, NCU65472,
and NCU65476) from Acidovorax sp. strain 210-6, three putative hydrolases (K141_
4060503_4, K141_3815848_2, and K141_2812817_2) from betaproteobacterial bins, as well
as three hypothetical proteins from the two strains of Pigmentiphaga and uncultured
Burkholderiales bacterium were in the same lineage. These hypothetical proteins also
belonged to the alpha/beta hydrolase family IPR029058 with predicted signal peptides
(Table 1). Other putative DEHP hydrolases—K141_138169_2, K141_2938615_2, and
K141_853245_1—derived from gammaproteobacterial bins were in different lineages.

Transposon genes in contigs and gene clusters with key enzymes for DEHP
degradation. In Burkholderiales Bin13, we noted that two putative DEHP/MEHP hydro-
lase genes were flanked by transposon genes in two contigs (Fig. 8). Moreover, hydro-
lase genes in the genomes of the Burkholderiales bacterium RIFCSPLOWO2 and
Pigmentiphaga sp. D-2 that displayed high AAI (99.7% and 72.2%, respectively) to the
DEHP/MEHP hydrolase gene (encoding NCU65476) of Acidovorax sp. strain 210-6 were
flanked by transposon genes (Fig. 8). A similar arrangement was observed in
Aestuariibacter Bin44, in which genes involved in anaerobic o-phthalic acid degrada-
tion—namely, those encoding flavin prenyltransferase, phthaloyl-CoA decarboxylase,
and CoA transferase—were adjunct to transposon elements (Fig. 8).

DISCUSSION

In this study, we used an integrated multi-omics approach to identify DEHP
degraders and elucidate the degradation mechanisms in urban estuarine sediments
containing much accumulated DEHP. Several lines of evidence suggest that DEHP deg-
radation in estuarine sediments mainly occurs through synergistic microbial metabo-
lism: (i) in DEHP-treated mesocosms, various betaproteobacteria and gammaproteo-
bacteria were enriched, and (ii) most of the binned genomes lacked the complete set
of degradation genes for DEHP; instead, these bins possessed genes either for alkyl
side chains or for o-phthalic acid degradation. A similar observation was made in sedi-
ment isolate Acidovorax sp. strain 210-6, which could degrade only alkyl side chains
but not o-phthalic acid. This finding is different from those of most biodegradation
studies, which have indicated that the uptake and mineralization of organic micropol-
lutants are carried out by single bacterial isolates. For example, bacterial community
structure analysis indicates that the complete mineralization of endocrine-disrupting
steroids in sludge and sediment mesocosms is achieved by a single betaproteobacte-
rial genus (24–26). Moreover, several denitrifying bacteria capable of complete steroid
degradation have been isolated from steroid-treated mesocosms (27).

Synergistic networks between diverse bacteria are reportedly required for complete
DEHP degradation (28–30); however, the corresponding studies have not fully eluci-
dated the biochemical mechanisms involved in this bioprocess or provided insights
into the degradation role of each microorganism. In our DEHP-treated mesocosms, six
putative DEHP hydrolase genes (four with a predicted signal peptide) were differen-
tially expressed, and one of the hydrolases, k141_3815854_2, was identified in Bin6,
which displayed the closest AAI to Acidovorax sp. HMWF018. This hydrolase exhibited
100% AAI to a putative DEHP/MEHP hydrolase gene (encoding NCU68007) (see Data

FIG 5 Legend (Continued)
from the extracellular proteins of strain 210-6. (Bii) Thin-layer chromatography (TLC) indicated the hydrolase activity of the purified protein toward DEHP.
The detected major product was PA but not MEHP. After 12 h of anaerobic incubation, metabolites were extracted with ethyl acetate, separated through
TLC, and visualized by spraying the TLC plate with 30% (vol/vol) H2SO4. (C) Presence of three identical copies of hydrolase genes (NCU65467, NCU65472,
and NCU65476) in the chromosome of strain 210-6. Protein ID (NCU_) or locus tag (GW50_) are shown for each gene. Yellow, DEHP/MEHP hydrolase; gray,
transposase/integrase; white, hypothetical proteins; red, proteins not related to DEHP degradation; GWK50_06370, FAD-dependent oxidoreductase.
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Set S1 in the supplemental material) on the plasmid of strain 210-6, suggesting that
Acidovorax Bin6 is a DEHP side chain degrader. Furthermore, the isolation and charac-
terization of strain 210-6 confirmed Acidovorax spp. as active DEHP degraders in the es-
tuarine sediments. Putative DEHP-degrading hydrolase (k141_138169_2) and b-oxida-
tion genes for anaerobic 2-ethylhexanol degradation were identified in Bin14, and its
closest taxonomy affiliation was Sedimenticola selenatireducens. The degradation of
DEHP and other PAEs was not previously reported for the genus Sedimenticola (31–34).
Their apparent enrichment in DEHP-treated sediments suggests that Sedimenticola

