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Abstract
Purpose of Review Candida auris, a recently recognized yeast pathogen, has become a major public health threat due to the 
problems associated with its accurate identification, intrinsic and acquired resistance to antifungal drugs, and its potential 
to easily contaminate the environment causing clonal outbreaks in healthcare facilities. These outbreaks are associated with 
high mortality rates particularly among older patients with multiple comorbidities under intensive care settings. The pur-
pose of this review is to highlight strategies that are being adapted to prevent transmission of C. auris in healthcare settings.
Recent Findings Colonized patients shed C. auris into their environment which contaminates surrounding equipment. It 
resists elimination even by robust decontamination procedures and is easily transmitted to new patients during close contact 
resulting in outbreaks. Efforts are being made to rapidly identify C. auris-infected/C. auris-colonized patients, to determine 
its susceptibility to antifungals, and to perform effective cleaning and decontamination of the environment and isolation of 
colonized patients to prevent further transmission.
Summary Rapid and accurate identification of hospitalized patients infected/colonized with C. auris, rapid detection of 
its susceptibility patterns, and appropriate use of infection control measures can help to contain the spread of this highly 
pathogenic yeast in healthcare settings and prevent/control outbreaks.

Keywords Candida auris · Global epidemiology · Diagnosis · Antifungal drug susceptibility · Environmental 
decontamination · Infection control

Introduction

Invasive fungal infections (IFIs) are regarded as the diseases 
of medical progress, and invasive candidiasis, particularly 
candidemia, is the most common manifestation of IFIs [1•, 
2••]. The incidence of candidemia/invasive candidiasis has 
been consistently rising globally, and Candida spp. are the 
causative agent in nearly 25% of all bloodstream infections 
among hospitalized patients [1•, 2••, 3]. Important risk 
factors for invasive candidiasis include extremes of age; 
admission into intensive care units (ICUs); total parenteral 
nutrition; multiple comorbidities such as diabetes mellitus, 
chronic pulmonary, cardiovascular, or kidney disease, neu-
tropenia, and malignancy; presence of central venous/uri-
nary catheters; and prior use of broad-spectrum antibiotics/

antifungal agents [3–6]. Invasive Candida infections have an 
attributable mortality of nearly 30% in adults and nearly 15% 
in neonates [7, 8]. With rapid changes in clinical practice, 
the spectrum of Candida and other yeast species capable of 
causing IFIs is also changing [9•, 10].

Candida albicans is usually the most common cause of 
invasive candidiasis; however, majority (> 50%) of Candida 
infections are now caused by non-albicans Candida species 
(NACS) [10–14]. The NACS usually exhibit reduced sus-
ceptibility/resistance to one or more antifungal drugs [10, 
15•, 16–18]. The incidence of NACS-invasive infections 
has increased due to their selection as a result of increasing 
use of fluconazole/other antifungal drugs for prophylaxis 
or therapy for IFIs [10, 12–14, 15•, 16–18]. The emerging 
multidrug-resistant Candida spp. include C. glabrata, C. 
krusei, C. lusitaniae, C. guilliermondii complex members, 
C. kefyr, C. haemulonii complex members, and C. auris [10, 
12–14, 15•, 16–18, 19••]. Of these, C. auris is now recog-
nized as a threat to global public health due to its ability to 
cause outbreaks of invasive infections in healthcare facilities 
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which have been difficult to control and treat [19••, 20•, 21]. 
In this article, the current epidemiology of C. auris infec-
tions, its rapid detection from infected/colonized patients, 
and strategies to control its spread in healthcare facilities by 
infection prevention are described.

Global Epidemiology of C. auris Infections

Candida auris, isolated from the external ear canal of a 
Japanese patient, was first described as a novel Candida 
species in 2009 [22]. However, a subsequent retrospective 
study from South Korea revealed that the earliest C. auris, 
a bloodstream isolate initially misidentified as C. haemulo-
nii, dates back to 1996 [23]. Fifteen other C. auris isolates, 
misidentified earlier as C. haemulonii, were also identi-
fied among archived cultures collected from ear samples 
during 2004–2006 [24]. Soon afterwards, several invasive 
isolates were identified in India [25], and the first outbreak 
was reported from the UK [26•]. The epidemiology of C. 
auris infections has witnessed dramatic changes over the 
past 10 years as several thousand sporadic or outbreak 
isolates have been recovered from blood and other speci-
mens mostly from hospitalized patients in > 50 countries/
territories from Asia (Japan, South Korea, India, Kuwait, 
Israel, Oman, Pakistan, United Arab Emirates, China, 
Malaysia, Saudi Arabia, Iran, Thailand, Singapore, Bang-
ladesh, Lebanon, Qatar, Taiwan, and Vietnam), Europe 
(Great Britain, Spain, Norway, France, Belgium, Germany, 
Russia, Austria, Switzerland, Italy, Greece, Netherlands, 
Poland, and Denmark), North/South Americas (USA, Ven-
ezuela, Canada, Colombia, Panama, Chile, Costa Rica, 
Brazil, Guatemala, Mexico, and Peru), Africa (South 
Africa, Kenya, Egypt, Sudan, Algeria, and Nigeria), and 
the Oceania (Australia) [19••, 20•, 21, 27–29].

