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Abstract
Antigenic characterization of emerging and re-emerging viruses is necessary for the prevention of and response to outbreaks, 
evaluation of infection mechanisms, understanding of virus evolution, and selection of strains for vaccine development. Pri-
mary analytic methods, including enzyme-linked immunosorbent/lectin assays, hemagglutination inhibition, neuraminidase 
inhibition, micro-neutralization assays, and antigenic cartography, have been widely used in the field of influenza research. 
These techniques have been improved upon over time for increased analytical capacity, and some have been mobilized for 
the rapid characterization of the SARS-CoV-2 virus as well as its variants, facilitating the development of highly effective 
vaccines within 1 year of the initially reported outbreak. While great strides have been made for evaluating the antigenic 
properties of these viruses, multiple challenges prevent efficient vaccine strain selection and accurate assessment. For influ-
enza, these barriers include the requirement for a large virus quantity to perform the assays, more than what can typically 
be provided by the clinical samples alone, cell- or egg-adapted mutations that can cause antigenic mismatch between the 
vaccine strain and circulating viruses, and up to a 6-month duration of vaccine development after vaccine strain selection, 
which allows viruses to continue evolving with potential for antigenic drift and, thus, antigenic mismatch between the vac-
cine strain and the emerging epidemic strain. SARS-CoV-2 characterization has faced similar challenges with the additional 
barrier of the need for facilities with high biosafety levels due to its infectious nature. In this study, we review the primary 
analytic methods used for antigenic characterization of influenza and SARS-CoV-2 and discuss the barriers of these methods 
and current developments for addressing these challenges.
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Influenza

Introduction to influenza viruses

The influenza virus is a recurring threat to public 
health. Seasonal influenza infections are associated with 
~290,000–650,000 deaths annually worldwide [1], which 
includes ~12,000–61,000 deaths each year in the United 
States (US) alone [1, 2]. Unpredictably, but less frequently, 
global influenza pandemics occur, infecting 20–40% of the 
population in a single year [3–6] and dramatically raising 
death rates above normal levels. Influenza viruses belong 
to the Orthomyxoviridae family and are classified into four 
genera including type A, B, C, and the emerging type D [7, 
8] based on their antigenic differences in the nucleoprotein 
and matrix 1 protein. Influenza viruses contain segmented, 
negative-sense, single-stranded RNA genomes. Influenza 
A viruses (IAVs) and influenza B viruses (IBVs) contain 
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8 viral RNA (vRNA) gene segments, whereas influenza C 
viruses (ICVs) and influenza D viruses (IDVs) contain 7 
vRNA gene segments. Segments 1 (PB2), 2 (PB1), 3 (PA), 4 
(HA), 5 (NP), 6 (NA), 7 (MP), and 8 (NS) of IAVs and IBVs 
encode polymerase basic protein 2 (PB2), polymerase basic 
protein 1 (PB1), polymerase acidic protein (PA), hemagglu-
tinin (HA), nucleoprotein (NP), neuraminidase (NA), matrix 
proteins (M1 and M2), and nonstructural proteins (NS1 and 
NS2), respectively, which will be described in the subse-
quent sections. In addition, several novel accessory proteins 
of IAVs were identified that modulate viral pathogenicity, 
such as PB1-F2 [9] and PB1-N40 [10] encoded by the PB1 
gene and PA-X [11], PA-N155, and PA-N182 [12] by the 
PA gene.

Evolution and antigenic variations of influenza viruses

The low-fidelity, “error-prone” RNA-dependent RNA 
polymerase (RdRp) of IAVs lacks the 3’ to 5’ exonucle-
ase proofreading capability, leading to a rapid mutation 
rate that ranges from 0.4 × 10−3 to 2.0 × 10−6 mutations 
per nucleotide per year, depending on virus strain and gene 
[13–17]. Although the outcome of most random mutations 
is detrimental or lethal, non-deleterious mutations may be 
preserved and subsequently amplified in the population if 
they confer a fitness advantage [18]. High mutation frequen-
cies and within-host selective pressures create quasi-species 
[19–22], defined as a proliferating population of non-iden-
tical but closely related viral genomes as seen with most 
RNA viruses, including influenza viruses [23, 24]. Some 
mutations can be positively selected in order for a virus to 
escape from host antibody neutralization or to replicate more 
efficiently, leading to virus variants becoming predominant 
in the population [25]. Population-level fitness has also been 
shown to be increased by cooperative interactions between 
variants within a quasi-species [26–30].

However, the overall mutation (at the nucleotide 
sequence level) and amino acid substitution (at the protein 
sequence level; from nonsynonymous mutations) frequen-
cies are a complex association of factors that are genus-, 
strain-, and gene-specific and are even environmentally 
influenced (i.e., temperature or pH). These within- and 
between-host immune selection pressures result in vari-
able evolutionary rates [13]. The phenomenon that amino 
acid substitutions accumulating on surface glycoproteins 
of influenza viruses gradually alter their antigenicity is 
referred to as “antigenic drift,” which allows influenza 
viruses to evade immune pressures from their hosts and 
is responsible for seasonal influenza epidemics that neces-
sitate annual vaccine reformulations.

Unlike mutations, reassortment results in genome restruc-
turing. Reassortment occurs when two strains from a shared 

genus infect the same host cell and produce a novel viral 
genotype, i.e., an assembly of segments from each “parental” 
strain. As is the case of random mutations, most reassortant 
events are deleterious, usually due to segment incompat-
ibility [31]. When reassortment leads to the introduction of 
a novel HA and/or NA gene into a naive population (a popu-
lation without existing immunity), it is commonly referred 
to as “antigenic shift” [32]. Antigenic shift, in combination 
with sustained human-to-human transmission, is a require-
ment for the emergence of an influenza pandemic strain. 
Reassortments have led to the emergence of the 1957, 1968, 
and 2009 IAV pandemics [33–36], contributed to the severe 
epidemics of 1947, 1951, and 2003, and facilitated the rise 
in antiviral drug resistance [37].

The influenza vaccine is the most viable option for coun-
teracting and reducing the impact of influenza outbreaks 
[38]. Since the antigenicity of influenza viruses is con-
tinuously changing, new strains can potentially escape the 
immunity of previously exposed hosts [39, 40]. To account 
for antigenic drift, the vaccine composition of the influenza 
vaccine is revised almost yearly and separately in both the 
Northern and Southern Hemispheres and incorporates con-
temporary representatives of circulating viruses identified 
by continuous global monitoring and surveillance led by the 
World Health Organization’s (WHO) Global Influenza Sur-
veillance and Response System (GISRS) [41].

Antigenic epitopes of HA and NA

HA and NA, which present in a ratio ranging from 4:1 to 
10:1, are critical for viral attachment and release, respec-
tively [42]. HA is a homo-trimeric glycoprotein contain-
ing a globular head subdomain spanning the primary HA 
sequences, and a stalk subdomain containing N and C ter-
mini of HA1 and most HA2 sequences (Fig. 1A). As the 
major target for immune responses, the HA globular head 
has high plasticity and is highly tolerant of amino acid sub-
stitutions and glycosylation alternations. Under selective 
pressure from the host immune system, the HA globular 
head subdomain has the highest amino acid substitution rate 
among all influenza virus proteins [43]. In comparison, the 
HA stalk subdomain is much less accessible to antibodies 
and is more conserved than the globular head subdomain 
[44].

Five major antibody binding sites (ABSs) are located in 
the HA1 globular head subdomain and are termed sites Sa, 
Sb, Ca1, Ca2, and Cb for subtype H1 IAVs (Fig. 1B) [45, 
46] and as sites A, B, C, D, and E for subtype H3 IAVs [47, 
48] (Fig. 1C). The corresponding five ABSs are reported 
in other subtype IAVs, particularly in subtype H5 viruses, 
which have been associated with rapid antigenic drift [49]. 
Three ABSs overlap with HA receptor binding sites (RBSs), 
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including the residues in the 130-loop (i.e., 135, 136, 137, 
138, 153) with ABS site A, the 190-helix (i.e., 186, 190, 
194, 195) with site B, and the 220-loop (i.e., 226 and 228) 
with site D [50]. Compared to IAVs, IBVs undergo less anti-
genic drift. The ABSs of IBV HA are located in the 120-
loop, 150-loop, 160-loop, and 190-helix (Fig. 1D) [51].

In contrast, the NA is a homo-tetrameric glycoprotein that 
is responsible for removing terminal sialic acids and releas-
ing virions from infected cells, mucous, or other substances. 
The enzyme active site, including catalytic sites (i.e., R118, 
D151, R152, R224, E276, R292, R371, and Y406) (in N2 
numbering) that directly interact with the substrate and 
framework sites (i.e., E119, R156, W178, S179, D/N198, 
I222, E227, H274, E277, N294, and E425), are conserved 
in all NA subtypes [52, 53]. However, the antigenic sites of 
NA are not fully understood. Partially antigenic epitopes 
have been mapped by sequence changes in escape mutant 
selection with monoclonal antibodies and by NA-antibody 
complex crystallography (Table 1). The positions of amino 
acid substitutions surrounding the enzyme’s active site have 
the ability to escape NA antibody binding and inhibit NA 
activity [68]. Recently, positions located laterally to the 
enzyme active site such as positions 329 and 390 have also 
been associated with antigenic drift [69, 70].

Antigenic drift of seasonal influenza viruses

Contemporary seasonal influenza viruses comprise of four 
co-circulating and antigenically distinct viruses. These 
include two IAVs (H1N1 and H3N2 subtypes) and two IBVs 
(B/Victoria/2/87-like [Victoria] and B/Yamagata/16/88-like 
[Yamagata] lineages) (Fig. 2A). The H3N2 IAV has been 
co-circulating in the human population since 1968 causing 
the 1968 pandemic. The 2009 H1N1 IAV [A(H1N1)pdm09] 
has been circulating in the human population since the 

2009 pandemic, replacing the H1N1 seasonal virus that had 
been circulating in humans for 32 years from 1977 to 2009 
[A(H1N1)season1977] [73]. Additionally, IBVs have been 
detected in the human population since their first isolation 
in 1940 [74], and the contemporary Victoria and Yamagata 
lineages of IBVs have been co-circulating in human popula-
tion at least since 1983 [75].

Over the past 50 years, H3N2 viruses have undergone 
frequent antigenic drift, and at least 18 antigenic variants 
have been reported (Fig. 2B and Table 2) [71]. The amino 
acid substitutions associated with antigenic variations are 
located on the five ABSs (A to E), but primarily in sites A 
and B, in which 7 residues are neighboring the RBS (145 at 
site A and 155, 156, 158, 159, 189, and 193 at site B) [82]. 
Additionally, a single amino acid substitution in HA can 
sufficiently alter the antigenicity of viruses, whereas most 
antigenic drift events have involved amino acid substitutions 
across multiple positions at the same site or two different 
sites [82]. In addition to those in HA, the amino acid substi-
tutions in NA can also cause antigenic drift. For example, 
amino acid substitutions at sites 329 and 390 of N1 led to 
the antigenic drift of A/Solomon Island/3/2006 (H1N1) and 
A/Yokohama/94/2015 (H1N1) viruses, respectively [69, 
70]. The acquisition of N-linked glycosylation at positions 
245 and 247 (S245N/S247T) of N2 was associated with the 
poor vaccine performance against H3N2 viruses during the 
2017–2018 influenza season [83] .

Compared to H3N2 viruses, H1N1 viruses, including 
A(H1N1)season1977 (1977–2009) and A(H1N1)pdm09 
(2009–present), undergo relatively less frequent antigenic 
drift events [84]. Between 1977 and 2009, at least six anti-
genic events were documented starting with the A(H1N1)
season1977 epidemic (compared with 10 antigenic events 
for H3N2 virus during the same time period), and positions 
156 at Sa, 192, 197, and 214 at Sb, 144 at Ca2, 77, 81, 

Sa

Sb

Ca1

Ca2

Cb

Site A

Site B

Site C

Site D

Site E

Head 120 loop

140 loop

150 loop

190 helix

A B C D

Stem

HA1

HA2

SP

N’ end C’ end

HA1 HA2

329

Head Stem

52 277

Fig. 1   Hemagglutinin (HA) structure and antigenic binding sites. 
(A) Structure of HA protein. (B) The five antigenic sites (i.e., Sa, 
Sb, Ca1, Ca2, and Cb) of H1 (A/California/04/2009; PDB 3UBE). 