FIG 6 Maximum likelihood tree of phthaloyl-CoA decarboxylase from bacterial isolates and in DEHP-
treated sediments. Orange branch, gammaproteobacterial nitrate-reducing phthalic acid degraders; blue
branch, betaproteobacterial nitrate-reducing o-phthalic acid degraders; green branch, deltaproteobacterial
sulfate-reducing phthalic acid degraders. Branch support of higher than 50% of the bootstrapping time is
shown.
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FIG 7 Maximum likelihood tree of hydrolases involved in degradation of alkyl side chains on DEHP and other
PAEs and other hydrolases from Acidovorax sp. strain 210-6. The phylogeny of the protein sequences from NCBI

(Continued on next page)
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plays a role in DEHP degradation. The key genes involved in anaerobic o-phthalic acid
degradation were not recovered in Sedimenticola Bin14; thus, we speculated that
Sedimenticola may be involved in the alkyl side chain degradation of DEHP in denitrify-
ing sediments. The slow transformation of DEHP into MEHP and the accumulation of
trace amounts of downstream metabolites (MEHP and o-phthalic acid) in both DEHP-
treated mesocosms and Acidovorax sp. culture suggested DEHP hydrolysis as a bottle-
neck in the anerobic DEHP degradation pathway. Future studies may focus on improv-
ing activities of the extracellular DEHP hydrolases. For example, the enhancement of
DEHP solubility likely could improve the DEHP biodegradation, since DEHP solubility is
below 3mg/liter (13). Moreover, the optimization of pH and temperature and required
cofactors for the DEHP/MEHP hydrolase remain to be characterized. Site-directed mu-
tagenesis, on the other hand, could be employed to evolve the DEHP hydrolases into
more competent biocatalysts.

On the basis of the profiles of DEHP-derived metabolites and changes in community
structures, as well as the taxonomy and functionality of binned genomes, we propose
that in the examined denitrifying sediments, complete DEHP degradation requires syner-
gistic metabolism. Acidovorax (Bin6), unclassified betaproteobacterium Burkholderiaceae

FIG 7 Legend (Continued)
and UniProt with an identity $40% similar to NCU65467 of Acidovorax sp. strain 210-6 was also inferred. Purple
branch, aerobic alphaproteobacterial degraders; blue branch, anaerobic betaproteobacterial degraders; red branch,
aerobic actinobacterial degraders; orange branch, anaerobic gammaproteobacterial degraders; brown branch,
aerobic Firmicutes degraders. Branch support of more than 50% of the bootstrapping time is shown.

FIG 8 Transposase genes in contigs or gene clusters carrying essential components for side chain hydrolysis of DEHP and o-phthalic acid degradation.
Gray, transposase/integrase; yellow, DEHP/MEHP hydrolase; blue, genes for o-phthalic acid degradation; white, hypothetical proteins; red, proteins not
related to DEHP degradation. Sequence references of genomes of Pigmentiphaga sp. D-2 and Burkholderiales bacterium RIFCSPLOWO2 are indicated. Full
annotation of Bin13 and Bin44 is listed Data Set S1.
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(Bin13), Sedimenticola (Bin14), and Oceanospirillales member SS1_B_06_26 (Bin18) are
major degraders of the alkyl side chains (namely, the 2-ethylhexanol moiety) of DEHP.
The remaining o-phthalic acid is likely transported into bacterial cells by a specific TRAP
transporter and primarily degraded by uncultured gammaproteobacterial MBAE14
(Bin116) and Aestuariibacter (Bin60) through the anaerobic benzoyl-CoA pathway (Fig. 9).
Synergistic interactions in a bisphenol A-degrading microbial community were also iden-
tified in a recent study (35), suggesting the crucial role of synergistic microbial metabo-
lism in removing endocrine-disrupting aromatics from contaminated environments.