Whole genome sequencing of clinical C. auris iso-
lates has identified five distinct clades which exhibit 
large sequence differences (> 200,000 single nucleotide 
polymorphisms, SNPs) and likely originated simultane-
ously. C. auris isolates within the same clade usually 
show minor sequence differences [30••, 31, 32]. The five 
clades include South Asian Clade (clade I), East Asian 
Clade (clade II), African Clade (clade III), South Ameri-
can Clade (clade IV), and Iranian Clade (clade V) [30••, 
31, 32]. C. auris isolates exhibit clade-specific resistance 
patterns to antifungal drugs, and invasive infections/out-
breaks are mostly caused by clade I, clade III, and clade IV 
isolates, while clade II and clade V isolates mainly cause 
ear infections and are usually susceptible to antifungal 
drugs [30••, 33, 34]. Genomic analyses and in vitro/in 
vivo evolution of resistance studies have shown that clade 
I and clade IV isolates develop resistance to fluconazole 
rather easily which is not lost even after drug removal 

during growth of C. auris indicating that no fitness cost 
is associated with resistance [35•]. Resistance develop-
ment likely occurred due to deletion of multiple genes 
near subtelomeric regions, and a mutator phenotype was 
also identified exhibiting elevated mutation rates and high 
level of resistance during in vitro and in vivo passages 
[35•]. A fluconazole-resistant C. auris belonging to clade 
V and isolated from fungal otitis has also been described 
recently [36].

The impact of coronavirus disease (COVID-19) epi-
demic has also been investigated as ICU admissions, a 
major risk factor for acquiring invasive C. auris infec-
tions, dramatically increased at times during this period 
[37–39]. Based on the meta-analysis of 10 studies, Vaseghi 
et al. [38] reported an overall pooled prevalence of 5.7% for 
COVID-19-associated C. auris infections, and male gender 
was a major risk factor for acquiring C. auris infection. The 
authors concluded that the prevalence of C. auris infections 
decreased during the COVID-19 pandemic. On the con-
trary, Vinayagamoorthy et al. [39] reported a prevalence of 
14% for COVID-19-associated C. auris infections and con-
cluded that the prevalence of C. auris infections remained 
unchanged during the COVID-19 pandemic. Both stud-
ies reported the same common risk factors (hypertension, 
diabetes mellitus, placement of a central venous catheter, 
ICU stay, and treatment with broad-spectrum antibiotics) 
for C. auris infection among COVID-19-infected patients 
[38, 39].

In recent years, C. auris has caused invasive infections/
outbreaks with increasing frequency which have been asso-
ciated with high mortality rates among hospitalized patients 
[19••, 20•, 21, 40–43]. The increasing incidence of C. auris 
infections has also caused major shift in the epidemiology 
of invasive Candida infections at many geographical loca-
tions with C. auris becoming a major bloodstream pathogen, 
even surpassing C. glabrata or C. tropicalis in some settings 
[19••, 44–47].

Although C. auris isolates described until 2020 were 
obtained from clinical specimens, environmental isolation 
of C. auris has also been described recently, first from 
the tropical marine ecosystems in the Indian Ocean and 
subsequently from a coastal habitat in Colombia [48•, 
49]. These findings have supported climate change as the 
main driving force for the recent emergence of C. auris 
as a novel human fungal pathogen. Climate change has 
likely resulted in stress adaptation (thermotolerance and 
halotolerance) and biotic predation allowing adaptation 
to diverse environmental niches [19••, 48•]. Furthermore, 
C. auris has been isolated from apples previously treated 
with fungicidal agents, and this practice in food indus-
try may have been responsible for the selection of drug-
resistant C. auris [50•, 51].
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Identification of C. auris in Yeast Cultures 
and Clinical Specimens

Until recently, C. auris was usually misidentified as Can-
dida haemulonii/duobushaemulonii, Candida sake, Rho-
dotorula glutinis, or other Candida species by biochemical 
substrate utilization-based systems such as VITEK2, API 
20C AUX, Phenix YIS, RapID Yeast Plus, or MicroScan 
[19••, 52]. These automated systems now identify C. auris 
accurately with updated databases; however, they are time-
consuming as they require yeast culture [19••, 52].

Like C. glabrata, C. haemulonii complex members, C. 
kefyr, Candida guilliermondii, Candida famata, Candida 
conglobata, and Candida utilis, C. auris also forms pink-
colored colonies on CHROMagar Candida [53]. However, 
on CHROMagar™ Candida Plus, C. auris forms cream-
colored colonies with a blue halo which differentiates it 
from other closely related species [54, 55]. Other low-cost 
phenotypic methods are not completely specific for C. auris 
[19••, 52]. Phenotypic methods are slow as they require 
yeast culture, and to avoid misidentification, clinical iso-
lates are usually subjected to analysis by matrix assisted 
laser desorption ionization time-of-flight mass spectrom-
etry (MALDI-TOF MS) by using Bruker-Daltonics MALDI 
Biotyper or VITEK MS with their updated databases which 
consume additional cost and time [52, 56].

Rapid and definitive identification is usually achieved 
by PCR amplification and/or PCR sequencing of rDNA-
based methods, and both in-house and commercial tests 
have yielded ≥ 90% clinical sensitivities and specifici-
ties with yeast cultures/clinical specimens [19••, 52, 57]. 
Implementation of C. auris real-time PCR for surveillance 
in the UK was recently shown to reduce the risk of inva-
sive infections [58]. Since clinical C. auris strains exhibit 
clade-specific virulence and resistance to antifungal drugs, 
PCR-based clade-identification methods have also been 
developed [59].

Susceptibility of C. auris and Molecular Basis 
of Resistance to Antifungal Drugs

Although there are no established susceptibility break-
points for C. auris, tentative breakpoints have been sug-
gested by expert opinion and by the Centers for Disease 
Control and Prevention (CDC) of the USA and are as fol-
lows: fluconazole, ≥ 32 µg/mL; amphotericin B, 2 µg/mL; 
caspofungin, 2 µg/mL; micafungin, 4 µg/mL; and anidu-
lafungin, 4 µg/mL [30••, 60–62].

