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Abstract

chondrogenesis of MSCs.

inhibiting inflammation to facilitate cartilage tissue repair.

Background: Articular cartilage diseases are considered a major health problem, and tissue engineering using human
mesenchymal stem cells (MSCs) have been shown as a promising solution for cartilage tissue repair. Hesperidin is a
flavonoid extract from citrus fruits with anti-inflammatory properties. We aimed to investigate the effect of hesperidin
on MSCs for cartilage tissue repair. MSCs were treated by hesperidin, and colony formation and proliferation assays
were performed to evaluate self-renewal ability of MSCs. Alcian blue staining and Sox9 expression were measured to
evaluate chondrogenesis of MSCs. Secretion of pro-inflammatory cytokines IFN-y, IL-2, IL-4 and IL-10, and expression of
nuclear factor kappa B (NF-kB) subunit p65 were also assessed.

Results: Hesperidin improved self-renewal ability and chondrogenesis of MSCs, inhibited secretion of pro-inflammatory
cytokines IFN-y, IL-2, IL-4 and IL-10, and suppressed the expression of p65. Overexpression of p65 was able to reverse
the hesperidin inhibited secretions of pro-inflammatory cytokines, and abolish the enhancing effect of hesperidin on

Conclusion: Hesperidin could serve as a therapeutic agent to effectively enhance chondrogenesis of human MSCs by
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Background

Highly specialized articular cartilage consists of chon-
drocytes that are embedded in a rich extracellular
matrix, mostly constituted by collagen, proteoglycans,
and water [1, 2]. The cartilage provides a low friction on
the articular surfaces of the bone, and serves as an
impact absorber for joint movement by covering the
load-bearing surface [3, 4]. It possesses a low capacity
for repair and regeneration due to the absence of vascu-
lar, lymphatic and neural networks as well as the lack of
sufficient progenitor cells within the cartilage [5, 6].
Hence, once articular cartilage is injured and damaged,
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it cannot be spontaneously repaired. In trauma or more
commonly in degenerative joint diseases like rheumatoid
arthritis and osteoarthritis, which affect at least 15% US
population, structure and function of the articular carti-
lage tissues are often both impaired [7, 8]. Articular
cartilage diseases undoubtedly bring a large financial
burden to the individuals as well as the health system
worldwide, and are therefore regarded as a foremost
health problem particularly in developed countries [7, 9].

Tissue engineering provides an exciting alternative
approach for treating articular cartilage diseases via the
development of biological substitutes. Recent reports
demonstrated that human stem cells, especially mesen-
chymal stem cells (MSCs), produced positive outcomes
in the treatment of articular cartilage diseases [10].
Multiple approaches have been taken to utilize MSCs,
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with some efforts focusing on their in vitro expansion
while others on in vitro differentiation. For instance,
MSCs expanded in vitro were reported to be successfully
transplanted into the defective articular cartilage of both
animals and human patients, which underwent differen-
tiation in vivo that eventually led to regeneration of
osteochondral tissue [11]. In addition, human MSCs can
be obtained from a variety of adult tissues, expanded with
ease, and subsequently differentiated into matrix-producing
chondrocytes in vitro [12, 13], eventually leading to the for-
mation of hyaline articular cartilage. Due to the potential
teratoma formation of pluripotent stem cells (e.g., induced
pluripotent stem cells or embryonic stem cells), they are
less preferable compared to MSCs in cartilage tissue engi-
neering [14]. However, cartilage tissue engineering has
yet to be proven effective in clinical use. The
structural and functional properties of native articu-
lar cartilage have not been fully adopted by the
tissue-engineered cartilage [15, 16]. Therefore, to date,
there is no reliable long-term therapeutic strategy for ar-
ticular cartilage repair [17]. Conventional therapies (e.g.,
microfracture, mosaicplasty and ACI) or traditional thera-
pies (e.g., joint surgery) possess several shortcomings. In
joint surgery, implantation of a prosthetic device is
performed to replace the living cartilage tissue, which can
marginally rescue joint functions but for merely 10-15 years.
This procedure also poses additional risks of post-surgery
complications, including infection and inflammation [18].
Thus, an efficient treatment to successfully repair or rege-
nerate articular cartilage tissues is urgently needed.
Hesperidin is a natural flavonoid that possesses
anti-inflammatory properties in many disease models.
For example, hesperidin has been shown in rodent
model to reduce inflammation as well as inflammatory
pain through suppression of cytokine production, NF-kB
activity, and oxidative stress [19]. In a similar manner, in a
mouse model of skin damage induced by ultraviolet B ir-
radiation, hesperidin was demonstrated to inhibit oxidative
stress and inflammation [20], by down-regulation of
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cytokine production including TNF-a, IL-1f, IL-6 and
IL-10 [21]. However, the effect of hesperidin on the
immune responses during chondrogenesis of MSCs has not
yet been reported.