Our community and metagenomic analyses suggest that Thauera and Azoarcus are
ecologically relevant degraders for o-phthalic acid. Unexpectedly, our phylogenetic
and metagenomic analyses indicated that o-phthalic acid degraders in DEHP-treated
sediments are mainly denitrifying gammaproteobacteria, revealing that the degraders
for anaerobic o-phthalic acid are not only restricted to denitrifying betaproteobacteria
(17–20) and sulfate-reducing deltaproteobacteria (Desulfosarcina cetonica DSM 7267
and Desulfobacula toluolica Tol2 [DSM 7467]) that were previously characterized (36).
Moreover, whether DEHP is toxic to Thauera and Azoarcus remains unclear. An appa-
rent decrease in the abundance of other bacteria (e.g., Clostridiales) can be observed
due to their sensitivity to DEHP (37–39). In addition, differentially expressed genes
related to chemotaxis and flagellar synthesis in DEHP-degrading Sedimenticola (Bin14)
and Aestuariibacter (Bin44) as well as o-phthalic acid-degrading Aestuariibacter (Bin60)
suggest that DEHP can be an attractant for not only DEHP degraders but also some o-
phthalic acid-degrading anaerobes. Some bacteria display chemotaxis toward

FIG 9 Diagram of proposed DEHP degradation through microbial synergistic metabolism in denitrifying sediments. The
betaproteobacterium Acidovorax and gammaproteobacterium Sedimenticola are major degraders of DEHP side chains. The
resulting o-phthalic acid is then imported through a specific TRAP transporter and degraded by other betaproteobacteria (e.g.,
Azoarcus) and gammaproteobacteria (e.g., Aestuariibacter). *, Gammaproteobacterial Bin44 has degradation capacity for both side
chains and o-phthalic acid. Orange, Gammaproteobacteria; blue, Betaproteobacteria.
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substrates that they are not able to degrade (40, 41). Accordingly, we assumed that
DEHP induced chemosensory responses in some o-phthalic acid-degrading gammap-
roteobacteria, enhancing their better attraction to o-phthalic acid produced from
DEHP.

Chemotaxis has been proposed to facilitate horizontal gene transfer because the
ability of bacteria to accumulate around pollutant substrates increases the possibility
of the transfer of relevant catabolic genes (42). Transposon elements have been identi-
fied in the gene clusters involved in DEHP side chain hydrolysis in the genome of
Acidovorax sp. strain 210-6 as well as in o-phthalic acid degradation in A. aromaticum
DSM 19081 (on plasmid), Azoarcus sp. PA01 (on chromosome), and T. chlorobenzoate
DSM 18012 (on chromosome) (19). Furthermore, Sanz et al. (43) suggested that the
complete o-phthalic acid degradation pathway in denitrifying bacteria, together with
the o-phthalic acid transporter gene, is successfully transferred to heterologous bacte-
ria that are unable to use o-phthalic acid as a substrate. In the present study, a similar
observation was made in DEHP side chain-degrading Burkholderiales Bin13 and o-
phthalic acid-degrading Aestuariibacter Bin44. Surprisingly, the gene cluster or contig
with potential DEHP-degrading hydrolases from Pigmentiphaga sp. D-2 and uncultured
Burkholderiales bacterium also contained a transposase gene. These findings indicate
that in the natural environment, DEHP degradation capacity may be widespread
among proteobacteria due to transposon-mediated horizontal gene transfer (44); this
further supports the notion that anthropogenic inputs may not only result in changes
in community structures but also in ecosystem functioning (45, 46).

Future perspective. The estuarine and marine ecosystems have been impacted
severely by plastic pollution (1). A recent study reported that several gammaproteo-
bacterial isolates (genera Idiomarina and Halomonas) and two actinobacterial species
isolates from marine plastic debris displayed DEHP degradation capacity under aerobic
conditions (47), whereas degraders isolated from terrestrial ecosystems were mostly
actinobacteria (genus Rhodococcus, Gordonia, and Mycobacterium). The interrogation
of DEHP degraders, from either anaerobic or aerobic environments, may not be com-
prehensive to date, but this raises interesting speculation whether the taxonomy of
DEHP degraders is ecosystem specific. On the other hand, the discovery of synergistic
microbial networks in removing DEHP in this study suggested that the bioremediation
for DEHP-contaminated ecosystems may not rely only on single bacterium, although
the efficient removal of DEHP via Rhodococcus strains in vegetation soils has been
demonstrated (48). This is congruent with a new insight that using microbial consortia
with diverse degradation genes will be critical to achieve the complete mineralization
of PAE-like pollutants in the future (49).