Worldwide, nearly 90% of clinical C. auris isolates are 
resistant to fluconazole, and susceptibility to voricona-
zole and other triazoles varies widely even among isolates 

belonging to the same clade [19••, 21]. Nearly 4% isolates 
are pan-resistant; however, resistance rates in different 
countries/healthcare settings vary considerably [19••, 21]. 
Thus, nearly 90%, 30%, and ~ 5% of C. auris isolates from 
the USA were resistant to fluconazole, amphotericin B, 
and echinocandins, respectively, while in the New York-
New Jersey area where 55% of all US isolates occur, 99.8% 
of the isolates were fluconazole-resistant, and 50% isolates 
were amphotericin B-resistant [63]. The resistance rates of 
90–95%, 7–37%, and < 2% and 90%, 5.5%, and 0.25% have 
been reported for fluconazole, amphotericin B, and echi-
nocandins among C. auris from India and South Africa, 
respectively [44, 60, 64, 65]. These differences are mainly 
due to the occurrence of different percentages of C. auris 
isolates belonging to different clades in different settings 
[35•, 63–65].

The reference broth microdilution-based antifungal sus-
ceptibility testing (AST) protocols recommended by the 
Clinical and Laboratory Standard Institute (CLSI) and Euro-
pean Committee on Antimicrobial Susceptibility Testing 
(EUCAST) are the methods of choice for C. auris [60–63]. 
Other broth microdilution-based methods (Sensititre® 
YeastOne, MICRONAUT) have also yielded comparable 
results [40, 43, 66]. Rapid methods such as MALDI TOF 
MS, Etest, Liofilchem MIC Test Strip, and VITEK2 have 
also been used; however, VITEK2 results for fluconazole 
and amphotericin B may not be suitable to guide therapeutic 
decisions [53, 56, 66–68].

The molecular mechanisms of resistance to antifungal 
drugs in C. auris have been elucidated in the past few years 
(Table 1). The molecular basis of resistance to different anti-
fungal drugs in C. auris has also been reviewed recently 
[69]. The ERG11 encoding cytochrome P450-dependent 
lanosterol demethylase, involved in ergosterol biosynthesis, 
is the main target conferring resistance to fluconazole, and 
VF125AL, Y132F, or K143R are the most common genetic 
alterations [60, 69–72]. However, these mutations alone are 
not sufficient to confer high-level fluconazole resistance 
commonly observed among clinical isolates as replacement 
of wild-type C. auris allele with mutant alleles increased 
fluconazole and voriconazole minimum inhibitory concen-
trations (MICs) by only 8–16 fold. Similarly, replacement 
of K143R mutation with wild-type allele led to a 16-fold 
decrease in fluconazole MIC [72]. Other studies have shown 
the involvement of an ATP-binding cassette (ABC) trans-
porter (CDR1) and a major facilitator superfamily (MFS) 
member (MDR1) in conferring resistance of C. auris to flu-
conazole (Table 1) [69, 73, 74].

Studies have shown that CDR1 homologs are upregu-
lated in triazole-resistant C. auris and deletion of CDR1 
gene in a triazole-resistant strain caused nearly 100-fold 
decrease in the MIC for fluconazole [73]. Furthermore, 
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fluconazole-resistant C. auris belonging to clades I and IV 
contain missense mutations in TAC1B transcription factor 
which caused increased expression of CDR1 [74]. Gene 
replacement studies involving a common TAC1B mutation 
(A640V) have confirmed the role of this gene in fluconazole 
resistance [74]. MDR1 homologs are also upregulated in tri-
azole-resistant C. auris. The MDR1 is upregulated by MRR1, 
another transcription factor. A gain-of-function mutation 
(N647T) has been described in MRR1 which causes upreg-
ulation of MDR1, and introduction of mutant MRR1 allele 
in a fluconazole-susceptible C. auris isolate caused signifi-
cant increase in the MIC for triazoles [69, 75]. Another C. 
auris gene implicated in fluconazole resistance is YMC1 that 
encodes transmembrane transporter activities important for 
mitochondrial function, and few fluconazole-resistant C. 
auris isolates lacking K143R mutation in ERG11 contain a 
nonsynonymous (G145D) mutation in YMC1 (Table 1) [64].

Unlike C. glabrata or C. albicans, gene targets conferring 
amphotericin B resistance in C. auris are poorly defined [18, 
19••, 69]. The role of a nonsynonymous (G145D) muta-
tion in ERG2, detected in some amphotericin B-resistant 
C. auris isolates, is not well established [64]. The first 
molecular mechanism conferring high level of resistance to 
amphotericin B (MIC of 32 µg/mL) in C. auris identified a 
novel deletion (frame shift) mutation in ERG6 which was 
supported by sterol analyses of mutant cells and by Cas-
9-mediated genetic manipulations [76]. Another C. auris 
isolate carrying a large deletion of 164 amino acids in ERG6 
and exhibiting high-level of resistance to amphotericin B 
has also been described. The mutant allele was confirmed to 
confer resistance to amphotericin B when it was introduced 
into a susceptible strain [77]. However, mutations in ERG6 
do not appear to be the main mechanism of resistance to 
amphotericin B in C. auris, particularly for isolates with low 
level of drug resistance [19••, 69, 76].

Echinocandin resistance in C. auris mainly involves non-
synonymous mutations in the hotspot-1 (HS-1) and HS-2 

regions of FKS1 encoding 1,3 β-D-glucan synthase. Most 
genetic alterations occur at codon 639 in HS-1 of FKS1 
gene (Table 1) [43, 60, 71, 78, 79]. Two nonsynonymous 
mutations (F635L and F635Y) as well as deletion of codon 
F635 and D642Y mutation within HS-1 of FKS1 have been 
detected in some echinocandin-resistant C. auris [40, 43, 78, 
79]. Two nonsynonymous mutations (R1354S and R1354H) 
have also been found within HS-2 of FKS1 (Table 1) [43, 
79]. Clinical C. auris isolates with identical FKS1 muta-
tions exhibit variable susceptibility to echinocandins (dif-
ferent MIC values) likely due to differences in their genetic 
background [35•, 43, 78, 79]. Also, patients infected with 
C. auris strains carrying different FKS1 mutations show 
variable in vivo response to treatment with antifungal drugs 
suggesting differences in fitness cost associated with these 
mutations [43, 78, 80]. This is also supported by the gradual 
reversal of echinocandin resistance after removal of anti-
fungal pressure [80]. Echinocandin-treated C. auris cells 
exhibit slower growth, cell–cell adhesion, biofilm formation, 
elevated chitin content, and cross resistance to fluconazole 
[80]. These characteristics likely aid in the survival and per-
sistence of C. auris in the environment and promote reser-
voirs that may subsequently cause outbreaks in healthcare 
settings.