In the current study, we hypothesized that hesperidin
could enhance self-renewal and chondrogenesis of iso-
lated human MSCs in vitro, which could then facilitate
their in vitro expansion and differentiation at a large
scale for clinical cartilage tissue repair.

Results

Hesperidin improves self-renewal ability of MSCs

The chemical structure of hesperidin was identified as
shown in Fig. 1a. Here MSCs cells were challenged with
different doses of hesperidin (0, 1, 5 and 10 pM), and
the self-renewal capacity was assessed by colony forma-
tion and proliferation assays. Both the relative number
and average size of colonies were significantly increased
following hesperidin treatments up to 5 pM (Fig. 1b, c).
Similarly, the cell viability determined using CCK-8
method clearly demonstrated that hesperidin markedly
stimulated cell proliferation (Fig. 1d). However, high
dose of hesperidin (10 uM in our system) induced slight
inhibition on both colony formation and cell prolifera-
tion (Fig. 1b, ¢, d). Thus, 5 pM of hesperidin was chosen
as the optimal dosage for the subsequent experiments in
the current study, and to our best knowledge, these
findings provided the first evidence that hesperidin
improved self-renewal ability of patient-derived MSCs.

Hesperidin enhances chondrogenesis of MSCs

Next, we sought to evaluate the possible effects of hes-
peridin on chondrogenesis potential of MSCs. Chondro-
genesis was induced in the MSCs for 14 days upon
hesperidin treatment. As shown in Fig. 2a, Alcian Blue
staining showed significant increase of chondrogenesis
in hesperidin-treated MSCs. These phenotypic observa-
tions were further confirmed at the molecular level by
measuring specific chondrogenic marker Sox9, where
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Fig. 1 Hesperidin improves self-renewal ability of MSCs. a Chemical structure of hesperidin. b to d Colony number (b), colony size (c) and
proliferation (d) of MSCs after treatments with 0, 1, 5 and 10 uM of hesperidin, respectively. Data were shown as mean + SD from at least three
independent experiments. * p < 0.05, ** p <0.01, ns not significant, versus O UM hesperidin
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Alcian Blue staining assay. Images were representatives of at least
three independent experiments, and positively stained cells were
shown in pink, scale bar 100 um. b At day 14 after differentiation
induction in the absence (control) or presence of 5 UM hesperidin,
the extents of chondrogenesis was evaluated by mRNA levels of
chondrogenic marker Sox9. Data were shown as mean + SD from at
least three independent experiments. ** p < 0.01, versus control

hesperidin treatment induced evident up-regulation of
Sox-9 (Fig. 2b). Our results clearly demonstrated that,
besides self-renewal ability, hesperidin also enhanced
chondrogenesis of MSCs.

Hesperidin suppresses secretion of pro-inflammatory
cytokines

Pro-inflammatory cytokines are essential players in both
innate and acquired immune responses. Therefore, we sub-
jected the MSCs in the absence or presence of 5 uM hespe-
ridin, and then measured the levels of pro-inflammatory
cytokines IFN-y, IL-2, IL-4 and IL-10 in the medium using
ELISA. Results clearly indicated that hesperidin treatment
inhibited the secretion of all of abovementioned cytokines
compared with those of control (Fig. 3).