MATERIALS ANDMETHODS
Sample site and sediment collection. In the northern part of Taiwan, up to 6 million people reside

in the city of Taipei located in the basin of the Tamsui River and Keelung River. Our sampling site,
Guandu estuary (25°6959.560N, 121°27946.990E) is located downstream of these two rivers and receives
sewage discharges and waste effluent from the Taipei metropolitan area. The profile of PAEs in river eco-
systems in Taiwan has been identified; the average DEHP concentration in Tamsui River sediments was
2.3mg/g; other PAEs, namely, diethyl phthalate (DEP), dipropyl phthalate (DPP), di-n-butyl phthalate
(DBP), diphenyl phthalate (DPhP), benzylbutyl phthalate (BBP), dihexyl phthalate (DHP), and dicyclohexyl
phthalate (DCP), were either not detected or were detected in concentrations lower than 0.5mg/g (50).
Nitrate and denitrifying bacteria were abundant in the subsurface sediments (5 to 10 cm) of Guandu es-
tuary (51). During the low tide that occurred on 2 July 2018, two independent subsurface sediment and
river water samples were collected as described previously (25). These samples were stored at 4°C and
transported to the laboratory within 1 h for mesocosm incubation of denitrifying sediments.

Mesocosm incubation of denitrifying sediments with DEHP, benzoic acid, or o-phthalic acid.
Mesocosm experiments were performed in 1-liter sterilized serum bottles containing subsurface sedi-
ments (approximately 200 g) and river water (approximately 800ml). Four types of mesocosm (two repli-
cates in each)—10 mM sodium nitrate and 1 mM DEHP (SDN mesocosm), 10 mM sodium nitrate and 1
mM o-phthalic acid (SPN mesocosm), 10 mM sodium nitrate and 1 mM benzoic acid (SBN mesocosms),
and 10 mM nitrate only (SN mesocosm as the control)—were prepared under anoxic conditions by purg-
ing 80% (vol/vol) of nitrogen gas and 20% (vol/vol) of carbon dioxide into serum bottles sealed with
butyl rubber stoppers. All mesocosms were further reduced with 0.5mM Na2S to neutralize oxygen and
incubated at 25°C with agitation. The consumption of nitrate was monitored using the Spectroquant
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nitrate test kit HC707906 (Merck, Germany). Sodium nitrate (10mM) was resupplied when nitrate was
depleted until the exogenous substrates were completely degraded. Samples of river water and sedi-
ment mixture (approximately 10ml) were obtained from each mesocosm every 2 or 3 days, stored at
280°C for metabolite extraction, and preserved in LifeGuard soil preservation solution (Qiagen,
Germany) for total DNA/RNA extraction. All chemicals were purchased from Sigma-Aldrich, Merck KGaA
(St. Louis, MO, USA).

UPLC-APCI-HRMS analysis of DEHP-derived metabolites. Hydrophobic non-CoA thioester metab-
olites in the mesocosms (SDN, SPN, and SBN samples) were extracted using ethyl acetate as described
previously (25). Crude extracts were then applied in UPLC-MS with UPLC coupled to an APCI–mass spec-
trometer to identify and quantify metabolites. DEHP and its metabolites were first separated using a
reversed-phase C18 column (Acquity UPLC BEH C18, 1.7mm, 100 by 2.1mm; Waters) at a flow rate of
0.3ml/min at 65°C (oven temperature). The mobile phase was a mixture of two solutions: solution A
(0.1% formic acid [vol/vol] in 2% acetonitrile) and solution B (0.1% formic acid [vol/vol] in isopropanol).
Separation was achieved using a gradient of solvent B from 1% to 99% over 7min. APCI-MS analysis was
performed using an Orbitrap Elite hybrid ion trap-Orbitrap mass spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA) equipped with a standard APCI source. MS data were collected in the positive ioniza-
tion mode (parent scan range, 100 to 500 m/z). The capillary and APCI vaporizer temperatures were
120°C and 400°C, respectively; the sheath, auxiliary, and sweep gas flow rates were 40, 5, and 2 arbitrary
units, respectively. The source voltage was 6 kV, and the current was 15 mA. The elemental composition
of individual adduct ions was predicted using Xcalibur software V2.2 (Thermo Fisher Scientific). The fol-
lowing authentic standards were purchased from Sigma-Aldrich: DEHP, MEHP, o-phthalic acid, and ben-
zoic acid.