Strategies to Prevent Transmission of C. auris 
in Healthcare Settings

There are several reasons why C. auris is able to cause out-
breaks of invasive infections in healthcare facilities that 
have been difficult to treat. These include its overlapping 
phenotypic characteristics with other closely related spe-
cies compromising its rapid identification, its ability to resist 
killing by common disinfectants, persist and remain viable 
for weeks to months, mostly due to biofilm formation, in the 
hospital environment, and its intrinsic resistance to some 

Table 1  Genes and their encoded products involved in conferring resistance to antifungal drugs in C. auris 

Antifungal drug Resistance gene Encoded product Genetic alterations Main reference(s)

Fluconazole ERG11 Lanosterol demethylase VF125AL, Y132F, K143R [60, 70–72]
Upregulation [60]

CDR1 ATP-binding cassette transporter Upregulation [73]
TAC1B Transcription factor Gain-of-function mutations [74]
MDR1 Major facilitator superfamily member Upregulation [73, 75]
MRR1 Transcription factor Gain-of-function mutations [75]
YMC1 Transmembrane transporter Upregulation [64]

Amphotericin B ERG6 C-24 sterol methyltransferase Frame shift deletion mutation [76, 77]
ERG2 C-8 sterol isomerase G145D [64]

Echinocandins FKS1 1,3-β-D-glucan synthase-Hotspot-1 ∆635F, F635L/Y, S639F/Y/P/T, D642Y [40, 43, 60, 71, 78, 79]
1,3-β-D-glucan synthase-Hotspot-2 R1354S/H [43, 79]
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drugs and ability to rapidly acquire resistance to other anti-
fungals, often resulting in a multidrug-/pan-resistant pheno-
type [19••, 43, 52, 78, 81–83]. C. auris frequently colonizes 
the skin, respiratory tract, and urinary tract and is shed from 
the skin into the environment contaminating surfaces/equip-
ment. This causes person-to-person transmission of infec-
tion through direct/indirect contact in hospital settings [19••, 
26•, 64, 84•, 85].

Risk factors for invasive C. auris infections are common 
with other pathogenic Candida species described above, and 
nearly 10% of C. auris-colonized patients develop invasive 
infections, particularly those with mechanical ventilation 
and placement of invasive devices in ICU settings [26•, 40, 
46, 64, 84•, 85–87]. Crude mortality rates of 0 to 72% have 
been reported for C. auris infections [20•, 26•, 40, 44, 88]. 
Due to these reasons, specific guidelines/recommendations 
have been published by the CDC and other leading interna-
tional health agencies for controlling C. auris outbreaks in 
healthcare facilities [88–91]. A brief account of the current 
recommendations is described below, and the main points 
are summarized in Table 2.

Identification of Cases of C. auris‑Invasive Infections 
and Colonization

Rapid and accurate detection of C. auris in yeast cultures 
and more importantly in clinical specimens is vital to iden-
tify infected/colonized patients. Recommendations from 
leading experts and international health agencies advocate 
that detection of even a single case of C. auris should start 
an epidemiological investigation and implementation of 
infection control measures and contact precautions to pre-
vent further transmission [19••, 84•, 85, 89–92]. Research 
has shown that delayed recognition of infection/colonization 
and delayed implementation of infection control practices 
causes rapid transmission of C. auris to other hospitalized 
patients sharing space and/or common facilities and equip-
ment [26•, 84•, 85, 93, 94]. Although culture is considered 
the gold standard for definitive diagnosis of Candida infec-
tion, it is slow and also lacks sensitivity as nearly 50% cases 
of candidemia/invasive candidiasis remain culture-negative 
[95, 96]. Furthermore, species-specific identification of C. 
auris in all cultures from invasive samples consumes addi-
tional time and resources [52, 56, 97].

Recent developments in molecular diagnostic procedures 
now allow rapid identification of invasive C. auris infec-
tions within a few hours with high sensitivity and specificity 
[52, 57, 97]. Quantitative real-time PCR assays have been 
developed for cost-effective and rapid detection of live C. 
auris cells from the hospital environment and from skin and 
other patient swab samples for the detection of colonized 
patients [98–100]. A portable quantitative real-time PCR-
based point-of-care test for C. auris detection in clinical 

samples, reporting results in ≤ 30 min, has also been devel-
oped recently [101].

Once a C. auris-positive case has been identified, the hos-
pital infection control team should be informed immediately 
to implement transmission-based precautions (TBPs) so that 
other patients in the facility are not affected [19••, 84•, 85, 
89]. The treating clinicians/infectious disease specialists 
should be alerted for proper patient management and the 
microbiology laboratory staff for diagnostic capacity build-
ing to efficiently and correctly identify C. auris. One study 
has shown that hospitalized patients on ventilator or those 
who received systemic fluconazole or carbapenem antibi-
otics in the prior 90 days or had ≥ 1 visit to the hospital 
for acute care in the previous 6 months are more likely to 
be colonized with C. auris [102]. Pre-emptive screening of 
new patients suspected to be colonized, particularly those 
with international exposure or history of previous stay in a 
hospital with C. auris infections or with risk factors listed 
above, should be carried out for axilla, groin, and other rel-
evant (urine, throat, wounds, catheter) sites [19••, 64, 84•, 
85, 89]. Considering the high frequency of skin and rectal 
colonization and shedding into the environment [19••, 84•, 
85, 94, 102, 103], C. auris-positive patients should be placed 
in single occupancy rooms with attached toilet facilities. If 
this is not feasible, all C. auris-positive patients should be 
cohorted and cared for by a dedicated healthcare workers 
(HCWs) team familiar with the management of patients 
infected with multidrug-resistant organisms [19••, 84•, 85].