(C) The five antigenic sites (i.e., A–E) of H3 (A/Aichi/2/1968; PDB 
2YPG). (D) The four antigenic sites of influenza B viruses (B/Hong 
Kong/8/1973; PDB 3BT6)
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Table 1   Amino acids essential for mAb binding to NA

This table is an update of previously reported NA residues [54]
a Amino acid residues follow N2 numbering with N1 numbering shown in parentheses
b The critical amino acid positions for antibody binding were originally reported for BR/07 [55], CA/09 [56–59], RI/57 [60], TOK/67 [61], 
MEM/98 [62], Dk/UK/63 [63], and Tern/AU/75 [64, 65], SH/13 [66], and AH/13 [67]
c “+” indicates the amino acid position is essential for monoclonal antibody binding

Amino acida NA subtype and the antigen (virus) used as immunogenb

N1 N2 N8 N9

BR/07 CA/09 RI/57 TOK/67 MEM/98 MN/10 SGP/16 Dk/UK/63 Tern/AU/75 SH/13 AH/13

95 (95) +c

150 + +
198 +
199 + +
220 + +
221 + + +
244 +
245 +
247 (248) + + + +
248 (249) + +
249 (250) +
250 +
251 +
253 + +
272 (273) + +
284 +
307 (308) + +
310 (311) +
329 + +
334 + +
338 +
340 (338) + + +
342 (339) + + + + + +
344 (341) +
345 +
346 (343) +
346 +
367 (364) + + +
368 + + + +
369 +
370 + + +
371 +
372 (369) + + +
373 +
399 (396) +
400 (397) + + + + +
403 +
429 + +
431 +
434 +
450 (449) +
452 (451) +
457 (456) +
468 +
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82, and 94 at Cb, 273 and 276 at Pa, and 46 at Pb were 
shown to cause each of these events (Table 2) [72, 81]. Of 
note, Pa is located at the edge of head and stem regions 
(i.e., positions 53, 55–59, 61, 271–280, 285, 297, 304, under 

H3 numbering) and Pb is located at stem region (i.e., posi-
tions 23–25, 38–41, 45–48, 288–292, under H3 numbering) 
[85]. For H3N2 viruses, the HA protein mutates at a rate 
of 3.6 amino acid substitutions per year, compared to 2.5 

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020

B/Victoria/2/87-like

B/Yamagata/16/88-like

A/H1N1 A/H1N1

A/H2N2 A/H1N1pdm

A/H3N2

1918

pandemic

1957

pandemic

2009

pandemic

1968

pandemic
A

B C

pdm1918

pdm09

RU77
SG86

BE95
NC99

SI06
BR07

Eurasian avian-like 
swine H1

Classical swine H1

Swine H1-δ1

Swine H1-δ2

Avian H1N1

A(H1N1)pdm09

A(H1N1)season1977

Ancestral influenza B virus
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First isolation

Fig. 2   Antigenic evolution of seasonal influenza viruses. (A) Time-
line of influenza A and B virus pandemics and circulation in humans 
since 1918. There have been 4 pandemics during this period, which 
are indicated with arrows. The 1918 pandemic was caused by the 
H1N1pdm1918 virus, which circulated in humans until the 1957 
H2N2 pandemic. The circulating H2N2 virus was then replaced 
by the 1968 H3N2 pandemic virus. In 1977, H1N1 reemerged was 
replaced by a reassortment H1N1pdm09 strain. H3N2 has been co-

circulating with H1N1 since 1977. Influenza B viruses were first 
isolated in 1940 and have also been co-circulating in humans at 
least since 1987 as two antigenically distinct lineages, Victoria and 
Yamagata. (B) Antigenic cartography of 39,370 seasonal influenza 
A(H3N2) viruses (1968–2016) (adapted from Han et  al. [71]). A 
total of 16 antigenic clusters were identified during this time period. 
Antigenic cartography of 13,591 human, swine, and avian influenza 
A(H1N1) viruses (adapted from Li et al. [72])
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amino acid substitutions per year for H1N1 viruses [76, 84]. 
Similar to those documented in H3N2 viruses, sites associ-
ated with antigenic variants are primarily located in ABSs 
within the protruding loops and helices of the HA molecule 
[47]. Of note, A(H1N1)pdm09 and A(H1N1)season1977 are 
antigenically distinct, and residues in the 153–157 regions 
and N-linked glycosylation sites of HA are shown to affect 
antigenic variations between these two viruses [86, 87]. Both 
A(H1N1)pdm09 and A(H1N1)season1977 are descendants 
of the 1918 H1N1 pandemic viruses (A[H1N1]pdm1918), 
and amino acid substitutions at the HA protein and N-linked 
glycosylation are shown to affect antigenic variations among 
three viruses [87]. Further attempts at characterizing anti-
genicity have led to the development and application of 
the Multi-Task Learning Sparse Group Lasso (MTL-SGL) 
machine learning method (discussed in a later section) by 
Li et al. [72] to identify key residues associated with anti-
genic changes for A(H1N1)season1977, A(H1N1)pdm09, 
and A(H1N1) swine influenza viruses. Of those 176 residues 

with amino acid substitutions, five at the N-glycosylation 
sites and 78 additional residues have been associated with 
H1N1 antigenicity, of which 46 residues were located at 
ABSs [72].

Although infrequent, antigenic drift events have also 
been documented in both Victoria and Yamagata lineages of 
IBVs. IBVs evolve more slowly than IAVs at 2.0×10−3 sub-
stitutions/site/year [88], compared to H3N2, which evolves 
at 5.5×10−3 substitutions/site/year, and H1N1 at 4.0×10−3 
substitutions/site/year [89]. Between the two IBV lineages, 
the Yamagata lineage is more conserved, whereas the Vic-
toria lineage is under greater positive selective pressure and 
experiences greater antigenic drift [88]. Antigenic cartog-
raphy showed antigenic variations of the Victoria lineage 
during the period of 2002–2013, and the amino acid sub-
stitutions at the RBS, such as residues 142, 161, 218, 223, 
224, and 272, were often found to be associated with the 
antigenic changes of IBVs [88]. Although occasionally, dele-
tions have been detected in H3N2 and H1N1 IAVs during 

Table 2   Antigenic drift events and associated amino acid substitutions in H3N2 (1968–2015) and H1N1 (1977–2009) seasonal influenza A 
viruses

a For H3N2 viruses: HK68, A/Hong Kong/1/1968; EN72, A/England/42/1972; VI75, A/Victoria/3/1975; TX77, A/Texas/1/77; BK79, A/
Bangkok/01/1979; SI87, A/Sichuan/2/1987; BE89, A/Beijing/352/1989; BE92, A/Beijing/32/1992; WU95, A/Wuhan/359/1995; SY97, A/
Sydney/5/1997; FU02, A/Fujian/411/2002; CA04, A/California/07/2004; BR07, A/Brisbane/59/2007; PE09, A/Perth/16/2009; TX12, A/
Texas/50/2012; SW13, A/Switzerland/9715293/2013; HK14, A/Hong Kong/4801/2014. For H1N1 viruses: CH83, A/Chile/1/83; SI86, A/Singa-
pore/6/1986; TE91, A/Texas/36/91 BE95, A/Beijing/262/95; NE99, A/New Caledonia/20/1999; BR07, A/Brisbane/59/2007; SO06, A/Solomon 
Islands/3/2006
b All positions are under H3 numbering

Subtype Antigenic drift eventa Predominant amino acid substitution(s) in HA (antibody binding sites)b

H3N2 [71, 76–80] HK68→EN72 G144D (A)
EN72→VI75 S145N(A), S193D (B)
VI75→TX77 D53K(C), E82K(E)
TX77→BK79 K156E(B)
BK79→SI87 Y155H(B), K189R(B)
SI87→BE89 G135E(A), N145K(A), N193S(B)
BE89→BE92 E135K(A), K145N(A), E156K(B)
BE92→WU95 N145K(A), G172D(D)
WU95→SY97 K62E(E), K156Q(B), E158K(B)
SY97→FU02 Q156H(B)
FU02→CA04 K145N(A), Y159F(B)
CA04→BR07 S193F(B), D225N (near D)
BR07→PE09 K158N(B), N189K(B)
PE09→TX12 N278K(C), S45N(C)
TX12→SW13 N145S(A), N225D(near D), A138S(A), F159S(B)
TX12→HK14 N145S(A), N225D(near D), N144S(A), F159Y(B), Q311H(C), K160T(B)

H1N1 [81] CH83→SI86 K197T(Sb), K192R(Sb)
SI86→TE91 K82E(Cb)
TE91→BE95 T132V(Near Sa), S273P(Pa)
BE95→NE99 E156G(Sa), S77L(Cb)
NE99→BR07 T197K(Sb), R192M(Sb), K144E(Ca2), S46N(Pb)
NE99→SO06 E276K(Pa), R192K(Sb), K144E(Ca2), Y101H(near Cb)
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virus infection [90], and nucleotide deletions and/or inser-
tions in HA and/or NA have been more frequently observed 
in epidemic IBVs [91, 92]. For example, among multiple 
genetic clades reported between the 1940s and the 1980s, 
multiple deletions were observed in HA proteins: compared 
with clade III (the precursor virus for the Victoria lineage), 
the viruses in clade I, which includes B/Lee/1940, the proto-
type strain of IBV, and the viruses in clade II (the precursor 
viruses for the Yamagata lineage) possessed a single amino 
acid deletion at position 163 on the HA protein [91]. Along 
with a deletion at 163, the precursor viruses of the Yamagata 
lineage that circulated before 1988 harbored double (posi-
tions 163 and 165) or triple (positions 162–164) deletions 
on HA, whereas no deletions were observed in the precur-
sor Victoria viruses [91]. Of interests, since the period of 
2011–2015, HA variants with double (positions 162–163) 
or triple (positions 162–164) deletions have been detected 
in the Victoria lineage IBVs [93].

As an RNA virus, influenza genetic variants continu-
ally emerge in the human population, and it is not uncom-
mon to see multiple genetic variants co-circulating simul-
taneously. In both IAVs and IBVs, a genetic variant may 
become predominate in the population. Antigenic variants 
of seasonal IAVs have emerged from these genetic variants 
and co-circulate in human populations for a short period 
of time until one antigenic variant gradually predominates 
the viral population and replaces the others. For example, 
during the 2014–2015 influenza season, multiple genetic 
clades (i.e., Clades 3C.2a and 3C.3a) emerged from A/
Texas/50/2012 (H3N2) (TX/12)-like viruses and co-circu-
lated. Among them, two subclades (Clade 3C.3a, A/Swit-
zerland/9715293/2013 [SWZ/13]-like, and Clade 3C.2a, A/
Hong Kong/4801/2014 [HK/14]-like A/Hong Kong/2014) 
are antigenically distinct from TX/12-like viruses. Amino 
acid substitutions N145S-N225D-A138S-F159S and N145S-
N225D-N144S-F159Y-Q311H were shown to drive the 
emergence of SWZ/13 and HK/14 from TX/12, and all of 
these amino acid substitutions are located in ABSs A or B. 
Thus, viruses with N145S-N225D likely served as inter-
mediate precursors for SWZ/13 and HK/14 viruses [71]. In 
the following 2015–2016 season, the majority of epidemic 
strains were HK/14-like viruses with SWZ/13-like viruses 
co-circulating at a lower proportion [94].

Intra-lineage reassortments can occur among co-circulat-
ing antigenic variants for both IAVs and IBVs. Intra-lineage 
reassortments were likely responsible for the 1947 and 1951 
A(H1N1) epidemics with the epidemic virus composition 
comprising of genome segments from separate phylogenetic 
histories when inferring separate phylogenetic trees for each 
gene segment [33]. Likewise, intra-lineage reassortment 
has been identified on the HA and NA surface glycopro-
teins of A(H3N2) [95]. Intra-lineage reassortment has also 
been identified in both Victoria and Yamagata lineages of 

influenza B, particularly in the HA, NA, and NP phyloge-
nies [96, 97]. These intra-lineage reassortments of influenza 
viruses may contribute towards the antigenic evolution of 
IAVs and IBVs and cause epidemics. However, intra-lineage 
reassortment occurrences in H3N2 are undergoing overall 
negative selection, suggesting that this phenomenon may 
be rare [95].

Antigenic drift of avian influenza viruses (AIVs)

IAVs have been recovered from more than 105 wild bird spe-
cies [98]. Migratory waterfowl, including birds in the orders 
Anseriformes (e.g., ducks, geese, swans) and Charadrii-
formes (e.g., gulls, terns, and waders), are considered to 
be the major natural reservoirs of IAVs [99]. Sixteen IAV 
HA (H1–H16) and nine NA (N1–N9) subtypes have been 
recovered from migratory waterfowl. Among wild birds, 
the prevalence of IAV infections can be up to 30% [99], 
and transmission typically occurs when they are exposed to 
viruses in the feces of infected animals [100, 101]. The anti-
genic evolution in migratory waterfowl may be static [102], 
as supported by recent studies showing minimal antigenic 
diversity among H3 and H7 IAVs in North American migra-
tory waterfowl [103, 104].

Domestic poultry can be infected with non-pathogenic, 
lowly pathogenic, and highly pathogenic IAVs. There are 
a variety of HA subtypes that are less virulent and do not 
cause death from experimental infection. However, H5 and 
H7 subtypes can be highly virulent (although most H5 or 
H7 viruses are lowly pathogenic for poultry) and can cause 
a 100% death rate in experimental infections [105]. One 
example of a virulent H5 is the A/goose/Guangdong/1/1996 
(H5N1) outbreak in 1996 [106]. The avian A/goose/
Guangdong/1/1996(H5N1) was isolated from farmed geese 
and is the precursor for the H5N1 highly pathogenic avian 
influenza viruses (HPAIVs) that are currently in circulation 
and have spread globally to animals [106] with sporadic 
spillover cases to humans [107, 108].

The emergence of antigenic variants in domestic poul-
try has been shown to occur after escaping from immune 
responses generated by vaccination [109], particularly in 
H5 and H7 IAVs. Limited studies showed that avian influ-
enza vaccinations led to antigenic drift of the H7N3 virus in 
Italy [110], H5N2 virus in Mexico [109], and H9N2 virus 
in Korea [111], and that H5N1 viruses rapidly evolved with 
increased selection in H5N1-vaccinated populations [112]. 
Since 2002, at least 15 countries have implemented avian 
influenza vaccinations for preventive and/or emergency pro-
grams [113]. Between 2002 and 2010, more than 113 billion 
vaccine doses were used, and China alone used over 90.9% 
of the total doses. For A/goose/Guangdong/1/1996(H5N1)-
like H5 viruses, at least 20 antigenically different genetic 
clades or subclades of viruses have been reported [114, 
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115] and new antigenic variants are still emerging [116]. 
In China, similar observations, including both antigenic 
and genetic changes, were seen in enzootic H9N2 viruses 
[117–127]. However, whether avian influenza vaccinations 
facilitate the emergence of novel genetic and antigenic vari-
ants is not fully understood.

Similar to human seasonal influenza viruses, antigenic 
changes in AIVs are associated with amino acid substitu-
tions in the ABSs or near the RBS of the HA protein. For 
example, in Italy, five amino acid substitutions (G133E, 
A151T, G177V, Q201H, and T112A) in H7N3 viruses dur-
ing 2002–2004 were identified in the antigenic variant and 
parent strains, and four of them reside in ABSs [128]. Of 
interest, for H7N9 viruses, although there was a greater 
than 4-fold reduction in HI titers between the viruses in the 
fifth wave and those in the first wave [129], the in vitro and 
in vivo studies both showed that the heterologous antisera 
can neutralize virus infection [130]. Further analyses showed 
that the reduction of the HI titers is predominantly driven 
by the increased receptor-binding avidity determined by the 
amino acid substitution L226Q to red blood cells [131].