Gas chromatography-MS analysis of 2-ethyl-1-hexanol. Quantification of the remaining 2-ethyl-1-
hexanol in bacterial cultures was performed through GC on an HP 5890 series II GC device coupled to a
5972 series mass-selective detector (Hewlett-Packard, Palo Alto, CA, USA). A fused-silica capillary GC col-
umn (DB-1ms, 60 m, 0.25-mm inside diameter [i.d.]; Agilent J &W Scientific, Folsom, USA) chemically
bonded with a 100% dimethylpolysiloxane stationary phase (0.25-mm film thickness) was used. The
sample was inserted in the spitless mode by using helium as a carrier gas. Initially, the oven temperature
was maintained at 60°C and then increased to 95°C at the rate of 2°C/min. Once the temperature had
been maintained at 95°C for 1min, it was increased to 120°C at a rate of 3°C/min and then maintained at
120°C for 2min. Subsequently, the temperature was further increased to 180°C at the rate of 6°C/min
and maintained at 180°C for 2min. Electron impact ionization was used as an ionization source for the
GC-MS analysis at 70 eV. Data acquisition was performed in full-scan mode from 50 to 300 m/z over a
scan duration of 0.5 s. n-Hexane (as a blank) was run between samples to remove contamination. Mass
calibration was performed using perfluorotributylamine. Authentic standard 2-ethyl-1-hexanol was pur-
chased from Sigma-Aldrich.

DNA extraction and 16S rRNA gene amplicon sequencing. The bacterial community structure of
each mesocosm and temporal changes (day 0 to day 25 for the SN, SBN, and SPN mesocosms and day 0
to day 30 for the SDN mesocosm; two replicates for each) were identified using an Illumina MiSeq plat-
form. DNA was extracted from treated sediments by using the PowerSoil DNA isolation kit (Qiagen,
Germany). The 16S amplicon libraries targeting the V3-V4 regions of 16S rRNA genes (52) were prepared
according to the Illumina 16S metagenomic sequencing library preparation guide by using a gel purifi-
cation approach as described previously (24). In total, 96 libraries were generated, and their profiles
were analyzed using the Bioanalyzer 2100 with a high-sensitivity DNA kit (Agilent, USA). To ensure the
evenness of library pooling, all libraries were subjected to quantitative PCR (qPCR) for normalization by
using a Kapa library quantification kit to obtain molar concentrations. For sequencing, the pooled library
was run on an Illumina MiSeq sequencer with MiSeq reagent kit V3 (paired end; 2 by 300 bp).

Bioinformatics processing and taxonomic assignment for 16S amplicon sequencing. MiSeq
sequencing generated 27,848,006 reads from 96 sediment samples. USEARCH v11 (53) was used for
paired-reads assembly, quality filtering, length trimming, and UPARSE OTU clustering (54). The represen-
tative sequences of OTUs were taxonomically assigned against Silva release 132 (55) by using mothur
v1.41.3 (56). Silva release 132 reclassifies Betaproteobacteria as an order of Gammaproteobacteria. For
readability, the abundances of Gammaproteobacteria and Betaproteobacteria were calculated separately.
Less abundant OTUs from all samples (count of ,2 per OTU with a prevalence of ,20% in 96 samples)
were removed and then normalized through cumulative sum scaling (57) by using MicrobiomeAnalyst
(58). Similarities between microbial communities among differently treated sediments (SN, SBN, SPN,
and SDN) were determined by performing principal-coordinate analysis (PCoA) in MicrobiomeAnalyst on
the basis of the weighted UniFrac distance matrix (genus level). The UniFrac distance was calculated
according to the neighbor-joining phylogenetic tree file generated by the MUSCLE algorithm (59). To
determine the degraders for benzoic acid, o-phthalic acid, and DEHP, we first selected a large increase in
relative abundance at the bacterial class level. We applied the analysis of variance (ANOVA) test in
MetaboAnalyst 4.0 (60) to identify the bacterial genera in selected classes exhibiting the highest differ-
ences in abundance among different mesocosms.