Hand Hygiene and Other Transmission‑Based 
Precautions (TBPs)

Transmission of C. auris to other patients in hospital set-
tings is largely facilitated by its ability to persist in a viable 
form on various environmental surfaces/equipment within 
the patient’s room such as walls/floors, mattresses/pillows/
bed sheets, bed side trolleys, sinks, door and faucet handles, 
disposable/reusable equipment (oxygen mask, temperature/
blood pressure monitors), and other objects (intravenous 
pole, personal mobile phones, cloth lanyards, etc.) 19••, 84•, 
85, 89, 94, 102. C. auris also survives for weeks on different 
environmental surfaces due to the formation of biofilms and 
has also been isolated from the hands/nares/groin of HCWs 
which could also serve as the source of its transmission to 
other hospitalized patients [19••, 26•, 64, 83, 84•, 85, 104].

Since new patients are colonized with this yeast with a 
contact time of just 4 h with C. auris-positive patients and 
invasive infections have occurred in patients within 48 h 
of admission in ICU settings [26•, 64], efforts should be 
made to minimize transmission of C. auris to other patients 
in hospital settings. All HCWs attending C. auris-infected 
patients should frequently use alcohol-based hand rubs, and 
soiled hands should be thoroughly cleaned with soap and 

40 Current Fungal Infection Reports  (2023) 17:36–48

1 3



Ta
bl

e 
2 

 S
tra

te
gi

es
 to

 p
re

ve
nt

 tr
an

sm
is

si
on

 o
f C

. a
ur

is
 in

 h
ea

lth
ca

re
 fa

ci
lit

ie
s

K
ey

 in
te

rv
en

tio
n 

ste
ps

Sp
ec

ifi
c 

ai
m

(s
) a

nd
/o

r a
ct

io
ns

In
fe

ct
io

n 
co

nt
ro

l m
ea

su
re

s

Id
en

tifi
ca

tio
n 

of
 C

. a
ur

is
-in

fe
ct

ed
/C

. a
ur

is
-c

ol
on

iz
ed

 p
at

ie
nt

s
- S

pe
ci

es
-s

pe
ci

fic
 id

en
tifi

ca
tio

n 
of

 C
an

di
da

 in
 st

er
ile

 b
od

y 
flu

id
s f

ro
m

 a
ll 

su
sp

ec
te

d 
ca

se
s o

f i
nv

as
iv

e 
in

fe
ct

io
ns

- A
le

rt 
in

fe
ct

io
n 

co
nt

ro
l t

ea
m

, t
re

at
in

g 
cl

in
ic

ia
ns

 a
nd

 m
ic

ro
bi

-
ol

og
ist

s
- P

re
-e

m
pt

iv
e 

is
ol

at
io

n 
an

d 
sc

re
en

in
g 

of
 p

at
ie

nt
s w

ith
 in

te
rn

a-
tio

na
l e

xp
os

ur
e 

or
 fr

om
 fa

ci
lit

ie
s w

ith
 e

xi
sti

ng
 C

. a
ur

is
 c

as
es

 
an

d 
th

ei
r c

lo
se

 c
on

ta
ct

s o
r t

ho
se

 su
sp

ec
te

d 
to

 b
e 

co
lo

ni
ze

d

- C
oh

or
tin

g 
or

 is
ol

at
io

n 
of

 C
. a

ur
is

-p
os

iti
ve

 p
at

ie
nt

s i
n 

si
ng

le
 

ro
om

s w
ith

 a
tta

ch
ed

 to
ile

t f
ac

ili
tie

s

- S
in

ce
 c

ul
tu

re
-b

as
ed

 m
et

ho
ds

 a
re

 sl
ow

 a
nd

 la
ck

 se
ns

iti
vi

ty
, 

ra
pi

d 
qu

an
tit

at
iv

e 
re

al
-ti

m
e 

PC
R-

ba
se

d 
au

to
m

at
ed

 m
et

ho
ds

, 
re

po
rti

ng
 re

su
lts

 in
 h

ou
rs

, s
ho

ul
d 

be
 p

re
fe

rr
ed

- P
er

io
di

c 
as

se
ss

m
en

t o
f t

he
 p

er
si

ste
nc

e 
of

 c
ol

on
iz

at
io

n 
an

d 
de

is
ol

at
io

n 
of

 n
eg

at
iv

e 
pa

tie
nt

s

H
an

d 
hy

gi
en

e 
an

d 
ot

he
r t

ra
ns

m
is

si
on

-b
as

ed
 p

re
ca

ut
io

ns
 

(T
B

Ps
)