Hesperidin inhibits the expression of nuclear factor kappa
B (NF-kB) subunit p65

To determine the extent of inflammation, we examined
the expression of biomarkers in inflammatory responses,
such as NF-«B subunit p65. We treated the MSCs in the
absence or presence of 5 uM hesperidin, and then exam-
ined the effect on expression of p65. We found that both
mRNA and protein levels of p65 were significantly re-
duced by hesperidin treatment (Fig. 4a and b), indicating
that hesperidin was able to inhibit the expression of
NF-kB subunit p65.

Next, to confirm the effect of hesperidin were due to
decreased p65 expression, we introduced p65 siRNA
knockdown in the MSCs (Additional file 1: Figure S1A
and S1B). As expected, p65 knockdown significantly
inhibited secretions of pro-inflammatory cytokines
IEN-y, IL-2, IL-4 and IL-10 (Additional file 1: Figure S1C).
The MSCs were then subjected to differentiation for
14 days, after which stronger extent of chondrogenesis
was observed in p65 knockdown cells, in terms of Sox9
mRNA expression (Additional file 1: Figure S1D) and
Alcian Blue staining (Additional file 1: Figure S1E).
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Fig. 4 Hesperidin suppresses the expression of nuclear factor kappa
B (NF-kB) subunit p65 of MSCs. MSCs were treated in the absence
(control) or presence of 5 uM hesperidin, and relative mRNA (a) and
protein (b) expressions of NF-kB subunit p65 were measured by RT-
PCR and Western blot, respectively. Western blot was representative
of at least three independent experiments, with relative intensity
(p65/GAPDH) indicated below as mean + SD. Data were shown as
mean + SD from at least three independent experiments. * p < 0.05,
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Inhibition of p65 is required for the inhibitory effect of
hesperidin on cytokine secretions, and enhancing effect
of hesperidin on chondrogenesis

We then questioned whether the inhibitory effect of
hesperidin on p65 contributed to the earlier observed
suppression on cytokine secretions. To this end, we
overexpressed p65 in MSCs, and verified that both
mRNA and protein levels of p65 were greatly elevated
compared to baseline in the absence (control) or pres-
ence of 5 uM hesperidin, respectively (Fig. 5a and b).
Overexpression of p65 increased secretions of
pro-inflammatory cytokines IEN-y, IL-2, IL-4 and IL-10,
which could be restored to baseline upon co-treatment
of hesperidin (Fig. 6), suggesting that inhibition of p65
was indeed required for the inhibitory effect of hesperi-
din on cytokine secretions from MSCs.

Next, we further examined the effect of p65 inhibition on
enhancing effect of hesperidin on chondrogenesis. MSCs
were transduced with either empty control or p65 lentiviral
particle, at day 14 after chondrogenesis induction in the ab-
sence (control) or presence of 5 pM hesperidin. Overex-
pression of p65 decreased chondrogenesis in terms of
Alcian Blue staining (Fig. 7a) and Sox9 expression (Fig. 7b).
Again, upon co-treatment of hesperidin, chondrogenesis
extent was restored to baseline, indicating that inhibition of
p65 was also required for the enhancing effect of hesperidin
on chondrogenesis of MSCs.