Metagenomic and metatranscriptomic sequencing. To identify genes responding to exogenous
DEHP and o-phthalic acid in denitrifying sediments, the total DNA and RNA of SDN1_day14,
SDN2_day14, SPN1_day7, and SPN2_day7 were used for metagenome and metatranscriptome analyses.
Total DNA and RNA were extracted using the PowerSoil DNA isolation kit and RNeasy PowerSoil total
RNA kit (Qiagen, Germany), respectively. For shotgun metagenomic sequencing, the quality of DNA was
examined using Fragment Analyzer (Agilent, USA), and Kapa HyperPrep kits (Kapa Biosystems, USA)
were used for constructing four DNA libraries. The prepared libraries with average fragment sizes from
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451 to 461 bp were sequenced using an Illumina HiSeq 2500 sequencer with a HiSeq TruSeq Rapid Duo
cBot sample loading kit and HiSeq Rapid PE cluster kit v2 (paired-end), yielding 108,689,404 reads for
SDN1_day16, 96,381,152 reads for SDN2_day16, 92,719,398 reads for SPN1_day7, and 94,391,656 reads
for SPN2_day7.

For metatranscriptomic sequencing, the quality of RNA (RNA integrity number from 7.5 to 9.4) was
examined using the Bioanalyzer 2100 system with an RNA 6000 Nano kit (Agilent, USA) before using the
Ribo-Zero rRNA removal kit (Illumina) and TruSeq Stranded LT mRNA library prep kit v2 as described pre-
viously (24). The four prepared libraries with average fragment sizes from 328 to 351bp were sequenced
using an Illumina HiSeq 2500 sequencer, yielding 97,486,966 reads for SDN1_day14, 92,150,650 reads for
SDN2_day14, 94,830,584 reads for SPN1_day7, and 93,982,586 reads for SPN2_day7.

Quality trimming, assembly, gene prediction, and binning of the metagenome. Raw reads with
low quality (quality score of ,30) and short length (length of ,36 bp) from four metagenomes—
SDN1_day14, SDN2_day14, SPN1_day7, and SPN2_day7—were trimmed using Trimmomatic v0.39 (61).
The trimmed reads from all metagenomes were assembled into a single assembly by using Megahit
v1.1.4 with the default setting (62). Protein-coding genes were predicted using Prodigal 2.6.3 in the
metagenome mode (63). To recover genomes from the metagenome assembly, a binning algorithm,
MaxBin 2.2.7, was applied (64). The taxonomy affiliation of binned genomes was determined using the
following steps. First, the amino acid sequences of predicted protein-coding genes were mapped
against the NCBI nonredundant protein database by using DIAMOND v0.9.26 (65) with a cutoff E value
of 1� e25. Second, the closest taxonomic hit and the AAI of each predicted gene were extracted. Finally,
the closest species were selected on the basis of the majority of hits, and AAIs were averaged to be the
AAI between the binned genome and its closest species. CheckM v1.07 (66) was used to examine the
completeness and contamination of binned genomes. Other information regarding binned genomes
was assessed using QUAST 5.0.2 (67).

Gene quantification and differential gene expression analysis. After performing quality trimming
by using Trimmomatic v0.39 (61), we mapped metatranscriptomic reads to the metagenome assembly
by using Bowtie 2 2.3.5.1 (68) and quantified them using featureCounts (under Subreads release 1.6.4.).
The read count table from featureCounts was applied to edgeR 3.26.7 (69) to analyze DGE between SDN
and SPN communities with two biological replicates. Genes with a log2 fold change (log2 FC) value of
$2, a false discovery rate (FDR) of #0.05, and an adjusted P value of ,0.05 were designated differen-
tially expressed genes. The quantity of differentially expressed genes is presented as the count per mil-
lion (CPM).

Search for genes encoding MEHP transporter, DEHP/MEHP hydrolase, o-phthalic acid transporter,
and phthaloyl-CoA decarboxylase. The hidden Markov model (HMM) was employed to identify the
DEHP transporter and DEHP hydrolase involved in alkyl side chain degradation of DEHP. The protein
sequences of the DEHP hydrolase (NCU65476) of Acidovorax sp. strain 210-6 and MEHP transporter (WP
_007297306.1) identified in Rhodococcus jostii RHA1 (70) were used for generating two HMM profiles.
The TRAP transporter and UbiD-like phthaloyl-CoA decarboxylase involved in o-phthalic acid uptake and
degradation were also searched using the HMM (http://hmmer.org; v3.2.1) based on the six amino acid
sequences of phthaloyl-CoA decarboxylase determined from nitrate-reducing and sulfate-reducing o-
phthalic acid degraders (19, 36). These HMMs were then used to search against the amino acid sequen-
ces of differentially expressed genes from SDN communities. InterPro (71) and SignalP 5.0 (72) web-
servers were applied to predict protein family and the signal peptide of selective hydrolases,
respectively.