- F
re

qu
en

t u
se

 o
f a

lc
oh

ol
-b

as
ed

 h
an

d 
ru

bs
 b

y 
he

al
th

ca
re

 
w

or
ke

rs
 (H

C
W

s)
 a

nd
 w

as
hi

ng
 o

f s
oi

le
d 

ha
nd

s w
ith

 so
ap

 a
nd

 
w

at
er

 fo
llo

w
ed

 b
y 

al
co

ho
l-b

as
ed

 h
an

d 
ru

bs

- S
tri

ct
 a

dh
er

en
ce

 to
 h

an
d 

hy
gi

en
e 

an
d 

PP
E 

by
 H

C
W

s

- P
ro

pe
r u

se
 o

f p
er

so
na

l p
ro

te
ct

iv
e 

eq
ui

pm
en

t (
PP

E)
 b

y 
H

C
W

s 
an

d 
us

ag
e 

of
 d

is
po

sa
bl

e 
ite

m
s/

eq
ui

pm
en

t w
he

ne
ve

r p
os

si
bl

e
- R

es
tri

ct
ed

 v
is

ito
rs

 e
nt

ry
 a

nd
 st

ric
t a

dh
er

en
ce

 to
 P

PE
 a

nd
 T

B
Ps

- R
es

tri
ct

ed
 m

ov
em

en
t o

f C
. a

ur
is

-p
os

iti
ve

 p
at

ie
nt

s a
nd

 th
ey

 
ar

e 
to

 b
e 

sc
he

du
le

d 
la

st 
fo

r m
ed

ic
al

 p
ro

ce
du

re
s o

r s
ur

ge
ry

- T
B

Ps
 to

 b
e 

fo
llo

w
ed

 ti
ll 

C
. a

ur
is

-p
os

iti
ve

 c
as

es
 a

re
 d

et
ec

te
d

En
vi

ro
nm

en
ta

l/e
qu

ip
m

en
t c

le
an

in
g 

an
d 

di
si

nf
ec

tio
n

- T
w

o 
or

 3
 ti

m
es

 d
ai

ly
 c

le
an

in
g 

of
 p

at
ie

nt
s’

 ro
om

s/
to

ile
ts

 w
ith

 
ch

lo
rin

e-
ba

se
d 

or
 h

os
pi

ta
l g

ra
de

 sp
or

ic
id

al
 d

is
in

fe
ct

an
ts

- D
is

ca
rd

 le
ss

-e
xp

en
si

ve
 it

em
s w

hi
ch

 c
an

no
t b

e 
ea

si
ly

 c
le

an
ed

- S
in

gl
e-

pa
tie

nt
 u

se
 it

em
s (

pi
llo

w
s, 

be
dd

in
g 

m
at

er
ia

l, 
w

ip
es

 
fo

r c
le

an
in

g)
 a

nd
 e

qu
ip

m
en

t (
th

er
m

om
et

er
s, 

bl
oo

d 
pr

es
su

re
 

cu
ffs

, e
tc

.) 
ar

e 
pr

ef
er

ab
le

- T
ho

ro
ug

h 
m

on
ito

rin
g 

of
 th

e 
en

vi
ro

nm
en

t a
nd

 e
qu

ip
m

en
t 

cl
ea

ni
ng

 p
ro

ce
du

re
s b

y 
re

gu
la

r s
am

pl
in

g 
fo

r C
. a

ur
is

 g
ro

w
th

- C
om

m
on

 e
qu

ip
m

en
t s

ho
ul

d 
be

 th
or

ou
gh

ly
 c

le
an

ed
 a

nd
 d

is
in

-
fe

ct
ed

 a
s p

er
 m

an
uf

ac
tu

re
r’s

 re
co

m
m

en
da

tio
ns

- T
er

m
in

al
 c

le
an

in
g 

of
 p

at
ie

nt
’s

 ro
om

/e
qu

ip
m

en
t o

n 
di

sc
ha

rg
e 

w
ith

 a
ge

nt
s w

ith
 c

er
tifi

ed
 a

nt
ifu

ng
al

 a
ct

iv
ity

- H
yd

ro
ge

n 
pe

ro
xi

de
 v

ap
or

/o
zo

ne
/U

V-
C

 d
is

in
fe

ct
io

n 
as

 a
n 

ad
di

tio
na

l s
af

et
y 

m
ea

su
re

D
ec

ol
on

iz
at

io
n 

of
 C

. a
ur

is
-p

os
iti

ve
 p

at
ie

nt
s

- N
o 

sp
ec

ifi
c 

pr
ot

oc
ol

s o
r r

ec
om

m
en

da
tio

ns
 a

re
 a

dv
oc

at
ed

 b
y 

an
y 

le
ad

in
g 

he
al

th
 o

rg
an

iz
at

io
n

- A
dh

er
en

ce
 to

 c
en

tra
l, 

pe
rip

he
ra

l, 
an

d 
ur

in
ar

y 
ca

th
et

er
 c

ar
e 

bu
nd

le
s

- S
ki

n 
de

co
nt

am
in

at
io

n 
w

ith
 c

hl
or

he
xi

di
ne

 w
as

he
s/

w
ip

es
, 

m
ou

th
 g

ar
gl

es
 fo

r p
at

ie
nt

s o
n 

ve
nt

ila
to

rs
 a

nd
 d

is
in

fe
ct

an
t-

so
ak

ed
 p

ad
s f

or
 c

at
he

te
r e

xi
t s

ite
s m

ay
 b

e 
he

lp
fu

l

41Current Fungal Infection Reports  (2023) 17:36–48

Vol.:(0123456789)1 3



water followed by application of alcohol-based hand rub, 
don personal protective equipment (PPE) while attending 
the patients and use disposable items/equipment whenever 
it is feasible to do so [89–91, 94, 104–106]. Minimum num-
ber of HCWs should be designated for the care of C. auris-
infected patients. The infection control team of the hospital 
should ensure strict adherence to hand hygiene and proper 
use of PPE (gloves and a long-sleeved gown) by HCWs 
while attending C. auris-infected patients. Wearing of a face 
mask by HCWs may also be helpful in preventing their own 
colonization with C. auris [89–91, 94, 104–106].

Rooms housing C. auris-infected patients should be 
clearly marked, and limited entry by visitors should be 
allowed only after adherence to PPE and TBPs. C. auris-
positive patients should be moved only when it is absolutely 
necessary, and they should be placed last on the list for non-
emergency imaging, medical procedures, or surgery to avoid 
contact with other patients and to allow thorough cleaning 
of the equipment/environment afterwards [19••, 84•, 85, 
89]. Colonized patients should be followed until discharge 
from the facility or when they have turned culture-negative 
during regular screening, and TBPs should be enforced until 
C. auris cases are detected in the facility [19••, 84•, 85].