Discussion

In the study, we hereby reported for the first time that, hes-
peridin was able to improve self-renewal ability and chon-
drogenesis of MSCs, inhibit secretion of pro-inflammatory
cytokines IFN-y, IL-2, IL-4 and IL-10, and suppressed the
expression of NF-kB subunit p65. Since human MSCs can
be easily expanded and subsequently differentiated into
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matrix-producing chondrocytes [12, 13], eventually leading
to the formation of hyaline articular cartilage, the observed
enhancing effect of hesperidin on chondrogenesis of MSCs
was potentially valuable in future clinical applications. In
fact, hesperidin has been reported previously to exhibit
beneficial effect toward cartilage tissues. In costal cartilage
cells isolated from rabbits, a hesperidin loaded poly (lactic--
co-glycolic acid) scaffold could improve attachment and
proliferation of these cartilage cells, suggesting the potential
of hesperidin in cartilage tissue engineering [22].
Furthermore, we overexpressed p65 in the context of
hesperidin treatment, which reversed the hesperidin
inhibited secretions of pro-inflammatory cytokines, and
abolished the enhancing effect of hesperidin on chon-
drogenesis of MSCs. This result is intriguing in that it
implicates the NF-kB signalling pathway and inflamma-
tion as the molecular mechanism underlying hesperidin
action. NF-«B, a nuclear transcription factor, is shown to
be involved in inflammatory, immune and stress re-
sponses. The signalling pathway of NF-«B include
NF-xB, NF-«B inhibitor (IxkB), IKKs upstream kinase and
IxB kinase complex (IKKs). In mammals, NF-kB family
is composed of NF-kB1, NF-kB2, p65/RelA, C-Rel and
RelB, all of which contain a Rel homology domain
(RHD) [23]. NF-kB forms heterodimer or homodimer in
cells, and p65/NF-«B1 is the first discovered and most
widely existing dimer. The conventional NF-kB signaling
also predominantly involves the p65/NF-«kB1 dimer [23].
NF-kB contributes to both innate and adaptive immune
responses, and is one of the critical regulators of the
production of pro-inflammatory cytokines [24]. The
activation of NF-kB results in enhanced recruitment of
inflammatory cells and increased production of pro-
inflammatory mediators, including IL-1, IL-6, IL-8
and TNF. Inhibition of NF-kB activity has consistently
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Fig. 7 Inhibition of p65 is required for the enhancing effect of
hesperidin on chondrogenesis of MSCs. MSCs were transduced with
either empty control or p65 overexpression (OE) lentiviral particle, at
day 14 after chondrogenesis induction in the absence (control) or
presence of 5 uM hesperidin, the extents of chondrogenesis was
evaluated by Alcian Blue staining assay (a), and by mRNA levels of
chondrogenic marker Sox9 (b). Images were representatives of at
least three independent experiments, and positively stained cells
were shown in pink, scale bar 100 um. Data were shown as mean +
SD from at least three independent experiments. $ p < 0.05, versus
control, hesperidin and hesperidin+p65 OE. ** p < 0.01, versus
control and hesperidin+p65 OE. # p < 0.05, versus control

proven effective in the control of inflammatory diseases
in several animal models. For example, blockage of
NF-«B activity suppressed both the inflammation and
tissue damage in rheumatoid synovium [25]. There has
been reports regarding the effects of hesperidin on
NE-kB signal transduction using mouse models. In a dia-
betic mouse model, hesperidin reduced NF-«kB level [26],
whereas in a mouse model for pain hesperidin was
shown to suppress the activity of NF-kB [19]. Further,
hesperidin was also demonstrated to negatively regulate
pro-inflammatory cytokines downstream of NF-«kB, in-
cluding IL-6 and IL-10 [21]. Our current study provides
yet another instance supporting the anti-inflammatory
properties of hesperidin, indicating that hesperidin may
possess a universal anti-inflammatory function in various
disease models, including but not limited to cartilage re-
pair via tissue engineering using MSCs.

It is challenging to produce tissue-engineered cartilage re-
sembling the native articular cartilage. Mechanical loading is
regarded as a critical factor in cartilage tissue engineering
for the reason that in daily activities normal articular carti-
lage is constantly subjected to mechanical loading [6, 27].
Mechanical loading is able to stimulate chondrogenesis in
vitro and suppress hypertrophic differentiation of human
MSCs [28, 29]. However, the particular type of mechanical
loading and its loading regime to enhance non-hypertrophic
chondrogenesis along with the mechano-transduction sig-
nalling remain to be clarified. This knowledge will help to
establish a function-wise native-like tissue-engineered articu-
lar cartilage for therapeutic applications [27], and it would
be of great clinical value to investigate whether hesperidin
treatment could enhance the mechanical response of carti-
lage tissue derived from human MSCs.