General gene annotation. The amino acid sequences of differentially expressed genes from SDN
communities were annotated against the RefSeq nonredundant protein database (release 94) (73) using
DIAMOND v0.9.26 with a cutoff E value of 1� e25 (65) and the ortholog-based eggNOG mapper 5.0 (74).
The HMMER-based KofamKOALA (75) was employed to annotate binned genomes containing genes
encoding DEHP hydrolase and phthaloyl-CoA decarboxylase that were identified in this study.
b-Oxidation genes, namely, those encoding CoA transferase, acyl-CoA dehydrogenase, enoyl-CoA hydra-
tase, and 3-hydroxyacyl-CoA dehydrogenase and thiolase, were selected if these genes were not an
adjunct to any genes involved in aromatics degradation or amino acid metabolism. In addition, we used
blastp in the NCBI or UniProt database to annotate gene function manually.

Isolation of DEHP-degrading Acidovorax sp. strain 210-6. On day 16, the DEHP-treated estuarine
mesocosm (;20ml) was transferred into a 250-ml serum bottle containing defined mineral minimal me-
dium (200ml) with DEHP (1mM) as the sole carbon source and electron donor as well as sodium nitrate
(10mM) as the electron acceptor. The defined medium was prepared according to an established proto-
col described previously (25). After the degradation of almost all DEHP added to the medium, the culture
was serially diluted (1021 to 1027) and transferred to other serum bottles with the same defined medium
for further cultivation. The fourth subculture containing highly enriched DEHP-degrading denitrifier was
spread on tryptone soy agar containing DEHP (1mM) to obtain a single colony. Most colonies were iden-
tified as Acidovorax spp. in the DEHP-containing plates through PCR by using the universal primers of
the bacterial 16S rRNA gene (27F and 1492R) (52). Acidovorax colonies were cultivated in the aforemen-
tioned defined medium to confirm their function. The isolate cultures were used to test their utilization
of other DEHP-related substrates, including MEHP, 2-ethyl-1-hexanol, o-phthalic acid, and benzoic acid.

Genome sequencing, assembly, and annotation for Acidovorax sp. strain 210-6. The genomic
DNA of Acidovorax sp. 210-6 was extracted using a Prest Mini genomic DNA (gDNA) bacteria kit
(Geneaid, Taiwan). The integrity of DNA was examined using Fragment Analyzer (Agilent, USA), showing
the major peak size at 35 kb. The PacBio shotgun library was constructed according to the manufac-
turer’s multiplexed bacterial protocol for the SMRTbell Express TPK 2.0 kit (PacBio). Briefly, gDNA was
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sheared using Megaruptor 2 (Diagenode) to an average size of 8.9 kb, purified, and condensed using
AMPure. Single-stranded DNA was removed using nucleases provided in the kit. Fragments were then
subjected to end repair, A tailing, and ligation to the adaptor of barcoded overhang adapter kit 8A. A
DNA size of 6 to 20 kb was selected using the BluePippin gel cassette (Sage). The final library showed an
average size of 8.5 kb.

PacBio sequencing was carried out using the Sequel sequencing kit 3.0 with SMRT Cell 1M v3 LR and
run on a Sequel sequencer, and the read file was generated from SMRTlink ICS v6.0. The de novo assem-
bly was conducted using HGAP4.0 on SMRTlink v8.0 with a coverage depth of 258�, resulting in three
polished contigs. The NCBI Prokaryotic Genome Annotation Pipeline was applied for genome annota-
tion. The gene clusters encoding NCU65476 were visualized using Gene Graphics.

Purification of extracellular DEHP/MEHP hydrolase from strain 210-6. The Acidovorax sp. 210-6
culture (2 liters) grown on DEHP was centrifuged at 10,000� g for 15min to pellet down the bacterial
cells, cell debris, and residual DEHP. Extracellular proteins (10mg/ml; totally, 700ml) were filtered
through a 0.22-mm nitrocellulose membrane (47-mm diameter; Millipore) and concentrated using the
Amicon Ultra centrifugal filters to 7ml (cutoff, 30 kDa). The resulting proteins were purified using the
AKTA start purification system through DEAE Sepharose Fast Flow packed in the XK16 column (GE
Healthcare, USA), followed by another purification using phenyl Sepharose (GE Healthcare, USA).