Antigenic drift of swine influenza viruses (SIVs)

Swine may play also a role in the reassortment and adapta-
tion of novel zoonotic viruses. It is possible for a novel virus 
with pandemic potential to cause a spill-over event into the 
human population [51, 132, 133]. Influenza surveillance in 
swine is important for pandemic prevention and the protec-
tion of public health. SIVs not only cause outbreaks among 
swine, but can also be transmitted to humans, causing spo-
radic infections and even pandemic outbreaks in addition 
to the human seasonal IAVs. Domestic swine are thought 
to be the intermediate host for avian-origin IAV adapta-
tions to human infections [134–137]. Both avian-like H1N1 
and H3N2 viruses have been isolated from domestic swine 
[137–139]. Avian-origin IAVs of subtypes H1 to H13 have 
been shown to infect and replicate in swine under experi-
mental conditions [137] as well as direct H2N3, H3N1, and 
H4N6 avian-to-swine transmission in nature [140–149].

Genetically diverse H1N1, H1N2, and H3N2 IAVs were 
detected during influenza surveillance studies in domestic 
swine from 2009 to 2012 [144–147]. The HA gene of H1 
swine viruses were grouped into three genetic lineages: 1A 
(classical swine H1N1 (cH1N1) lineage), 1B (human sea-
sonal lineage), and 1C (Eurasian avian lineage) (reviewed 
in [150]). The 1A lineage, which was derived from the 1918 
pandemic H1N1 viruses, are detected globally and further 
grouped into α, β, or γ clades. The γ clade includes the 
A(H1N1)pdm09 virus. Of note, since the 2009 pandemic, 
A(H1N1)pdm09 has been repeatedly reintroduced into the 
swine populations and reassort with the enzootic H1 and 
H3 swine viruses. The 1B lineage includes the viruses spilt 

from humans into swine in North America, and this lin-
eage evolved into 1B.2.2 and 1B.2.1 (formerly named δ1 
and δ2 subclades, respectively). In the past decade, there 
were several reports of either H1N1 or H1N2 viruses in 
South America and Vietnam with an HA gene from the 1B 
lineage viruses [151–154]. The 1C lineage viruses were 
derived from an avian H1N1 virus, which was first detected 
in Europe and then Asia and has remained a predominant 
lineage across Eurasia [150].

In contrast to the diverse sources of swine H1N1 viruses, 
swine H3N2 viruses are associated with multiple introduc-
tions of seasonal influenza viruses from humans [150]. The 
contemporary H3N2 viruses in the European swine popu-
lation (“Cluster-IV”, 1990.4 lineage) were suggested to be 
caused by a spillover event from humans in the 1970s [155, 
156], and those in the North American swine population 
caused by spillover from humans during the 2010–2011 
(2010.1 lineage) or 2016–2017 (2010.2 lineage) influenza 
seasons, which have not replaced Cluster-IV viruses in the 
US [150, 157, 158]. The H3N2 viruses are grouped into four 
major lineages, including two genetically and antigenically 
distinct lineages, C-IV H3 and 2010.1, which emerged and 
become enzootic in the past decade [158, 159]. Antigenic 
characterization studies demonstrate that these genetically 
diverse H1 and H3 viruses are antigenically distinct and 
show different extents of cross-reactivity in the serologic 
assays [160, 161].

Influenza vaccination

In humans, vaccination is the primary option for coun-
teracting and reducing the effects of influenza outbreaks 
[38]. However, national influenza vaccination policies dif-
fer from country to country. For example, in the US, the 
annual influenza vaccination has been recommended for 
persons ≥6 months of age since 2010 [162], especially for 
the elderly, very young children, pregnant women, and those 
with certain chronic medical conditions [163–165]. China 
[166], Canada [167], Australia [168], Estonia, and Poland 
follow the same national immunization guidelines as those 
of the US, whereas other European countries have vacci-
nation recommendations for more specific populations or 
do not recommend influenza vaccinations for healthy chil-
dren (reviewed in ref. [169]). Vaccine coverage during the 
past few years has reached ~60% in some regions (e.g., 
the US, Europe, Australia, and Japan). However, in other 
regions (e.g., Africa), influenza vaccine coverage has been 
non-existent or minimal. In the US, during the 2009–2010 
through 2015–2016 influenza seasons, vaccination rates var-
ied from 43.7 to 59.3% among children and from 38.8 to 
43.6% among adults [170]; in France, during the 2012–2013 
through 2014–2015 influenza seasons, vaccination rates 
were approximately 32% in the population that is targeted 
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for vaccinations (ages 65 years and above, pregnant women, 
individuals with chronic respiratory diseases, and those with 
other comorbidities considered to place individuals at risk 
for severe influenza illness), varying from 42.7 to 44.2% in 
those ≥ 65 years of age [171]. Low vaccination rates and 
additional factors have led to the wide variations of influenza 
vaccine performance between seasons, and reduced vac-
cine effectiveness against some viruses has been observed 
(Table 3) [176, 182].

The performance of vaccines is assessed by vaccine effec-
tiveness, which is defined as reduction of influenza risk due 
to the influenza vaccine compared to unvaccinated indi-
viduals after adjusting for confounding factors. In the past 
decade, vaccines showed suboptimal effectiveness (<50%) 
for predominant circulating viruses in 8 of 10 seasons for 
a variety of reasons with a peak of 60% vaccine effective-
ness (VE) during the 2010–2011 season and 52% VE dur-
ing the 2013–2014 seasons to as low as 19% VE during the 
2014–2015 season [183]. The low VE of the 2014–2015 
influenza season was attributed to a mismatch between 
the circulating and vaccine A(H3N2) strains, but the vac-
cine strain was effective against influenza B [176]. As for 
the remaining seasons, during the 2018–2019 season, the 
overall VE was 29% with 44% VE against A(H1N1)pdm09 
but only minor protection against A(H3N2), which had 
become the predominant influenza virus towards the latter 
part of the season [180]. Similarly, during the 2017–2018 
(VE=38%) seasons and 2016–2017 (VE=40%), the VE 
against A(H3N2) viruses was less than A(H1N1)pdm09 and 
B viruses, which was speculated to be in part due to egg-
adaptive amino acid substitutions in the HA protein result-
ing in poor inhibition of the circulating A(H3N2) viruses 

[178, 179, 184]. The 2015–2016 season (VE=48%) saw 
reduced VE of the live attenuated vaccine among children 
[177]. The 2012–2013 season (VE=49%) also had reduced 
VE against A(H3N2) among older adults, also speculated 
to be due to egg-adapted mutations, immunosenescence, or 
prior influenza exposures [174]. Finally, the 2011–2012 sea-
son (VE=47%) similarly saw lower VE against A(H3N2), 
potentially due to antigenic drift or incongruent influenza 
exposure history [173].

Although only available after vaccination implementa-
tion, the data for VE provide a retrospective, yet critical role 
in vaccine strain selection. A low VE indicating antigenic 
mismatch provides an opportunity to update the mismatched 
component(s) for the following influenza season.

Vaccine effectiveness has been shown to be affected by 
host factors including age, sex, comorbidities, and pre-
existing immunity [185, 186], antigenic match [187–189], 
and the type of vaccine [188, 190]. Among these factors, 
identification of vaccine strains antigenically matching the 
epidemic strain is the key to a successful vaccination pro-
gram [14]. The quadrivalent vaccine comprises all four co-
circulating antigenically distinct strains whereas the triva-
lent vaccine contains A(H1N1), A(H3N2), and only one of 
two circulating IBVs. However, studies have shown that the 
inactivated quadrivalent influenza vaccines may provide lim-
ited overall benefit against influenza B illness when the IBV 
lineage in the trivalent vaccination matches the circulating 
B lineage [191, 192]. The global influenza surveillance net-
work, which is coordinated by the WHO [193], characterizes 
antigenic and genetic properties of the epidemic influenza 
viruses as well as the prevalence patterns of these viruses, 
and then predicts which strains will be predominant during 

Table 3   The adjusted vaccine effectiveness in the US from 2010–2011 to the 2019–2020 influenza seasons

a Vaccine effectiveness against of B/Yamagata and B/Victoria lineage viruses
b IBVs influenza B viruses including B/Yamagata and B/Victoria lineages
c Not applied, there was no circulation of the type and/or subtype of virus during the corresponding season in the US
d CDC US Centers for Disease Control and Prevention: https://​www.​cdc.​gov/​flu/​vacci​nes-​work/​effec​tiven​ess-​studi​es.​htm
e Interim estimates, data from October 23, 2019–January 25, 2020

Influenza season Epidemic virus(es) % vaccine effectiveness (95% CI) for all age Reference
Overall influenza A(H1N1)pdm09 A/H3N2 B/Yamagata B/Victoria

2010–2011 A(H1N1)pdm09, A(H3N2) 60 (53–66) 66 (56–74) 54 (42–64) 60 (48–69)a [172]
2011–2012 A(H3N2) 47 (35–65) 65 (44–79) 39 (23–52) 66 (38–81) 52 (8–75) [173]
2012–2013 A(H3N2), IBVsb 49 (43–55) n.a.c 39 (29–47) 66 (58–73) 51 (36–63) [174]
2013–2014 A(H1N1)pdm09 52 (44–59) 54 (46–61) n.a.c n.a.c n.a.c [175], CDCd

2014–2015 A(H3N2) 19 (10–27) n.a.c 6 (−5–17) 55 (43–65) n.a.c [176]
2015–2016 A(H1N1)pdm09, IBVs 48 (41–55) 45 (34–53) 43 (4–66) 57 (42–67) 49 (30–64) [177]
2016–2017 A(H3N2) 40 (32–64) n.a.c 33 (23–41) 52 (42–61) 56 (23–57) [178]
2017–2018 A(H3N2) 38 (31–43) 62 (50–71) 22 (12–31) 48 (39–55) 76 (45–89) [179]
2018–2019 A(H1N1)pdm09, A(H3N2) 29 (21–35) 44 (37–51) 9 (−4–20) 34 (−12–62)a [180]
2019–2020e B/Victoria, A(H1N1)pdm09 45 (36–53) 37 (19–52) n.a.c n.a.c 50 (39–59) [181]
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the upcoming influenza season [194, 195]. After the vaccine 
strains are determined, high yield strains of influenza viruses 
are often needed to be generated and optimized for vaccine 
production, although occasionally, wild-type strains (e.g., 
IBV) can be directly used for vaccine production [196, 197].

In domestic poultry, influenza vaccines are not only 
used for the prevention of disease and death, but also for 
the prevention of infection or reduction of viral replication 
in respiratory and digestive tracts to limit viral spread to 
uninfected flocks [198–201]. Currently, vaccines against 
H5 or H7 are available for a wider range of species includ-
ing chickens, turkeys, ducks, geese, and zoo birds [200]. A 
bivalent H5 vaccine targeting clades 2.3.4.4 and 2.3.2.1 was 
replaced by a bivalent H5/H7 vaccine in 2017 [202] with 
a 97.9% coverage rate in Guangdong, China, and varying 
degrees of coverage in other Chinese provinces for a variety 
of bird species [203]. While there was no difference in pro-
tection between the prior H5 vaccine and the H5/H7 vaccine 
against H5 positive rates in humans, H7 positivity reduced 
by 98% [203]. Additionally, the H5/H7 vaccine has been 
shown to reduce virus shedding and mortality in chickens 
[202]. Challenges in poultry vaccination against H5 and H7 
influenza viruses will encompass antigenic drift and poten-
tial cross-species transmission.

In domestic swine, vaccination is commonly used in 
the US. Swine vaccines are typically available as licensed 
commercial products consisting of culture-derived virions 
in crude allantoic fluid from specific-pathogen-free (SPF) 
chicken eggs, which are then chemically inactivated and for-
mulated into a mineral oil emulsion vaccine [204]. Current 
swine influenza vaccines are strain-specific, consisting of 
two or more H1 and H3 isolates, and fail to induce cross-
protection against genetic and antigenic virus variants [148]. 
Unlike human vaccines, this process avoids costly purifica-
tion steps for the enrichment of the surface glycoproteins 
HA and NA [205], but booster vaccinations are necessary in 
order to achieve and maintain protective levels of systemic 
hemagglutination-inhibiting antibodies [206].

Selection of vaccine strains

The GISRS was established to monitor the evolution 
and spread of influenza viruses and is composed of 144 
national influenza centers (NICs) from 123 member states, 
six WHO collaborative centers (WHOCC), and numerous 
vaccine companies [207] (Fig. 3). In the US, more than 70 
participating labs in the National Respiratory and Enteric 
Virus Surveillance System are involved. Tens of thousands 
of samples are collected from patients with influenza-like 
illnesses year-round and sent to one of the NICs. NICs 
identify the type and subtype of the samples and/or iso-
late them, and then send representative isolates and/or the 
original swab samples to one of the WHOCCs. WHOCCs 

perform genome sequencing and antigenic analyses on 
these virus samples and isolates [208, 209]. Based on the 
epidemiological and antigenic data, the GISRS committee 
meets in February (Northern hemisphere) and September 
(Southern hemisphere) and recommends vaccine strains to 
be used in the next influenza season [210].

After the selection of vaccine components, WHOCC 
generates the virus seeds of each vaccine component and 
issue them to vaccine manufacturers. For inactivated vac-
cines, IAVs require the recombination of HA and NA 
genes from the candidate vaccine viruses and six internal 
genes from the A/Puerto Rico/8/34 strain by using reverse 
genetics to improve growth in eggs. For live attenuated 
vaccines, influenza A and B viruses require reassortment 
between the HA and NA genes from the candidate vac-
cine viruses and six internal genes from a cold-adapted 
master donor virus(A/Ann Arbor/6/60 [H2N2) or A/
Leningrad/134/17/57[H2N2] for IAVs; B/Ann Arbor/1/66 
or B/USSR/60/69 for IBVs) [211]. After the growth and 
antigenic characteristics are qualified, the corresponding 
vaccine virus seeds are applied to produce vaccines. The 
production of the vaccine can last more than 6 months. 
Vaccination starts in September for the Northern Hemi-
sphere and in April for the Southern Hemisphere.