Other factors contributing to successful cartilage tissue
engineering using human MSCs include three-dimensional
(3D) scaffold, and growth factors, both of which are
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reported to be essential for the quality of tissue-engineered
cartilage [2, 10, 30]. In the context, the study by Cho et al.
on the effect of hesperidin loaded poly (lactic-co-glycolic
acid) scaffold costal cartilage cells [22] has demonstrated
the usefulness of combining 3D scaffold with hesperidin. It
will be interesting to further investigate the combinational
effect of hesperidin with other contributing factors on MSC
chondrogenesis in future studies.

Conclusion

To conclusion, our current study demonstrates that hes-
peridin serves as a therapeutic agent to effectively enhance
both self-renewal and chondrogenesis of human MSCs in
vitro by inhibiting inflammation to facilitate cartilage
tissue repair. Our current study therefore supports a wider
application of hesperidin for multiple approaches to use
MSC:s for clinical cartilage tissue repair.

Methods

Human MSC culturing

The protocol for the use of human cells was approved
by the committee of the Second Hospital of Shandong
University, and bone marrow cells were harvested from
bone fragments of patients from the Second Hospital of
Shandong University, with written consent forms ac-
quired from all patients. All bone marrow aspirates were
diluted with low-glucose Dulbecco’s modified Eagle’s
medium (DMEM, Thermo, Waltham, MA, USA), and
then subjected to Ficoll gradient centrifugation (1200xg
for 30 min at room temperature). The cells from the
interface were harvested, followed by two washes in
phosphate-buffered saline (PBS). Mononuclear cells
re-suspended in complete DMEM were counted with a
hemocytometer and seeded in 10cm? tissue culture
dishes at a density of 5 x 10° cells/10 mL. After two days,
floating cells were discarded, and the adherent cells were
kept for culture at 37 °C with 5% humidified CO,. After
reaching a confluence of 75-85%, cells were detached with
0.05% trypsin/1 mM EDTA and re-plated, and expanded
cells with <9 passages were used in the experiments.

Colony formation assay

A total of 1 x10° MSCs were plated into a 10-cm petri
dish and continuously cultured for up to 21 days in the
presence of 0, 1, 5 and 10 uM of hesperidin, respectively.
Crystal violet (0.5%, SIGMA, MO, USA) was used to
stain the formed colonies for 15 mins followed by coun-
ting under light microscope. Colonies larger than 2 mm
in diameter were counted, which typically ranged from
50 to 200 per dish (calculated from 10 randomly chosen
fields in each dish).
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Proliferation assay

The proliferation of cells was assessed by commercial
CCK-8 kit (Dojindo, Kumamoto, Japan). In brief, 1 x 10
MSCs were plated into each well of 6-well plate and
continuously cultured for up to 7 days in the presence of
0, 1, 5 and 10 pM of hesperidin, respectively. 10 ul
CCK-8 solution was then added into each well and the
chromogenic reaction was carried out at 37 °C for 15
mins. Microplate reader (Molecular Devices, Sunnyvale,
CA, USA) was used to record the absorption at 450 nm
and relative cell viability was calculated.