Cleaning and Disinfection of Environment 
and Reusable Equipment

International health agencies and expert opinion have rec-
ommended disinfection of high touch areas and reusable 
equipment in rooms housing C. auris-infected patients with 
hospital-grade agents effective against Clostridium difficile 
spores to minimize cross-transmission of infection to other 
patients [19••, 84•, 85, 89]. Cleaning surfaces twice or three 
times daily in rooms with C. auris-positive patients with 
chlorine-based or other sporicidal disinfectants is highly 
effective in controlling cross-transmission of infection [19••, 
84•, 85]. To avoid laborious cleaning procedures, single-
use items (pillows, bedding material, and fiber cloth wipes 
for cleaning), and equipment (thermometers, blood pressure 
cuffs, etc.) should be preferred for C. auris-positive patients. 
Less expensive items which cannot be easily cleaned should 
be discarded [19••, 84•, 85]. Considering that biocidal 
agents effective against C. auris should be fast-acting as 
real-world contact times for disinfectants usually do not 
exceed 1 to 2 min, commonly used hospital agents (such 
as chlorhexidine and benzalkonium chloride) have limited 
activity against C. auris [107–110]. The efficacy and mini-
mum contact time for different formulations of disinfectants 
and antiseptics effective against C. auris planktonic cells and 
biofilms are listed in Table 3.

Chlorine-based products such as sodium hypochlorite 
(≥ 1000 parts per million, ppm) are effective against plank-
tonic cells and, at pH of 13.13, against C. auris biofilms 

during environmental decontamination. However, very 
high concentrations (≥ 6000 PPM) are irritating to some 
patients/HCWs and corrosive for medical/dental devices 
[105, 109–111]. Peracetic acid at 2000 ppm and sodium 
dichloroisocyanurate at 4000 ppm are also effective against 
planktonic cells of C. auris (Table 3) [104, 109, 111]. For 
biofilms, peracetic acid (3500 ppm, pH 8.82) and sodium 
dichloroisocyanurate (1000 ppm, pH 13.13) are also effec-
tive as they prevented the transfer and regrowth of C. auris 
[111]. Chlorhexidine gluconate (2%) in 70% isopropanol 
and povidone-iodine (10%) are yeasticidal for planktonic 
cells of C. auris [112].

Hydrogen peroxide (> 1%) or vaporized hydrogen per-
oxide, ozone, and ultraviolet subtype-C (UV-C) light are 
also yeasticidal for C. auris [82, 112–115]. The UV-C 
light also prevents biofilm formation [116]. The UV-C 
light was more effective in non-shaded areas than in 
shaded areas [115]. Flushing of sinks in patient’s room 
with ozonated water (2.5 ppm) for 30 s every 4 h resulted 
in complete elimination of C. auris within 2 days [117]. 
Silver nanoparticles have also been recently recognized 
as promising antifungal agents against growth and bio-
film formation of C. auris on medical and environmental 
surfaces [118].

Common equipment serves as a source of C. auris 
spread in healthcare facilities and should be thoroughly dis-
infected after every use as per the manufacturer’s instruc-
tions and its compatibility with the disinfectant [19••, 84•, 
85, 119]. Glutaraldehyde and peracetic acid preparations, 
though expensive and/or corrosive for some metals, have 
also been used for cleaning of medical/dental devices to 
prevent cross-transmission of C. auris [108, 113]. Ethanol 
(70%), isopropyl alcohol (70%), and other products con-
taining ethanol or phenols are suitable for cleaning small 
spills [105, 108].

Terminal cleaning and disinfection of everything in the 
patient’s room on discharge are mandatory with agents of 
certified antifungal activity. In addition to regular cleaning 
with disinfectants, fogging with hydrogen peroxide vapor, 
ozone, and UV-C disinfection should also be performed as 
an additional safety measure [19••, 84•, 85, 94]. Regular 
sampling for C. auris growth should be done to ensure that 
the environment and reusable equipment are being disin-
fected adequately [19••, 84•, 85, 94].

Decolonization of C. auris‑Positive Patients

Once C. auris is acquired, patients usually remain colo-
nized with this yeast. One hospitalized patient in Kuwait 
yielded more than 17 isolates from five (urine, tracheal 
secretion, vagina, catheter tip) different sites over a span 
of nearly 10 months [71]. Strict adherence to central and 
peripheral catheter care bundles, urinary catheter care 
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bundle, and proper care of the tracheostomy site are 
measures that are more likely to prevent C. auris-invasive 
infections [89]. Although there are no specific guidelines 
for the decolonization of C. auris-positive patients from 
CDC or other international health agencies, some centers 
have attempted to eliminate this organism from colonized 
patients. One study reported only partial success, with 
twice daily skin decontamination with disposable wash 
cloths (wipes) soaked in 2% chlorhexidine gluconate or 
4% chlorhexidine solution, mouth washing of patients on 
ventilator support with 0.2% chlorhexidine and chlorhex-
idine-soaked disks for central vascular catheter exit sites 
to minimize seeding of blood with C. auris, as new cases 
continued to occur in the hospital [26•]. Isopropanol aug-
ments the activity of chlorhexidine for decolonization of 
C. auris from skin, and both tea tree and lemongrass oil 
further enhanced the decolonization by chlorhexidine/iso-
propanol combination [120]. However, even if decoloniza-
tion is transiently achieved in some patients, recoloniza-
tion may occur soon afterwards from the bedding material, 
pillows, or other personal items where C. auris can survive 
for several days [19••, 26•, 105].