During these meetings, zoonotic influenza viruses, 
especially those with pandemic risks, are also discussed to 
update the vaccine strains used in pandemic preparedness. 
The procedure is similar to those for seasonal influenza 
viruses, and the current viruses include subtype H5, H7, 
and H9 AIVs and subtype H1N1 and H3N2 SIVs, all of 
which are enzootic in animals and have caused sporadic 
spillovers to humans [212]. The US Centers for Disease 
Control and Prevention (CDC) and WHO developed the 
Influenza Risk Assessment Tool (IRAT) and Tool for 
Influenza Pandemic Risk Assessment (TIPRA) to assess 
the emergence risk and public health impact risk of a novel 
(i.e., new in humans) IAV [213, 214]. The IRAT scores 
the risk by using 10 criteria based on biologic domain 
knowledge (e.g., virus properties, such as changes with 
known molecular signatures, receptor binding, transmis-
sion potential in laboratory animals, and drug susceptibil-
ity/resistance); population attributes (i.e., existing immu-
nity, susceptibility to infection, severity of illness, and 
antigenic relationship to vaccine candidates); and virus 
ecology and epidemiology (i.e., global distribution, infec-
tions in animals, and infections in humans). IRAT then 
prioritizes the risks for enzootic IAVs by using laboratory-
accumulated data. Similar to the IRAT, TIPRA evaluates 
the pandemic risk by assessing the likelihood for a virus 
to cause sustained human-to-human transmission based on 
virus properties, attributes (i.e., population immunity) in 
the human population, and virus ecology and epidemiol-
ogy in animals [213–216].
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However, selection of an influenza vaccine is not trivial. 
The influenza virus has a high mutation rate, and antigenic 
variants continually emerge in human populations. During 
the 6-month window between vaccine strain determination 
and subsequent vaccine development, antigenic drift can 
occur, leading to mismatch of the recommended vaccine 
strains. In addition, virus isolation and antigenic charac-
terization are labor-intensive, and it is not possible to col-
lect all potential influenza samples and include them into 
the analyses. Thus, even an antigenic variant that emerges 
before the GISRS committee meeting, especially those in 
the early stages of an epidemic, could be missed because of 
low prevalence or limited samples included in the labora-
tory analyses. To overcome sampling challenges, the CDC 
and Association of Public Health Laboratories (APHL) 
developed an Influenza Virologic Surveillance Right Size 
Roadmap, which provides tools to optimize sampling meth-
ods, disease surveillance, response and control efforts, and 

policy decisions [217]. An additional challenge is that the 
viruses can gain adaptive nonsynonymous mutations during 
isolation and/or propagation [77, 218], and these resulting 
amino acid substitutions can complicate antigenic analyses 
of epidemic strains in humans.

In addition to antigenic mismatch, a selected strain could 
produce low yields during vaccine production. A low yield 
vaccine strain will require additional laboratory work such 
as mutagenesis or egg passage to increase their growth 
rate. This could significantly delay vaccine production and 
delivery. For example, the 2009 H1N1 seed strain was a 
low yield strain (available on May 27, 2009) and required 
five WHO labs over 2 months to prepare the strain for pro-
duction (August 6, 2009) [219]. Because of this delay, vac-
cine-derived immunity arose only after the second wave of 
the pandemic. Without such a delay, the vaccine may have 
reduced the impact of the second wave, and it is likely that 
many fewer infections and deaths would have occurred. 
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Vaccine production
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Fig. 3   Schematic of the influenza surveillance, vaccine strain-selec-
tion, and vaccine production process. (A) The process by the Global 
Influenza Surveillance and Response System (GISRS) was detailed in 
[208]. (B) Timeline of influenza vaccine production. The GISRS vac-

cine strain selection, production, approval process, and distribution in 
both the Northern and Southern Hemispheres are shown with the cor-
responding time of year that each procedure is performed

2851



Wang Y. et al.

1 3

Since different strains with similar antigenic profiles could 
have different growth ability in eggs, selection of a high 
yield strain with antigenic match is an important goal of 
vaccine strain selection.

An ideal method for antigenic variant identification 
includes comprehensive virus sampling, use of clinical 
specimens or limited virus isolation and passaging to avoid 
egg adaptations, and decreased time between strain selec-
tion and vaccine production. The following section will 
review the conventional and recent methods for antigenic 
characterization of influenza viruses with a discussion of 
their challenges.

Antigenic characterization of influenza viruses

Serological methods commonly used in antigenic 
characterization

Serological tests, such as hemagglutination inhibition (HI), 
neuraminidase inhibition (NI), and neutralization assays 
and the enzyme-linked lectin assay (ELLA), are routinely 
used to determine antigenic properties and identify antigenic 
variants during influenza surveillance. However, these con-
ventional methods require a high quantity of viruses, which 
are more than what are typically available in the clinical 
samples, and, thus, a live testing virus will typically need 
to be isolated and propagated in either cells (e.g., Madin-
Darby canine kidney, MDCK) or embryonated chicken eggs. 
Table 4 compares the principles of the common serological 
assays used in antigenic characterization.

HI assay  The HA of influenza viruses binds to sialic acid 
glycan receptors [221] of red blood cells (erythrocytes) and 
can agglutinate erythrocytes. Such agglutination ability of 
influenza viruses can be used to quantify viruses by deter-
mining the maximal dilution of viruses, which can achieve 
visible erythrocyte agglutination. Antibodies can inhibit 
erythrocyte agglutination by binding to HA ABSs at the 
RBS. The HI assay measures how a test influenza antigen 
and a reference antigen (e.g., a serum for a current vaccine 
strain) match through the immunological reaction between 
the test antigen and the reference antiserum (Fig. 4A). With 
its simplicity and moderate throughput, HI has been widely 
applied (and is expected to continue being a useful tool) in 
antigenic analyses of influenza viruses during surveillance 
and vaccine strain selection.

The success of the HI assay depends on the agglutination 
ability of erythrocytes and thus is affected by the influenza 
virus–associated glycan receptor distribution on the eryth-
rocytes used in the assay and the receptor binding proper-
ties of the testing virus. Previous studies showed that turkey 
and chicken erythrocytes express α2,3- and α2,6-linked 
sialic acids, horse erythrocytes almost exclusively express 

α2,3-linked sialic acids [224], and guinea pig erythrocytes 
disproportionately express more α2,6- than 2,3-linked sialic 
acids [225]. Of these, turkey erythrocytes are commonly 
used and are still effective in antigenic analyses of human 
seasonal influenza viruses, IBVs and A(H1N1) (i.e., both 
A(H1N1)season1977 and A(H1N1)pdm09). However, for 
antigenic analyses of seasonal A(H3N2) viruses, chicken 
erythrocytes were used until mid-1990s [226]; turkey eryth-
rocytes were then used to replace chicken erythrocytes until 
the 2004–2005 influenza season [34, 227, 228]; guinea pig 
erythrocytes were used from the 2004–2005 through the 
2013–2014 influenza seasons [229]; after the 2010–2011 
influenza season, the NA inhibitor is suggested to be added 
when using guinea pig erythrocytes [230, 231]. Multi-
ple amino acid substitutions of the HA RBS [40] caused 
A(H1N1)season1977 [232, 233] and seasonal H3N2 IAVs 
[234] to lose their ability to bind to different species of 
erythrocytes that are typically used in influenza surveillance. 
For example, the amino acid substitutions at residues 193, 
196, 197, and 225 in A(H1N1)season1977 in 1988 or later 
resulted in the loss of their abilities to agglutinate chicken 
erythrocytes [235]. For H3N2 viruses, the amino acid sub-
stitutions at positions 190, 226, and 194 of HA were asso-
ciated with the loss of the ability for the A(H3N2) viruses 
to agglutinate chicken erythrocytes [234, 236–239]. Since 
the 2004–2005 influenza season, A(H3N2) viruses acquired 
Asp225Asn in HA, which caused the loss of their binding 
abilities to turkey erythrocytes [227, 230]; this may be attrib-
uted to the inability of viral binding to short oligosaccha-
rides terminated with sialic acids (i.e., those having only 
one or two N-acetyl-lactosamine repeating units), which are 
mainly expressed by chicken or turkey erythrocytes [240]. 
As an extreme example, a large portion of A(H3N2) viruses, 
especially clade 3C.2a viruses, have lost the capacity to 
agglutinate chicken, turkey, and guinea pig erythrocytes 
[229, 241]; thus, they cannot be antigenically character-
ized by HI assays. In addition, the 3C.2a A(H3N2) viruses 
showed different adaptation patterns when using different 
types of MDCK cell lines: when passaged in conventional 
MDCK cell lines (CCL-34; ATCC), the 3C.2a viruses may 
acquire amino acid changes on HA and/or NA and regain the 
ability to agglutinate turkey and/or guinea pig erythrocytes, 
which likely affects antigenic analyses, but such changes 
were not observed with the MDCK-SIAT1 cell line [229]. 
The MDCK-SIAT1 cells, which are stably transfected with 
human CMP-N-acetylneuraminate:β-galactoside α-2,6-
sialyltransferase, with increased SA2,6Gal but decreased 
SA2,3Gal expression [242], have been recommended to be 
used for virus isolation and propagation of current H3N2 
viruses.

Of interest, NA activities were then found to affect viral 
erythrocyte agglutination in H3N2 viruses (e.g., those 
between 2005 and 2009) and can affect HI results [231]. 
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Amino acid substitutions T148I and D151G were found to 
be artifacts of virus isolation and propagation in MDCK 
cells and associated with the NA-mediated viral erythrocyte-
binding [231]. Subsequent studies reported that substitutions 
H150R [243] and G147R [244] on the NA protein were also 
associated with the phenomenon. Another study suggested 
that the HI assay measures the effect of antibodies against 
NA rather than HA for A(H3N2) viruses [243]. Thus, over 
time, to reduce the non-antigenic effects of virus variations, 
the protocols for HI assays have been updated by using neu-
raminidase inhibitors (e.g., oseltamivir) in HI assays using 
guinea pig erythrocytes [231].

In addition to the animal species, the sources and even 
batches of erythrocytes may impact the results from HI 
assays in practice, causing such data to be notoriously noisy 
and difficult to interpret, integrate, and reproduce between 
laboratories [245–247]. In addition, implementation of the 
HI protocol can generate additional noise in HI analyses. In 
the past decades, various mechanical practices have been 

used to improve the accuracy and throughput of HI assays, 
such as Cypher One developed by Wilson et al. in 2017 [248] 
and High-Throughput Imaging and Visualization Equipment 
(HIVE) T670 by Nguyen et al. in 2016 [249] to automate 
image analyses for interpretation of HI assays and to remove 
inconsistencies caused by plate tilting. Sanchez-Cano et al. 
[250] recently developed synthetic erythrocytes, called syn-
throcytes, which can be used for HI assays instead of ani-
mal erythrocytes. They created these synthetic erythrocytes 
by first identifying commercial beads that express distinct 
sedimentation patterns based on agglutination (Sicastar-
blue beads), and then, based on the study by Suzuki et al. 
[221] that influenza viruses differ in their recognition of 
sialic acid–galactose linkages, developed sialylated beads as 
bioreceptors to bind influenza. Tested against conventional 
assays, synthrocytes offered improved speed and stability for 
A(H1N1) and IBVs and can easily be mass-produced [250]. 
While the sensitivity of synthrocytes remains less than fresh 
erythrocytes, the improved specificity, stability, and assay 
time suggest that synthetic erythrocytes offer great potential 
for improved serological analyses of influenza viruses. Nev-
ertheless, these synthetic erythrocytes have not been used as 
a substitute of animal erythrocytes in the HI assays.

NI assay  While HA mediates receptor binding, NA cleaves 
N-acetyl neuraminic acid from the virus, which allows 
the virus to be released and infect additional cells [251]. 
Aminoff et al. [252] developed the original NI assay in 1961 
as a macro-assay. This macro-assay was then modified by 
Van Deusen et al. in 1983 as a micro-neuraminidase-inhi-
bition (micro-NI) assay performed on micro-titer plates to 
accommodate smaller quantities of reagents and allow for 
increased sensitivity compared to macro-NI and increased 
capacity to evaluate multiple isolates at a time [253]. NA can 
be subtyped using the antibody specificity of NA to influ-
enza, and the susceptibility of influenza viruses to antiviral 
drugs can be determined using NI assays, which work by 
quantifying the amount of sialic acids cleaved by NA [222, 
251]. Despite the development of the micro-assay, NI assays 
are still limited by the vast resource requirements including 
the need for individual glass tubes and use of toxic chemi-
cals including arsenite and 2-thiobarbituric acid [222, 254]. 
Additionally, traditional NI assays may not adequately detect 
NA antigenicity when antigenic drift occurs at the lateral 
surface of the NA head and prevents the binding of anti-NA 
monoclonal antibodies [70]. These challenges are the reason 
that NI assays are not a commonly used method for assessing 
influenza antigenicity.