Chondrogenesis assays

MSCs were cultured in chondrogenic induction medium
(DMEM, 0.2 mM ascorbate-2-phosphate, 20% FBS, and
10 mM glycerol-2-phosphate) for 14 days in the absence
or presence of 5 uM hesperidin, with fresh medium ex-
changed every 2 days. Chondrogenesis was evaluated
using Alcian Blue (Millipore, Billerica, MA, USA)
staining.

mRNA extraction and real-time PCR

Total mRNA was extracted using Trizol (Invitrogen,
Carlsbad, CA, USA), and reverse transcribed to comple-
mentary ¢cDNAs with Superscript II following manu-
facturer’s instructions (Biorad, Hercules, CA, USA).
Triplicate PCR reactions were conducted using cyber
green-based system (Applied Biosystems, Waltham, MA,
USA) with the following conditions: 15 s at 95 °C, 1 min
at 60 °C for 40 times. The relative expression levels were
calculated using GAPDH as the internal control. Primers
used in this study were: Sox9 forward 5'-GTA CCC
GCA CTT GCA CAA-3’, reverse 5-TCT CGC TCT
CGT TCA GAA GTC-3'; p65 forward 5-ACA TCC
ATG CGG AGA ACG AGG AG-3', reverse 5-AGT
GCT GCG AGT GAG TCA AGA GG-3'; GAPDH for-
ward 5-CTG ACT TCA ACA GCG ACA CC-3’, reverse
5'-TAG CCA AAT TCG TTG TCA TAC-3".

Western blot

Cell resuspension was prepared in the lysis buffer con-
taining 150 mM NaCl, 50 mM Tris-HCl, 10 mM
HEPES, 0.1% NP-40 alternative, 0.5 mM NaF, 0.25%
Na-deoxycholate, 1 mM NazVO,, pH 7.4 (Protease In-
hibitor Cocktail, Roche, 1 tablet/10 ml). Cell lysates were
quantitated using BCA protein assays, and 30 pg total
protein was then run on SDS-PAGE followed by transfer
to PVDF membranes. The membranes were subse-
quently blocked with 1% BSA (bovine serum albumin,
Sigma, USA), and incubated with primary antibodies at
4 °C overnight. Primary antibodies for p65 and GAPDH
were both purchased from Abcam. HRP conjugated
secondary antibodies were utilized to visualize bands in
an ECL-based imaging system.
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p65 overexpression and knockdown

Stable overexpression and knockdown of p65 were estab-
lished using p65 lentiviral particle (LPP-F0160-Lv105) and
p65 shRNA particle (HSH016213-CH1), both of which
purchased from GeneCopoeia (Rockville, MD, USA). Cells
were first transduced by respective lentiviral particles for
24 h, followed by selection with puromycin for 2 weeks,
according to vendor’s instructions.

Enzyme-linked immunosorbent assay (ELISA)

The MSCs were treated in the absence or presence of
5 uM hesperidin for 2 days. Cells were then completely re-
moved by centrifugation and clear medium was collected
for ELISA analysis. The levels of IFN-y, IL-2, IL-4 and
IL-10 were measured with the commercially available
ELISA kits (Abcam, MA, USA) following the manufac-
turer’s instructions.

Statistical analysis

All data were analyzed using SPSS 22.0 system (IBM,
Armonk, NY, USA), and presented as mean * standard
deviation (SD) from at least three independent experi-
ments. The differences between groups were determined
by Student’s T tests and single factor variance analysis
(ANOVA). P values less than 0.05 were considered
statistical significant.

Additional file

Additional file 1: Figure S1. p65 knockdown inhibits secretion of IFN-y,
IL-2, IL-4 and IL-10, and enhances chondrogenesis of MSCs. MSCs were
transduced with control or siRNA against NF-kB subunit p65, followed by
assessments of (A) mRNA and (B) protein expressions of p65, (C) levels of
IFN-y, IL-2, IL-4 and IL-10 in the medium. MSCs with either control or p65
SIRNA were subjected to 14 days of differentiation induction, followed by
assessments of (D) mMRNA expression of chondrogenic marker Sox9, and
(E) extents of chondrogenesis. Images were representatives of at least
three independent experiments, and positively stained cells were shown
in pink, scale bar 100 pm. Western blot was representative of at least
three independent experiments, with relative intensity (p65/GAPDH) indi-
cated below as mean + SD. Data were shown as mean + SD from at least
three independent experiments. ** p <0.01, * p < 0.05, versus control.
(DOCX 519 kb)
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