Proteomic analysis. For protein identification, active protein fractions were further separated by so-
dium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (4% to 20% bis-Tris Gel; GenScript,
USA). Proteins in the gel slices were eluted in HEPES-K1 buffer (50mM, pH 8.0) and trypsin digested. The
proteomic analysis was performed using an LC-nESI-Q Exactive MS model (Thermo Fisher Scientific, USA)
coupled with an on-line nanoUHPLC (Dionex UltiMate 3000 Binary RSLCnano). Protein identification was
performed using Proteome Discoverer software (v1.4; Thermo Fisher Scientific) with the SEQUEST search
engine against all the protein sequences of the genome and the plasmids of Acidovorax sp. strain 210-6.
All peptides were filtered with a q value threshold of 0.01 (false discovery rate of 1%), and proteins were
filtered with a minimum of two peptides per protein, wherein only rank 1 peptides and the peptides in
top-scored proteins were counted.

DEHP and MEHP hydrolase activity assay. We used the estuarine water to culture the sediment
mesocosms, which has a pH at approximately 8.0. Thus, the hydrolase activities of protein fractions were
determined in 50mM HEPES-K1 buffer (pH 8.0) containing 0.2 mM DEHP or MEHP. The reaction was car-
ried out at 30°C and sampled at 0 and 12 h. The remaining DEHP, MEHP, or o-phthalic acid in each reac-
tion was extracted by ethyl acetate and detected using thin-layer chromatography and UPLC-APCI-
HRMS.

Phylogenetic analyses for phthaloyl-CoA decarboxylase and DEHP/MEHP hydrolase. Maximum
likelihood trees were constructed in MEGA X (76) to elucidate the phylogeny of UbiD family decarboxyl-
ase and alpha/beta hydrolase. All amino acid sequences for this analysis were aligned without truncation
by using MUSCLE (59) in MEGA X. The best amino acid substitution model for each tree was determined
using the Model Test in MEGA X. The branch support was determined by bootstrapping 1,000 times

For the UbiD tree, apart from the amino acid sequences of ubiD in the Acidovorax sp. strain 210-6 ge-
nome and DGE in SDN metagenome, we selected 100 amino acid sequences of 3-octaprenyl-4-hydroxy-
benzoate carboxylase and four phenolic acid decarboxylase sequences (all manually annotated and
reviewed) from the UniProt database as references. One sequence of phthaloyl-CoA decarboxylase from
Azoarcus Bin394 and eight sequences of phthaloyl-CoA decarboxylase from anaerobic phthalate
degraders (19, 36), one sequence of iso-phthaloyl-CoA decarboxylase and its closely related sequences
(phenolic acid decarboxylase subunit C) (77), and one sequence each of 2,5-furandicarboxylate decar-
boxylase, phenolic acid decarboxylase subunit C, and phenylphosphate carboxylase subunit alpha and
beta were also included for this phylogenetic analysis. The UbiD maximum likelihood tree was con-
structed using the LG substitution model plus the gamma distribution rate.

The phylogeny of hydrolases responsible for the alkyl side chain degradation on PAEs was also con-
structed. The amino acid sequences of alpha/beta hydrolases in the genome of Acidovorax sp. 210-6 and
hydrolases derived from several aerobic o-phthalic acid-degrading Actinobacteria (14–16, 70, 78–80),
Alphaproteobacteria (81, 82), Firmicutes (83), Gammaproteobacteria (84), and uncultured bacterium (85)
were used for inferring the maximum likelihood tree. The bacterial source, substrate specificity, and
accession numbers of these aerobic hydrolases are listed in Table S1 in the supplemental material. We
included the amino acid sequences of the most similar proteins to NCU65476 (identity$ 40%) from the
NCBI and UniProt databases. The maximum likelihood tree was constructed under the WAG1F substitu-
tion model plus the gamma distribution rate.

Data availability. The raw reads of 16S amplicon sequencing from SN, SBN, SDN, and SPN commun-
ities were deposited in Sequence Read Archive (SRA) of NCBI under accession PRJNA604667. The raw
reads of the metagenome and metatranscriptome of SDN_day14 and SPN_day7 are available under the
SRA experiments of PRJNA602375 in NCBI. The strain 210-6 genome was deposited in NCBI under acces-
sion GCA_010020825.1.
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