ELLA  ELLA is an alternative method for measuring NI titers 
that overcomes the resource limitations of the NI assays, 
allowing for increased scalability and safety [254]. Rather 
than individual glass tubes, ELLA is performed on 96-well 

Fig. 4   Conventional of serological assays used in influenza antigenic 
analyses. (A) Hemagglutination inhibition (HI) assay. After mixing 
4 hemagglutination (HA) units of virus and 2-fold serially diluted 
reference sera, red blood cells (RBCs) are added to the reaction. If 
the binding of viruses to RBCs is not inhibited by the antibody, the 
RBCs will agglutinate in the micro-titrate. Otherwise, the RBCs are 
not agglutinated, forming (1) a button or a halo when using avian 
RBCs or mammalian RBCs or (2) a floating pellet (when the plate 
is tilted) using avian RBCs. The pattern of non-agglutinated chicken 
and turkey RBCs are shown in the top four wells to the left column 
and that of agglutinated chicken and turkey RBCs are shown in the 
bottom four wells. (B) Enzyme-linked lectin assay (ELLA). The mix-
ture of a predetermined amount of virus and serially diluted refer-
ence sera is added to 96-well plates coated with fetuin, a liver protein 
with sialic acid and galactose at the glycan terminal, and then incu-
bated overnight at 37°C. Peanut agglutinin conjugated to peroxidase 
(PNA-HRP) is then added, and the PNA-HRP binds to the exposed 
galactose due to the removal of sialic acid by neuraminidase activ-
ity. Otherwise, the neuraminidase is inhibited by the reference anti-
body, and the PNA-HRP does not bind to the fetuin. Finally, the 
signal is detected by adding o-phenylenediamine dihydrochloride 
(OPD) substrate. (C) Micro-neutralization (MN) assay. Reference 
sera are diluted by twofold, and then mixed with viruses in a titer of 
100 median tissue culture infectious dose (TCID50) per well. The 
mixtures are used to infect cells (e.g., MDCK cells or MDCK-SIAT 
cells). After 1 day of incubation at 37°C, an ELISA can be performed 
to detect the fixed cells using anti-NP antibodies [222]. (D) Focus 
reduction neutralization test (FRNT). Reference sera are diluted by 
twofold and added to MDCK or MDCK-SIAT cell pre-seeded plates, 
and viruses caused 20–85% infected cell population (ICP) are then 
added. After 3 h incubation at 37°C (influenza A virus) or 34°C 
(influenza B virus), the inoculum is removed, and the monolayers 
are overlaid with the culture medium containing 1.2% (w/v) Avicel 
(FMC BioPolymer) and 2 μg/mL TPCK-trypsin. After 22-h incuba-
tion at 37°C (influenza A) or 28-h incubation at 34°C (influenza B), 
an immunostaining is performed to detect the fixed cells using NP-
specific antibodies, a peroxidase-conjugated secondary antibody and 
TrueBlue substrate. The infected cell population is imaged by flatbed 
scanner. The neutralization titer is expressed as the reciprocal of the 
antiserum dilution that reduces ICP by 80% [223]

◂
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plates that are coated with fetuin as the NA substrate [254, 
255]. Heat treatment is first implemented to remove non-
specific NA inhibitors, followed by careful virus titration to 
optimize assay sensitivity [254]. ELLA reactivity is meas-
ured on the cell population level, and thus is more accurate 
when the cell population is more homogenous, but will only 
report the average surface a-D-galactopyranasyl groups in a 
heterologous cell population (Fig. 4B) [256].

Neutralization assays  Neutralization assays quantify the 
ability of a testing antibody to neutralize viral infection. 
Typically, to evaluate antigenic properties of a testing virus, 
a series of reference sera dilutant is first incubated with the 
virus for antibody-virus binding and then the mixture is 
inoculated in cells or chicken embryonated eggs. Viruses 
with similar antigenic properties are expected to have similar 
results in neutralization assays against the same set of refer-
ence sera. Classical neutralization assays utilized embry-
onated chicken eggs or primary cells to detect the reduc-
tion of virus plaque formation or virus growth inhibition 
[257]. Many efforts have been made to further increase the 
throughput and optimize neutralization assays.

To increase the throughput and shorten the detection 
time, Okuno et al. [223] developed a focus reduction neu-
tralization test (FRNT) based on micro-titration plates. In 
this assay, residual virus infectivity was obtained by count-
ing foci stained by specific antibodies. Micro-neutralization 
(MN) assays increase the throughput in quantifying neu-
tralizing antibodies. Multiple methods have been used in 
determining terminal titers, such as cytopathic effect (CPE) 
formation in cell culture, colorimetric assays to detect the 
cell viability or cytotoxicity, hemagglutination assays for 
detection of released virus, or usage of the enzyme-linked 
immunosorbent assay (ELISA) to identify infected cells 
[257, 258]. Lin et al. [259] established an optimized FRNT 
to mimic the plaque reduction of neutralization assays based 
on the infected cell population (ICP) in a 96-well-plate for-
mat by using an imaging method for more efficient quantifi-
cation. Fig. 4C shows the ELISA-based MN assay described 
by the WHO manual for laboratory diagnosis and virological 
surveillance of influenza viruses [222], and Fig. 4D shows 
the optimized FRNT which has been used by WHOCCs in 
characterizing the antigenicity of seasonal H3N2 viruses to 
date. Based on FRNT, Baalen et al. [260] and Jorquera et al. 
[78] further improved the method parameters and developed 
the ViroSpot MN assay and high content imaging-based 
neutralization test (HINT), respectively. The HINT was per-
formed at a single infection cycle by using a low multiplicity 
of infection (MOI) in order to reduce antigenic mischarac-
terization due to viral host-cell adaptation. To further mini-
mize the impact of host-cell adaptation, the reference ferret 
antisera were generated directly against viruses in the human 
respiratory specimens instead of the propagated viruses. The 

cell immunostaining images are analyzed by a high-content 
imaging micro-plate reader to determine the HINT titer by 
calculating a 50% ICP.

Different from HI assays, neutralization assays deter-
mine neutralization ability by measuring the effects of virus 
propagation ability and can reflect antigenic properties of 
not only the global head subdomain of HA but also the stalk 
subdomain of HA and NA. Neutralization assays can over-
come the challenges of HI assays, such as receptor-bind-
ing avidity variants [261]. However, neutralization assays 
require the virus to propagate efficiently in cells or chicken 
embryonated eggs. The poor growth ability of recent H3N2 
viruses has generated challenges not only in viral isolation 
but also the implementation of MN assays (see the section 
of Challenges in conventional serological assays). Although 
MN assays generally showed a strong correlation with HI 
assays [262], there are often exceptions which result in dif-
ficulty integrating HI and MN data [247]. Additionally, these 
assays are lower-throughput and more much elaborate and 
time-consuming than HI assays [261].

ELISA  Indirect ELISA was routinely used in antigenic 
characterization. This assay typically requires virus or a 
recombinant protein (e.g., HA or NA) to be adsorbed to a 
micro-titer plate followed by the addition of sera samples, 
an enzyme-conjugated secondary antibody HA, and lastly 
the substrate, which is used for colorimetric quantification 
[257]. The binding strengths of antibodies can be quanti-
fied and compared across antigens and sera. For example, Li 
et al. [263] coated 15 HA units of purified viruses to micro-
titer plates and characterized the antigenicity of the mutant 
viruses with an amino acid substitution N145K. Chambers 
were coated with virus-like particles expressing HA proteins 
in the micro-titer plates, suggesting that antigenic change 
was caused by the F159S substitution [79]. In both of these 
studies, monoclonal antibodies recognizing the conserved 
epitopes of HA proteins were used to calibrate the viruses 
before running the assays so that equal amounts of viruses 
are used across samples in the assays. One major limitation 
for ELISA is that this assay could suffer from high back-
ground due to substrate contamination, poor washing steps, 
or cross reactivity thus can lead to false positive or false 
negative results. Nevertheless, ELISA can measure differ-
ent isotypes and subclasses of immunoglobulins (Ig), such 
as IgM, IgA, and IgG [257], which are valuable for dissect-
ing humoral immune responses. However, it has not been 
reported that the antigenicity of influenza viruses is associ-
ated with the Igs other than IgG.

Mass spectrometry immunoassays  To overcome the short-
comings of not providing viral molecular detail in HI assays, 
a mass spectrometry (MS) immunoassay was developed 
to evaluate the antigenicity of influenza viruses utilizing 
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monoclonal antibodies [264]. This assay is based on a 
comparison of matrix-assisted laser desorption ionization 
(MALDI) mass spectra obtained from proteolytic diges-
tion of the whole virus [264] or an separated antigen [265, 
266] either with or without antibody treatment. The mass 
maps provided not only the antigenicity characterization of 
a specific epitope but also the primary structure of the viral 
antigen. The basis of MS makes it possible to not immobi-
lize either the antigen or antibody and avoid the antigenic 
alteration during immobilization. The antigenic characteri-
zation of this assay showed high consistency with that of HI 
assays for A(H1N1)season77 viruses [267]. The challenge 
of this assay is that the antigenicity can be only analyzed on 
the epitopes targeted by the given monoclonal antibodies.

Selection of reference sera in serological analyses

The selection of reference sera is one of the keys to unbi-
ased serological analyses. Ideally, homologous antibodies 
are included in antigenic analyses for all testing strains. 
However, this is not possible during seasonal influenza sur-
veillance because it is not practical to generate reference 
sera against all testing viruses as hundreds to thousands of 
viruses are assessed each year. It is critical to include homol-
ogous sera for those with potential antigenic variants, espe-
cially those with amino acid substitutions at known ABSs. 
Thus, serological analyses in influenza surveillance involve 
a dynamic update of the reference sera panel.

Due to their sensitivities to both seasonal influenza A and 
B viruses, influenza seronegative ferrets are widely used to 
generate the ferret sera used in seasonal influenza vaccine 
strain selection [41, 268–273]. One of the key criteria for 
WHO to make vaccine strain update is that variant viruses 
are identified to have ≥8-fold reduction of cross-reactivity 
to the ferret sera as compared to that of the homologous 
vaccine virus [274]. Vaccines have also been evaluated with 
human post-vaccination sera for cross-reactivity with circu-
lating variants; a reduction of ≥50% in geometric mean titers 
significantly indicates low vaccine efficiency [261].

However, antigenic properties derived from ferret sero-
logical data may not reflect those in the human population, 
which contain varying degrees and compositions of pre-
existing immunity. There are dramatic differences in speci-
ficity between human and ferret antibodies, and these dif-
ferences are due in part to pre-exposure history [269]. This 
process, termed “original antigenic sin,” or immune imprint-
ing, was observed in humans infected with the A(H1N1)
pdm09 during the 2013–2014 season [275]. The human 
immune system has a preference for generating antibodies 
with cross-reactivities of previously exposed strains at the 
apparent expense of generating new antibodies that specifi-
cally recognize newer strains [276]. Although the circulat-
ing A(H1N1)pdm09 viruses showed antigenically neutral 

amino acid substitutions when evaluated using ferret sera, 
they acquired a genuine antigenic substitution located on HA 
that escaped antibody recognition and elicited infections in 
a large number of middle-aged humans [275]. Using repre-
sentative A(H3N2) strains circulating during 2007–2014, we 
conducted head-to-head comparisons of the antigenic maps 
derived from human and ferret serologic data and illustrated 
their differences in antigenic characterizations [274, 277]. 
In general, data from ferret sera are more comparable with 
post-vaccination sera from children but not with those of 
adults with pre-existing immunity [277].

Antigenic cartography

Antigenic cartography, a computational approach to visual-
izing antigenic diversity, is often used in conjunction with 
serological assays. Antigenic cartography was initially pro-
posed by Smith et al. [76] as a method for visualizing the 
antigenic diversity of IAVs based on antigenic distances. 
Antigenic distances in antigenic cartography are calculated 
using local pairwise distances between viruses that are in 
close temporal proximity; typically, each horizontal or ver-
tical gridline on the map represents one antigenic unit dis-
tance corresponding to a 2-fold difference in serologic (e.g., 
HI) titers, and either the horizontal or the vertical axis can 
be used for this calculation.

Because challenges arise due to low reactors and poten-
tial biases from missing data, we developed AntigenMap, a 
publicly available, novel, low-rank matrix completion-based 
method (http://​sysbio.​misso​uri.​edu/​Antig​enMap) [278, 279]. 
AntigenMap functions by first reconstructing serologic data 
(e.g., HI matrices with viruses and antibodies) by using 
low-rank matrix completion to account for missing data 
and, then, using multidimensional scaling, generates a 2- or 
3-dimensional antigenic cartography [278, 279]. Antigenic 
cartography provides an intuitive visualization and inter-
pretation of serological data and has been used routinely 
in antigenic analyses and vaccine strain selection for sea-
sonal influenza viruses, pandemic preparedness, and basic 
research. Two-dimensional antigenic cartography may gen-
erate biases in antigenic distance during multidimensional 
scaling, especially in high dimensional serological data. 
However, such biases can be mitigated by using a three-
dimensional antigenic map [278–280].

Three methods have been proposed for calculating anti-
genic distances for influenza vaccine selection, which were 
evaluated by Cai et al. [280]. These methods include aver-
age antigenic distance (A-distance), which measures the 
average difference between antigen and antisera interaction 
effects of two antigens, mutual antigenic distance (M-dis-
tance), which measures the distance between two clusters of 
antisera, and largest antigenic distance (L-distance), which 
uses the maximum difference between antigen and antisera 
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interaction effects between antigens. These measurements 
were combined with a metric multidimensional scaling 
(MDS) method, which indirectly calculates antigenic dis-
tance as a Euclidean distance to minimize error and projects 
the antigens onto a graph. Cai et al. [280] determined that 
the most robust method for measuring antigenic distances 
for influenza strain selection is the M-distance.

Because it is derived from serological data, antigenic 
cartography is dependent on the input data. Thus, selection 
of the reference sera is extremely important. Biases in the 
reference sera can skew coordinates of antigens in the map 
and lead to misinterpretations of the antigenic relationships 
among the testing antigens. In addition, as mentioned above, 
potential biases in antigenic cartography may arise when 
used with high dimensional serological data. Thus, although 
antigenic cartography is a very useful and convenient tool, 
cautious interpretation on antigenic cartography should be 
used, often with an examination of the original serological 
data.

Challenges in conventional serological assays

Overall, these conventional serological assays described 
above have multiple barriers that include limited facility 
resources, culture-adapted mutations, and poor virus via-
bility, leading to the inability to timely detect amino acid 
substitutions associated with antigenic drift [269]. As men-
tioned earlier, these assays require virus isolates from clinic 
samples. Compared to the seasonal surveillance of influenza 
viruses, antigenic characterization for pandemic prepared-
ness of emerging pathogens presents even more challenges. 
Propagation of these viruses often requires facilities with 
biosafety level (BSL)-3 or BSL-4, which are difficult to 
obtain. Thus, most specimens must be shipped to laborato-
ries with appropriate biosafety containment resources, which 
are often accompanied by administrative barriers, especially 
when shipping between countries.