Future Perspectives

New rapid, sensitive, and more specific point-of-care tests are 
being developed for rapid identification of C. auris in yeast 
cultures and also directly in clinical specimens [52, 98–101]. 
These tests will help in rapid identification of C. auris-
infected/C. auris-colonized patients for early implementation 
of strategies to prevent further transmission of infection to other 
patients in hospital settings. Advances are also being made in 
C. auris eradication from patients’ rooms. In addition to silver 
nanoparticles, silver functionalized nanostructured titanium 
has recently been recognized as a promising antifungal agent 
against growth and biofilm formation of C. auris on medical 
and environmental surfaces [121]. Far ultraviolet subtype C 
(222 nm) (Far-UVC) has recently been shown to destroy air-
borne pathogens nearly instantly in room-sized chambers [122]. 
Other novel antifungal agents and disinfectants are also being 
discovered with potent activity against C. auris [123, 124].

Major developments are also underway in the discovery 
of new drugs/drug combinations to improve treatment of C. 
auris infections [125, 126•]. Emerging antifungal compounds 
being investigated include natural compounds, antimicrobial 

Table 3  Efficacy of common disinfectants and antiseptics against planktonic cells and biofilms of C. auris 

CFU, colony-forming units; ppm, parts per million; s, seconds; h, hours

Disinfectants and antiseptics Concentration CFU reduction or % killing Minimum contact 
time (min)

Main reference(s)

For planktonic cells
Sodium hypochlorite 1000 ppm  > 6  Log10 CFU reduction 5 [82, 109]
Sodium hypochlorite 4000 ppm  > 3  Log10 CFU reduction 1 [109]
Sodium dichloroisocyanurate 1000 ppm  > 6  Log10 CFU reduction 4 [109]
Sodium dichloroisocyanurate 4000 ppm  > 3  Log10 CFU reduction 1 [109]
Peracetic acid 2000 ppm 100% 5 to 10 [104]
Chlorhexidine gluconate in 70% IPA 2%  > 5  Log10 CFU reduction 2 [112]
Isopropyl alcohol 70%  > 3  Log10 CFU reduction 1 [108]
Povidone-iodine 10%  > 4  Log10 CFU reduction 2 [112]
Hydrogen peroxide 1.4%  > 5  Log10 CFU reduction 1 [113]
Hydrogen peroxide (vaporized) 8 g/m3 96.6 to 100% 3 to 5 [82]
Ozone 300 mg/m3  > 3  Log10 CFU reduction 40 [110]
Ozonated water for bathroom sinks 2.5 ppm Undetectable level 30 s/4 h, 2 days [117]
Ultraviolet (UV-C) light 254 nm  > 6  Log10 CFU reduction 30 [114, 115]
For biofilms
Sodium hypochlorite, pH 13.13 1000 ppm  > 7  Log10 CFU reduction 2 [104]
Hydrogen peroxide 3% 90% 5 [104]
Peracetic acid, pH 8.82 3500 ppm  > 7  Log10 CFU reduction 2.2 [111]
Sodium dichloroisocyanurate, pH 5.64 1000 ppm  > 7  Log10 CFU reduction 2.2 [111]
Ultraviolet (UV-C) light 267 nm 99.90% 0.4 [116]
Silver nanoparticles 2.3 ppm  > 80% 24 h [118]
For medical/dental devices
Glutaraldehyde 2.4%  > 4  Log10 CFU reduction 1 [108]
Peracetic acid 3500 ppm  > 7  Log10 CFU reduction 5 to 10 [113]
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peptides, immunotherapy, metals and nano particles, photody-
namic and combinational therapy, and repurposed drugs [118, 
125, 126•, 127]. Colistin showed synergistic activity with 
amphotericin B against C. auris [128], while farnesol boosted 
the antifungal effect of fluconazole [129]. Fluconazole-resist-
ant C. auris isolates have higher levels of chitin in their cell 
wall and increased susceptibility to a glucosamine-6-phosphate 
synthase inhibitor [130]. Ibrexafungerp, a member of the trit-
erpenoids, inhibits the production of (1,3)-β-D-glucan and has 
shown good in vivo activity against fluconazole-resistant C. 
auris in an experimental mouse model of invasive candidiasis 
[131]. Combination therapy with a lower dose of amphotericin 
B with anidulafungin/caspofungin provided greater killing 
with synergistic and/or fungicidal outcomes against C. auris 
[132]. Major advances in the above areas will be greatly ben-
eficial in controlling C. auris infections and outbreaks.

Recent description of Candida khanbhai, another novel 
yeast species [133] closely related to C. haemulonii species 
complex and its colony characteristics on CHROMagar Can-
dida Plus diagnostic test, similar to C. auris, have compro-
mised the utility of this simple test for specific identification 
of C. auris among clinical yeast isolates.

Conclusions

C. auris has now become a major threat to global public 
health as sporadic cases detected in some countries soon 
after its identification as a human fungal pathogen have 
given way to major outbreaks in healthcare facilities in 
many countries with unfavorable outcomes. The patients 
most commonly affected include elderly subjects with mul-
tiple comorbidities, exposure to broad-spectrum antibiotics/
antifungal drugs, arterial or central venous catheters, major 
surgery, and prolonged stay in the ICU. Major problems 
associated with inadequate management of C. auris-infected 
patients include faulty routine diagnostic methods yielding 
inaccurate identification in yeast cultures and clinical spec-
imens, its intrinsic or acquired resistance to one or more 
antifungal drugs limiting treatment options, its resistance 
to killing by hospital disinfectants, and its rapid transmis-
sion to other susceptible patients during routine contact or 
shared equipment in healthcare facilities. However, recent 
advances towards rapid, sensitive, and more specific point-
of-care tests for identification of C. auris in yeast cultures 
and clinical specimens, susceptibility testing to guide treat-
ment, and its eradication from the patients’ environment by 
using novel disinfectants and infection control measures 
offer hope that C. auris infections/outbreaks can be con-
trolled or even prevented in the near future.
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