Once the samples have reached an adequately equipped 
facility, the virus isolation process is not only time-consum-
ing, but also vulnerable to emerging culture-adaptive muta-
tions during viral propagation in either cells or embryonated 
eggs [281–285]. Since 1993, antigenic and biochemical dif-
ferences in the HA proteins of influenza viruses have been 
noted after passage in both MDCK and eggs [232]. Growth 
in cell culture spiked with non-immune horse serum has pro-
duced altered patterns of agglutination for influenza viruses 
that are propagated in comparison to the original isolate 
[232, 286–294]. Additionally, sequence analyses have shown 
that changes in the H3 HA residues occur in the antigenic 
sites: residue 137 (antigenic site A), 156 (B), 186 (B), 248 
(D), 276 (C) [287]. Both monoclonal and polyclonal antisera 
can detect a difference in antigenicity between HAs before 
and after passage in eggs [232]. The altered viruses negate 

the goal of choosing vaccine viruses which are likely to be 
circulating during the impending influenza seasons. For 
example, vaccine effectiveness in the 2012–2013 influenza 
season was only 49% in part due to egg adaptations in the 
A/Victoria/361/2011 vaccine strain (IVR-165) [174, 270].

Recently, viruses have also evolved to alter its receptor 
binding properties towards the various sialic acid receptor 
types of erythrocytes [239, 295–297], which includes los-
ing the binding ability of human viruses to chicken erythro-
cytes [234, 236]. This has resulted in diminished effects of 
NA enzymatic activities in virus HI [235, 298, 299], further 
making HI assays not ideal for antigenic analyses. The lim-
ited growth ability of the influenza viruses in MDCKs [300] 
and/or embryonated chicken eggs without culture-adaptions 
[301], particularly the H3N2 and H1N1 human seasonal 
IAVs, two cells conventionally used in virus isolation, fur-
ther challenges the usefulness of conventional serological 
assays. Thus, a clinical sample-based assay is needed. These 
barriers of high resource requirements, culture-adaptations, 
and poor virus growth often prevent timely and accurate 
surveillance and response to influenza outbreaks [302].

Antigenic characterization using clinical samples

A typical human patient with an acute seasonal IAV infec-
tion will have a detectable viral load of ~106 TCID50/mL 
in their nasopharyngeal swab samples [303], while viral 
loads in the swabs from those with asymptomatic infec-
tions can be much less [304]. Two potential approaches can 
be used to determine influenza antigenicity using clinical 
samples: (1) antibody-based assays, which are sensitive and 
require a low amount of influenza viruses equal to or less 
than the amount collected in the clinical specimen; and (2) 
sequence-based assays. Since the 1990s, sequencing of influ-
enza virus genes, particularly HA, NA, and MP, has been 
routinely used in influenza surveillance. Recent advances 
in sequencing technology allow us to rapidly capture the 
genetic changes in influenza genomes [207, 268]. Genomic 
sequencing of influenza viruses requires as little as 49,350 
copies of viruses in the sample (with a 95% probability of 
whole-genome recovery) [305] and are well documented to 
succeed for clinical specimens from both acute and asymp-
tomatic infections [306].

Polyclonal serum–based proximity ligation assay (poly-
PLA)  We recently developed a novel quantitative PCR 
(qPCR)–based antigenic characterization method using a 
polyclonal antibody-based proximity ligation assay (poly-
PLA) [302, 307]. PolyPLA was developed based on a prox-
imity ligation assay (PLA), which detects antigen–antibody 
interactions using monoclonal antibodies [308]. Specifi-
cally, the PLA incubates oligonucleotide-linked mono-
clonal antibodies with the analyte in question, and if the 
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oligonucleotides are in close proximity, they can be ligated; 
the presence of analyte is then shown by the amplification 
of ligated products with qRT-PCR. The assay reporter signal 
depends on the proximity and dual recognition of each target 
analyte, which allows for high specificity [309].

Building on the PLA, PolyPLA is developed to quantify 
the antibody-antigen binding avidity by using the amplifica-
tion signals in qPCR from the pairs of primers attached to a 
reference polyclonal antiserum (Fig. 5). Since the NP pro-
tein is antigenically conserved among influenza viruses, the 
ΔCt value based on the anti-NP monoclonal antibody was 
used to normalize the amount of intra-type viruses across 
the testing samples as well as those reference viruses used 
in the analyses. Therefore, the polyPLA units derived from 
polyclonal serum after normalization (i.e., NP monoclonal-
based ΔCt value) are determined as the antigenic properties 
for the equal amounts of viruses and thus are comparable 
across the testing samples.

PolyPLA can detect a low virus titer of <1000 median 
tissue culture infectious dose (TCID50)/mL, distinguish 
between different IAV HA subtypes, and effectively iden-
tify antigenic variations within the same IAV HA subtype 
[302, 307]. Antigenic profiles determined by polyPLA have 

been validated to be consistent with those from HI and neu-
tralization assays [302, 307]. In addition, antigenic maps 
derived from HI assays and polyPLA using the same set of 
viruses and sera were concordant [307]. Fig. 6 shows the 
correlation between the polyPLA and HI data obtained for 
19 A(H3N2) clinical samples and 3 reference viruses by 
using 3 ferret reference sera. Correlation coefficients deter-
mined by linear regression showed that the titers between 
polyPLA units and log2(HI) had a coefficient of R = 0.8196 
(p<0.0001). None of the 5 testing sera reacted with A/
California/04/2009(H1N1) in a HI assay or a polyPLA. An 
eightfold increment in HI titer is correlated with a 3.26-fold 
increment in polyPLA units [307].

The polyPLA can address those aforementioned chal-
lenges in HI assays (dependence on types of erythrocytes 
and high noise) and in neutralization assays (labor intensive-
ness). Different from HI assays, the polyPLA detects anti-
genic variations in both HA and NA proteins. The polyPLA 
only requires a small volume of clinical samples (e.g., 2 
uL), and this enables the feasibility to include replicates and 
test multiple reference sera for the same clinical samples. 
Because it is based on a common qRCR platform, polyPLA 
can be implemented in large-scale analyses with the same 

Fig. 5   A diagram illustrates 
polyPLA. PolyPLA quantifies 
antibody-antigen binding avid-
ity. Reference polyclonal antise-
rum (for antigenic analyses) or 
anti-NP monoclonal antibody 
(mAb) (for normalization) is 
biotinylated and then labeled 
using sodium azide-linked 
oligonucleotide probes. The 
labeled polyclonal antiserum or 
monoclonal antibody is incu-
bated using a reference (virus) 
or testing antigen and ligated 
with the two oligonucleotides 
linked to the antibodies are 
ligated followed by qPCR, 
which is used to determine 
the amplification signals and 
quantify antibody-antigen bind-
ing avidity. The resulting cycle 
threshold (Ct) values of the 
polyclonal antisera and antigens 
are normalized by those by 
anti-NP monoclonal antibody 
and antigens and then analyzed 
for antigenic differences, and 
the normalization will ensure 
the equal amount of antigens in 
antigenic analyses. This figure 
was adapted from Martin et al. 
[302]
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biosafety requirement as those typically used in diagnosis, 
e.g., BSL-2. Similar to most of those conventional serologi-
cal assays, the polyPLA will work the best after narrowing 
down the virus subtype for the analyses, and such a chal-
lenge can be overcome by combining the analyses of the 
virus subtype(s) in the clinical samples through genomic 
sequences.

Sequence‑based antigenic analyses  In the past three dec-
ades, sequence-based analyses, particularly those on the HA, 
NA, and MP genes, have been used routinely as an important 
component of influenza vaccine strain selection (Fig. 3). The 
sites affecting influenza antigenicity are primarily located in 
the head structures of the HA protein (Fig. 1) [45, 310, 311], 
and one or several of these antigenicity-associated sites fre-
quently change during antigenic drift events [76, 271, 312–
314]. Thus, these analyses have primarily focused on amino 
acid substitutions at the reported epitopes in the HA protein 
and drug resistance markers in these three proteins. These 
substitutions are typically mapped into phylogenetic trees to 
understand their evolutionary relationships and prevalence 
trends in the viral population. However, a comparison of 
antigenic and genetic maps showed that the antigenic impact 
of genetic changes varies. Thus, not all amino acid substitu-
tions in HA sequences, including those at ABSs, equally 
affect antigenic properties [315, 316]. An ideal sequence-
based strategy for vaccine strain selection is to quantify 
antigenic distances directly using protein sequences (Fig. 7).

A few attempts at simple machine learning methods have 
been implemented to identify influenza antigenicity–associ-
ated sites using a small set of serological data. For instance, 
Lee and Chen [317] developed a simple correlation method 
between HI titers and the number of amino acid changes 

between test viral HA and reference viral HA. Liao et al. 
[318] applied multiple logistic regressions between amino 
acid substitutions and HI values. Most recently, Huang et al. 
[319] developed a decision tree algorithm to predict variant 
drift by deriving association rules from HI data based on 
information theory. However, these earlier attempts did not 
consider the challenges of missing values and low reactors, 
which are commonly seen in serological data [278].

To overcome these challenges, we developed a set of 
sparse learning methods to identify antigenicity-associated 
residues by using serologic data and a quantitative function 
to identify antigenic distances using HA and NA proteins. 
Sparse learning methods have the advantages of efficiency 
and generalizability when using a small number of non-zero 
elements [320]. When data is limited, promoting sparsity has 
been shown to produce robust models that generalize well to 
extrapolated data [321]. Thus, sparse learning is suitable for 
this problem, which suffers from a relatively small data size 
and high noise levels. We formulated this as an optimization 
problem that measures the correlation between the antigenic 
distance changes in HI and NI data and the antigenic profil-
ing by using a scoring function to characterize the number of 
amino acid substitutions in protein sequences. Structural and 
physiochemical features were also integrated into the scoring 
systems. This sparse learning algorithm effectively identifies 
antigenicity-associated residues in H5N1 [322] and H3N2 
[323, 324] viruses. We then integrated antigenic mapping 
and machine learning via bootstrapped ridge selection using 
Antigen-Bridges [80]. This model identified 39 antigenicity-
associated amino acid positions and, as a first, quantified 
antigenic distances on the basis of genetic distance of influ-
enza A(H3N2) HA1 sequences from 1968 to 2009 [80].

After noticing the contribution of co-evolution in anti-
genic drift, we further developed AntigenCo to identify and 
quantify both single and co-evolutionary amino acid substi-
tutions driving antigenic drift with higher accuracy [324]. To 
further identify the synergistic effects of multiple amino acid 
substitutions on antigenic changes, we further developed 
a generalized hierarchical square model (GHSM) [325]. 
GHSM enforces sparsity under hereditary structures in the 
interactions among the covariates and effectively incorpo-
rates the feature space up to the 5th-order interactions. We 
also developed a multi-task sparse learning algorithm and 
showed that a multi-task formulation can help solve chal-
lenges in integrating data from different platforms [71]. 
Based on this multi-task platform, we developed another 
algorithm, MTL-SGL [72], which can integrate different 
groups of features (e.g., amino acids and N-glycosylation). 
MTL-SGL enables us to identify key intra- and intergroup 
features by utilizing the l1 regularization term on the feature 
weights to force sparsity regularization on intragroup fea-
tures and by utilizing the group structured l2 regularization 
to force sparsity regularization on the group of the feature 

Fig. 6   Correlation between polyPLA and HI titers. The Pearson cor-
relation coefficient analysis was performed on paired polyPLA and HI 
titers for 19 H3N2 viruses against three reference sera, which were 
adapted from Martin et al. [302]
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weights. Antigenic maps for seasonal H1 and H3 viruses are 
developed for these viruses (Fig. 2B and C). Using sequence 
and N-glycosylation feature types, genetic determinants that 
affect influenza antigenicity were identified based on the 
weights of each feature. Compared with two other conven-
tional single-task (LASSO and SGL) and multi-task models 
(ℓ1, 2 MTL and ℓ1,∞ MTL), MTL-SGL achieved the best 
performance with the lowest root mean squared error, high-
est accuracy, and highest sensitivity.

A few other attempts have been made to integrate anti-
genic analyses with phylogenetic analyses. Neher et al. [326] 
described sparse learning models based on the phylogenetic 
tree structure or amino acid substitutions to infer their anti-
genic properties, which also considers changes in avidity 
and serum potency, and demonstrated that the two models 
showed similar prediction accuracy and could be applied 
to all circulating subtypes. In addition to sparse learning 
algorithms, regression and Bayesian models have been 
introduced by treating the amino acid substitutions as fea-
tures and the serological data or antigenic distances between 
sequences as responses [86, 316, 318, 327–332]. Steinbruck 

and McHardy [316] described a computational “antigenic 
tree” method by using nonnegative least-squares optimiza-
tion to map pairwise antigenic distances onto the branches 
of a phylogenetic tree. Bedford et al. [332] implemented 
a Bayesian approach to combine antigenic cartography 
and phylogenetic information about the seasonal influenza 
viruses.

Harvey et al. [86] integrated sequences on the non-con-
served and exposed HA surface and corresponding HI data 
for seasonal A(H1N1) viruses before 2009 using regression 
models. These models identified and quantified the impact of 
18 determining substitutions and allowed for the prediction 
of antigenicity by HA sequence data with improved accuracy 
[86]. Cui et al. [328] combined multiple linear regression 
and physicochemical changes of 18 key amino acid posi-
tions to infer antigenic variants of A(H3N2) viruses with a 
low false-positive rate. By comparison, Rahman et al. [329] 
showed that combining a non-linear regression model with 
a scoring method based on the biochemical properties of 
amino acids for the specific antigenic areas on HA resulted 
in the best prediction.
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Fig. 7   Evolving analytic platform for vaccine strain selection and 
vaccine development. The conventional platform involves isolating 
viruses from clinical samples, and the viruses are used in antigenic 
analyses. Due to the labor intensiveness in laboratory efforts, typi-
cally only a small set of samples can be analyzed. In the past dec-
ade, the advances in genomic sequencing can allow us to quickly 
sequence viruses using clinical samples. To determine viral anti-
genicity, virus isolates are still needed. These sequences can be used 
to guide selection of samples in virus isolation and virological analy-

ses. As a next-generation platform, we would sequence protein and 
glycans from clinical samples, and antigenicity would be determined 
by these sequences. The next-generation platform is expected to be 
higher throughput and can minimize sampling biases. The computa-
tional tools correlating antigenicity (and other vaccine strain required 
phenotypes) and these sequences would be available. Ideally, in this 
platform, the big data and artificial intelligence-based tool would be 
able to forecast antigenic evolution

2861



Wang Y. et al.

1 3

To extend the multiple subtype prediction, Zhou et al. 
[333] proposed a Context-Free Encoding Scheme method 
to predict cross-subtype antigenic patterns by integrating 
them with a random forest classifier and to predict the anti-
genicity of different subtypes by using transfer learning. Yao 
et al. [334] emphasized that substitution metrics reflecting 
variant properties of amino acids are critical for improv-
ing the prediction performance of models and combined 
top substitution metrics into the random forest algorithm, 
which they named Joint Random Forest Regression (JRFR), 
and this method showed an improved prediction of antigenic 
variants of A(H3N2) HA1. Yin et al. [335] constructed a 
stacking model combined with residue-based, regional band-
based, and epitope region–based feature extraction methods 
to predict the antigenic variants of both pandemic and epi-
demic A(H1N1) viruses. This model showed the capability 
of determining antigenic variants with an accuracy of 0.908 
[335].

To improve predictions of H3N2 antigenic evolution, 
Suzuki et al. [327] evaluated de novo mutations by inte-
grating HI titers with volume, isoelectric point, solvent 
accessibility, and distances from the RBS and N-linked gly-
cosylation sites to quantify antigenic distances and while 
improved, prediction accuracy was still low. Du et al. [336] 
built the PREDict Antigenic Cluster (PREDAC) machine 
learning model integrated with network clustering to infer 
antigenic clusters of strains from HA sequences at the popu-
lation level with an accuracy of 89.24–89.70%. HA antigenic 
similarity was predicted with a naïve Bayes classifier from 
12 structural and physicochemical features of HA sequences, 
and 17 dominant A(H3N2) antigenic clusters were identi-
fied in mainland China between 1968 and 2010 [336]. This 
method was subsequently expanded to A(H1N1), A(H5N1), 
and all influenza subtype viruses [337–339]. Qiu et al. [340] 
designed a structure-based antigenicity scoring model by 
integrating a position-specific scoring matrix (PSSM) profile 
with local environmental change which fully incorporated 
the structural context of HA proteins to calculate the anti-
genicity. This model showed an accuracy of 0.875 for the 
antigenic inference of A(H3N2) [340]. To further predict the 
antigenicity of different pathogens, they established a new 
model, Conformational Epitope (CE)-BLAST, by comparing 
the conformational epitopes directly to suggest the relative 
antigenic distance between antigens. This model was vali-
dated using influenza and dengue experimental data [341].

In summary, antigenic characterization with direct utiliza-
tion of clinical samples can overcome the challenges of cul-
ture adaptations during virus isolation and propagation. Both 
polyPLA and sequence-based analyses are high throughput 
but complementary. Genomic sequences can at least provide 
initial subtypes of viruses in the samples and help narrow 
down the targets for the polyPLA assays, and the polyPLA 

assays can help develop and refine those sequence-based 
computational models.

Predicting antigenic evolution of influenza viruses

Predicting antigenic evolution of influenza viruses using 
neuralization assays

The quasi-species nature of influenza viruses can lead to 
mutants that have escaped immune pressure to become pre-
dominant in the population after passages of viruses have 
been incubated with immune or convalescent sera in vitro or 
in previously immunized animals in vivo. A body of research 
utilized this classical approach to select virus escape variants 
and to aid the prediction of virus evolution [297, 342–345]. 
The classical approach is low throughput and constricted to 
individual mutants, and thus new high-throughput methods 
have been applied to this field.

Pioneering work done by Li et al. [346] involved the 
selection of antigenic variants from HA globular head 
random mutation libraries of A(H1N1)pdm and A(H3N2) 
viruses either in vitro under the pressure of human or fer-
ret convalescent sera or in previously immunized mice. 
This proof-of-concept study identified the antigenic escape 
variants that showed similar antigenicity with variants that 
were observed in nature for A(H1N1)pdm and past A(H3N2) 
viruses. Furthermore, this study identified escape variants 
before they caused the epidemic in 2014-2015 [346]. On the 
other hand, the non-antigenic effects of amino acid substitu-
tions, such as viral growth, also play a critical role in virus 
evolution.

Hence, Lee and colleagues [347] quantitatively character-
ized the effects on viral growth of all single amino acid sub-
stitutions to the HA of A(H3N2) by using deep mutational 
scanning. After deep sequencing, the amino acid preferences 
at each site were revealed and the results showed that ben-
eficial amino acid substitutions generally tended to occur at 
higher frequencies in nature [347].

Predicting antigenic evolution in silico

Not all antigenic variants can succeed in fixing and spread-
ing throughout a population (e.g., K158R) [348]. In many 
years, clades that are antigenically more distant from pre-
viously circulating viruses have died out [326]. Therefore, 
besides antigenicity, it is critical to include virus variants in 
vaccine strain selection that are predicted to become pre-
dominate in future influenza seasons using the surveillance 
and genetic data of the current season [349]. In other words, 
accurate forecasting would aid vaccine strain recommenda-
tions that must be determined one season in advance.
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Prediction of influenza evolution requires the identifica-
tion of viral clades/lineages coexisting in influenza popula-
tion genetics and derivation of phylogenies from sequence 
data [208]. Then, the destiny of each clade can be predicted 
by estimating its fitness. In an earlier study, 18 HA1 codons 
under positive selection were identified based on the ratio 
of non-synonymous-to-synonymous mutations (dN/dS) on 
the trunk of a phylogenetic tree. The strain with the great-
est number of substitutions in the positive selection sites 
determined the future dominant lineages of A(H3N2) [350]. 
However, the dN/dS ratio lacked sensitivity and was unin-
formative when applied to individual sites and for detecting 
selection pressures within a population [351].

Rather than using the dN/dS ratio, Steinbrück and 
McHardy described allele dynamics plots (AD plots) for 
visualizing the evolutionary dynamics of the different alleles 
of a gene within the population over time and identifying the 
alleles that might be associated with a selective advantage. 
With the application of this model in the HA of A(H3N2) 
isolates between 1998 and 2008, AD plots allowed for the 
correct identification of the alleles and their associated viral 
strains that subsequently became predominant in the viral 
population in four out of five test seasons [351]. To take the 
antigenic impact of the selected allele into account, they 
further combined AD plots with an antigenic tree [316] to 
estimate whether antigenically distinct HA alleles and the 
associated viral strains would become predominant within 
one season. This method predicted the predominant HA 
allele over nine influenza seasons with 78% accuracy and is 
currently used for recommending candidate vaccine viruses 
[352]. Klingen et al. [353] described Sweep Dynamics (SD) 
plots, an extension of AD plots, which combines phyloge-
netic algorithms with statistical techniques to detect the sta-
tistical significance of allele dynamics and can better dissect 
the influence of individual changes. The SD plots identified 
sweep-related changes in antigenic sites of A(H3N2) HAs 
that allowed for the timely prediction of antigenic variants 
[353].

Luksza and Lassig [349] described a fitness method by 
combining a susceptible-infectious-recovered (SIR) model 
with a mutational load model based on epidemiological data 
and HA sequences, respectively. Strain fitness is determined 
by similarity to past and presently circulating strains in 
epitope and non-epitope sites. This method can successfully 
anticipate the frequency of existing clades of A(H3N2) and 
other subtype viruses in the next year and can estimate how 
vaccination affects the course of influenza evolution [349]. 
In contrast, Neher et al. [354] developed a lineage fitness 
model based on local tree shape without using molecular 
data. This model used the simple assumption that an internal 
node with high fitness will be the root of a descendent line-
age with high fitness in the genealogical tree. The fitness of 
different lineages was estimated with a growth rate measure 

derived from the branching patterns of the HA genealogy. 
This model was validated to predict the progenitor lineage of 
subsequent seasons using simulated and historical A(H3N2) 
data [354].

Castro et al. [355] identified early indicators of predict-
ing cluster evolution and quantified fundamental trade-offs 
in prediction ability by using a phylodynamic model of 
influenza transmission. Their statistical logistic regression 
models can predict whether the emerging cluster at low fre-
quencies will eventually rise to dominance using simulated 
data. However, the method achieved only 56% sensitivity 
when applied to 12 years of empirical influenza surveillance 
data [355].

In summary, both the experimental and computational 
prediction approaches shed insights into the understanding 
of the evolution patterns of influenza viruses. However, these 
approaches are challenged by our incomplete understanding 
of the complexity in influenza virus-host interactions at the 
individual, community, and population levels, particularly 
with the diversity and complexity of human immune histo-
ries and immune responses. Nevertheless, these prediction 
models have the potential to inform or improve the vaccine 
strain selection, and the accuracy and prediction range of 
these models to improve the predictability of influenza evo-
lution remain to be improved.

Continued challenges in influenza antigenic variant 
analyses and vaccine strain selection

Worldwide epidemiological surveillance is necessary to 
monitor the continuing evolution of influenza viruses. The 
emergence and spread of antigenic variants will impair 
influenza vaccine effectiveness. Early detection of influ-
enza antigenic variants is a key to a successful influenza 
vaccination program. Remarkable advancements have been 
made for influenza antigenic characterization techniques in 
the past decades, and these techniques were summarized in 
prior sections. However, the ongoing challenges discussed 
for influenza antigenic variant analyses and vaccine strain 
selection remain to be resolved.

These continued challenges can be summarized as the 
following: (1) The time required for the current process of 
vaccine production creates a window of opportunity for new 
virus variants to emerge and occasionally cause decreased 
vaccine effectiveness. The use of computationally predic-
tive models, genomic and proteomic sequencing, and new 
vaccine platforms such as the mRNA vaccine (see later 
section) may help decrease the time from strain selection 
to vaccine production. (2) Culture-adapted mutations dur-
ing virus isolation and propagation continue to present a 
challenge in antigenic characterization, seed preparation, 
and manufacturing. Methods that directly use clinical sam-
ples, including both assay- and sequence-based methods, 
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are expected to play more important roles. (3) Selection of 
reference sera in antigenic characterization continues to be 
a challenge to reflect the heterologous and dynamic pre-
existing immunity in the human population. (4) The majority 
of methods for antigenic characterization have been lim-
ited to protein sequences but not glycan sequences, and the 
conventional vaccine design does not consider site-specific 
glycosylation occupancy and glycan heterogeneity [356], 
which can affect antigenic properties of influenza viruses 
[83]. Thus, to robustly analyze antigenicity, integrating 
changes in N-glycosylation sites of influenza glycoproteins 
is necessary. Recent advances in mass spectrometry tech-
nologies allow us to use glycoproteomics and bioinformatics 
approaches to determine the glycosylation profiles of HA 
proteins and include site-specific glycosylation occupancy 
and glycan heterogeneity at each site [357–363], and such 
analytic method needs to be refined to be more sensitive 
and quantitative [364]. In addition, a robust tool is needed 
to predict influenza-specific N-glycosylation sites, associ-
ated glycan heterogeneity, and their impacts on influenza 
antigenicity for vaccine strain selection and vaccine prepa-
ration. (5) We are still unable to predict antigenic evolution 
or antigenic variants ahead of influenza seasons. Robust 
computational models, such as those using Big Data, AI, and 
machine learning models, remain to be developed. An ideal 
model will be able to predict the emergence and spread of 
an antigenic variant and its potential to become an epidemic 
in human populations at least one influenza seasonal ahead.

It is important to highlight that, despite these continued 
challenges, the advancements in influenza antigenic char-
acterization techniques are effective and have proven to be 
invaluable in the rapid characterization and vaccine develop-
ment during the coronavirus disease of 2019 (COVID-19), 
which is discussed in the following section.

SARS‑CoV‑2

Introduction to coronaviruses and SARS‑CoV‑2

In contrast to influenza viruses, coronaviruses belong to 
order Nidovirales, family Coronaviridae, and subfamily 
Coronaviridae, which is further subdivided into four gen-
era: alpha, beta, gamma, and delta coronaviruses (CoVs) 
[365, 366]. Alpha and betacoronaviruses often infect 
mammalian species, while gamma and deltacoronavi-
ruses primarily infect avian species [367]. Coronaviruses 
are non-segmented, enveloped, positive-sense, and single-
stranded RNA viruses that contain the largest genomes of 
RNA viruses spanning between 28 and 32kb [365, 366]. 
The coronavirus genome is flanked by a 5’ cap and 3’ poly-
A tail and 5’ and 3’ untranslated regions (UTRs). The 5’ 
region is comprised of a 5’ replicase gene, which synthe-
sizes nonstructural proteins (NSPs) within open read frame 

(ORF)1ab [368], and the 3’ region is comprised of genes 
that encode four main structural proteins. The remainder of 
the genome is comprised of genes encoding an additional 
six accessory proteins [369]. The most abundant structural 
protein is the membrane (M) protein, which is made of three 
transmembrane domains, providing the virus its shape and 
plays a role in the assembly of viral particles [366, 370]. The 
trimeric spike (S) protein is a fusion protein that mediates 
viral attachment and fusion to the host receptor, making it 
the primary target of therapeutics and neutralizing antibod-
ies [369]. Finally, the envelope (E) protein facilitates viral 
assembly and release and is highly divergent among corona-
viruses, and the nucleocapsid (N) protein allows for binding 
of viral RNA in vitro [366]. Lineage A viruses of the beta-
coronaviruses genus also contain hemagglutinin-esterase 
(HE), a structural protein that acts as hemagglutinin, binds to 
surface glycoproteins, and may enhance S protein-mediated 
cell entry [366].

The majority of coronaviruses infect animals (i.e., live-
stock, birds, and other mammals), which become intermedi-
ate host reservoirs. Animal coronaviruses often infect live-
stock and poultry and create disruptions in both industries 
[371]. In animals, coronaviruses generally result in enteritis 
or upper respiratory disease [366]. During antigenic shift 
events, coronaviruses can gain the ability to infect humans. 
There are seven endemic human coronaviruses (HCoVs) 
that have been identified. The HCoV-NL63 and HCoV-229E 
alphacoronaviruses likely originated from bat reservoirs, 
while the HCoV-OC43 and HCoV-HKU1 betacoronavi-
ruses likely emerged from rodent-associated viruses [367]. 
Recently, HCoV-229E has been shown to be more likely 
transferred from dromedary camels rather than bats [367]. 
These four endemic coronaviruses typically cause only mild 
upper or lower respiratory or gastrointestinal symptoms and 
are responsible for the seasonal common cold [372].

In addition to the four seasonal coronaviruses, there have 
been three instances of betacoronaviruses that have caused 
severe human diseases. The first outbreak occurred during 
the 2002–2003 season in China, caused by the SARS-CoV 
(27.9kb), was called the severe acute respiratory syndrome 
(SARS) with a 9% mortality rate, particularly in the elderly, 
and was widely accepted to have emerged from bats in 
China [366, 373]. However, the SARS-CoV was primarily 
spread through direct contact with infected individuals, and, 
thus, transmission was relatively limited and could be con-
trolled by quarantining infected individuals [366]. During 
the early stages of the pandemic, the SARS-CoV genome 
had greater diversity and higher rates of nonsynonymous 
mutations than the later isolates, suggesting adaptation to the 
human host towards the beginning of the pandemic [373]. 
The functional receptor for SARS-CoV is the angiotensin 
converting enzyme 2 (ACE2) receptor, which binds to the 
S1 domain of the S protein and allows for viral replication 

2864



Antigenic characterization of influenza and SARS-CoV-2 viruses﻿	

1 3

[374]. Downregulation of ACE2 has been associated with 
acute lung injury [375, 376]. The next epidemic emerged in 
the Middle East in 2012 due to the Middle East respiratory 
syndrome-CoV (MERS-CoV, 30.1kb), and had a mortal-
ity rate of 36% [366, 377]. MERS-CoV is believed to have 
originated from dromedary camels, function through the 
dipeptidyl peptidase 4 (DPP4) receptor [366], and transmit 
through nosocomial contact, limiting its transmission poten-
tial [376]. Finally, the SARS-CoV-2 (29.9kb) [378] emerged 
in China in 2019 and caused the coronavirus-2019 disease 
(COVID-19) global pandemic and over 4.3 million deaths 
worldwide as of August 13, 2021 [379]. Similar to SARS-
CoV, SARS-CoV-2 is suspected to have originated from bats 
[380, 381] and functions through ACE2 receptors which 
allows for efficient human-to-human spread [382, 383], but 
is transmitted by respiratory secretions, contributing to its 
rapid transmission [384, 385].

SARS‑CoV‑2 and antigenic variations

Antigenic relationships and known antigenic changes 
among CoVs

The genome order for coronaviruses is commonly 5’ repli-
case, S, E, M, N, accessory genes, and 3’ polyA sequence 
[386]. While structural and nonstructural genes remain rela-
tively conserved between coronaviruses, the accessory genes 
vary [368]. Among the three pandemic HCoVs, SARS-
CoV and SARS-CoV-2 are more genetically similar than 
MERS-CoV. SARS-CoV is 29,727 nucleotides long with 
five NSPs and eight accessory proteins (ORF3a, ORF3b, 
ORF6, ORF7a, ORF7b, ORF8a, ORF8b, ORF9b), SARS-
CoV-2 contains 29,903 nucleotides and 15 NSPs with six 
accessory proteins (ORF3, ORF6, ORF7a, ORF7b, ORF8, 
and ORF9), and MERS-CoV contains 30,119 nucleotides 
and 16 NSPs with five accessory proteins (ORF3, ORF4a, 
ORF4b, ORF5, and ORF8) [368]. These variations in the 
accessory genes have been suggested to cause the differ-
ences in pathogenicity between coronaviruses. For example, 
in SARS-CoV, NSP1, papain-like protease (PLpro), NSP7, 
NSP15, ORF3b, M, ORF6, and N proteins have been shown 
to antagonize interferon (IFN) response [387].

In contrast, several proteins in SARS-CoV-2 have been 
shown to antagonize various sites in the IFN-I production 
and signaling pathways. ORF6, ORF8, and N have been 
implicated in SARS-CoV-2 to inhibit type I interferon 
(IFN-α and -β) expression, the NF-kB-responsive promo-
tor, and the activation of IFN-simulated genes [388]. NSP6 
and NSP13 delays IFN-I responses by targeting IFN regu-
latory factor 3 (IRF3) and antagonizing IFN-β production. 
They also bind TANK binding kinase 1 (TBK1) and sup-
press STAT1/STAT2 phosphorylation, leading to decreased 
IFN-stimulated gene formation. Additionally, Xia et al. 

[387] showed that NSP1 and NSP6 of SARS-CoV-2 can 
more efficiently suppress the IFN-I signaling than SARS-
CoV and MERS-CoV.

SARS-CoV-2 shares 83.9% similarity in the receptor 
binding domain (RBD) and 87.2% similarity in the spike 
glycoprotein with SARS-CoV [389]. Kumar et al. [389] also 
identified novel glycosylation sites (NGTK, NFTI, NLTT, 
NTSN) on the spike glycoprotein of SARS-CoV-2 and mul-
tiple novel cytotoxic T lymphocyte epitopes compared with 
SARS-CoV, changing its binding capacity to host recep-
tors and infectivity into the host cell. These variations may 
have led to the elevated transmission rate and severity of 
COVID-19.

Antigenic epitopes of spike

The RBD of the spike protein is of particular interest due 
to its role in mediating virus attachment to host receptors 
[368] and its role in binding with the human ACE2 recep-
tors in SARS-CoV. Attachment to host receptor allows the 
virus to fuse with the cell membrane and enter the host cell. 
Lan et al. [390] showed that the RBD in SARS-CoV-2 is 
almost identical to that of SARS-CoV but has improved 
receptor binding affinity [390]. Additionally, anti-RBD 
antibodies have been shown to be the primary neutralizing 
polyclonal antibody response [391] and compete with the 
viral RBD binding to ACE2 receptors [392]. Amino acid 
changes (i.e., substitutions, insertions, and deletions) of the 
RBD in SARS-CoV-2 can lead to immune escape. Greaney 
et al. [393] performed complete mapping of these functional 
amino acid substitutions to the RBD of SARS-CoV-2 for 
ten human monoclonal antibodies and found that of the 36 
RBD sites, 14 of those sites contained at least five mutants 
that could escape at least one of the ten tested antibodies. 
Greaney et al. [393] noted that the frequency of these sub-
stitutions was low, and the escape mutations generally had 
little impact on ACE2 binding and RBD folding. In contrast, 
Wang et al. [394] demonstrated that residue substitutions 
on the SARS-CoV-2 C-terminal domain on S1 interact with 
the human ACE2 receptor rather than the RBD, which also 
strengthens its receptor binding affinity compared to SARS-
CoV. Regardless, the substitutions causing increased binding 
affinity of SARS-CoV-2 to human ACE2 receptors have con-
tributed towards the increased pathogenesis of COVID-19.

Emerging SARS‑CoV‑2 variants

In addition to immune escape mutations, whole-genome 
sequencing (WGS) has allowed for the quick and compre-
hensive study of the rapid SARS-CoV-2 evolution and its 
genetic variants. In particular, amino acid substitutions in 
the NSP2, NSP3, and S proteins contribute towards SARS-
CoV-2 virulence and transmission [395]. As more variants 
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become predominant worldwide, there are increasing con-
cerns regarding the potential for variants to escape the effects 
of vaccinations or natural immunity, worsen pathogenesis, 
and increase transmission. Weisblum et al. [396] demon-
strated in vitro that amino acid substitutions in the RBD and 
N-terminal domain of the S protein have the potential for 
antibody evasion, although the frequency of natural occur-
rence for these substitutions was low. However, increasing 
prevalence of antibody-resistant strains may limit currently 
available antibody and convalescent plasma therapies.

SARS-CoV-2 variants have been rapidly emerging over 
the past year. By March 2020, the D614G variant, located on 
the spike protein, had already become predominant globally 
[397, 398]. D614G has been shown to be associated with 
increased viral loads [397–399] and potentially increased 
transmission [400], but no association with increased infec-
tivity [397] or worse clinical outcomes in humans [398, 
399]. Shortly after the discovery of the D614G variant, a 
new, rapidly spreading variant from the UK was identified 
as the WHO α (B.1.1.7) lineage containing the N501Y and 
69-70del in the S gene [401]. This substitution N501Y was 
estimated to have an increased infectivity of 52% [402] 
and transmission of 75% [403]. Similar to the α lineage, 
the β (B.1.351) lineage contains the N501Y in addition to 
two other substitutions at the RBD (E484K, K417N) and 
became the dominant lineage in South Africa by Novem-
ber 2020 [404]. Additionally, the frequency of the γ (P.1) 
lineage rose to predominance in Brazil between September 
2020 and February 2021 containing E484K, N501Y, and 
K417T [405]. Chen et al. [406] showed that strains contain-
ing the E484K had greatly reduced the neutralizing poten-
tial of multiple class I antibodies and even worse reduc-
tions on antibody binding when combined with the N501Y 
in vitro. The fourth and most recent variant of concern is the 
δ (B.1.617.2) lineage that has been predominant in India and 
contains G142D and E154K (N-terminal domain), L452R 
and E484Q (RBD), and P681R (furin cleavage site) [407, 
408], and its clinical impacts are still being studied. While 
not yet fully elucidated, these emerging variants also raise 
concerns for possibilities for reinfections, vaccine eva-
sion, atypical symptoms, and increased potency in younger 
adults and children. Continued meticulous surveillance of 
SARS-CoV-2 variants will be essential for containing the 
pandemic.

Antigenic characterization of SARS‑CoV‑2

The analytic methods used in antigenic characterization of 
SARS-CoV-2 are similar to those used in influenza viruses. 
The rapid mutation rate of SARS-CoV-2 requires constant 
monitoring of vaccine efficacy, changes in epitopes, and 
modifications of virus function and infectivity. Although 
genetic analyses can quickly identify the genetic variants, 

their antigenic properties must be assessed using conven-
tional laboratory assays mentioned above. As with influenza 
viruses, culture-adaptations may occur in SARS-CoV-2 
[409]. More data are needed to evaluate these culture-
adapted amino acid changes in SARS-CoV-2 and their 
impacts on antigenic analyses. Similar to that for influenza 
viruses, an ideal method will be to assess the antigenic prop-
erties of the viruses using clinical samples. These barriers 
will need to be addressed as SARS-CoV-2 research expands 
and variants continue to emerge.

Enzyme‑linked immunosorbent assay (ELISA)  ELISAs are 
used to detect IgM and IgG in COVID-19-positive individ-
uals, which allows for the determination of disease state, 
detection of antibody titers, and identification of isotype. 
Antibodies can also be tracked for seroconversion in immune 
responses to SARS-CoV-2 over time [410]. In addition to 
Igs, ELISAs can detect the presence of certain peptides and 
proteins, including the viral S protein and human ACE2 
receptor [411]. The limitations of ELISA are discussed in 
the ELISA assays section for influenza viruses.

Neutralization assays  Several types of neutralization assays 
including authentic viruses and pseudoviruses have been uti-
lized for SARS-CoV-2 [412–414]. Authentic virus-based 
plaque reduction neutralization tests (PRNTs) and micro-
neutralization (MN) assays have been well-adapted to quan-
titatively assess the extent that antibodies inhibit SARS-
CoV-2 virus entry and replication [412, 413]. The limitation 
of these methods is the requirement of BSL3 facilities and 
suitably trained staff for authentic viruses. Limitations of 
pseudoviruses are discussed separately below. Although it 
is a common assay used in many viruses, the SARS-CoV-2 
plaque formation using PRNT is time-consuming and low-
throughput due to the requirements of agarose overlay and 
24-well plates for the plaque forming stage as well as the 
process of plaque counting and data analysis [412, 413].

Micro‑neutralization assays  The micro-neutralization 
assays, considered as the gold-standard [414], offer advan-
tages over the PRNT by increasing throughput and reducing 
operation time and operator workload by the use of 96-well 
plates and the increased automation of washing, staining, 
and reading stages [412]. Manenti et al. [414] presented 
two detection methods of micro-neutralization assays that 
include the classical readout which entails measuring the 
CPE and a colorimetric readout using a spectrophotometer. 
The subjective CPE-based readout is carried out by checking 
the cell monolayers under an optical microscope, whereas 
the colorimetric readout is obtained by staining the healthy 
cells with neutral red dye followed by measuring absorb-
ance at 540 nm. The comparison between the two meth-
ods showed that a well-trained operator is able to achieve a 
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CPE-based readout in consistency with a colorimetric read-
out [414]. To avoid the subjective visual inspection of CPE, 
Amanat et al. [413] adapted the well-established ELISA-
based micro-neutralization assay for other viruses such 
as influenza viruses to SARS-CoV-2 virus. In this assay, 
infected cells are immuno-stained depending on the viral 
NP protein, and the absorbance of the colorimetric product 
obtained by the reaction between substrate and peroxidase 
is measured by an ELISA reader. Bewley and colleagues 
[412] adapted the FRNT to SARS-CoV-2 viruses, which 
is also based on the immunostaining of SARS-CoV-2-spe-
cific proteins. The FRNT uses primary antibodies targeting 
the RBD on the S protein, and its readout is the count of 
immuno-stained foci (spots) rather than absorbance as seen 
in ELISA-based micro-neutralization assays. The advantage 
of foci counting is that it is easier to catch mishandling such 
as microbial contamination or other errors causing cell mon-
olayer damage by the automatic foci counter (e.g., Immuno-
Spot analyzer). Of note, a strong correlation was observed 
between PRNT and FRNT [412].

Pseudovirus neutralization assays  Pseudovirus neutraliza-
tion assays have been developed to safely study viral entry 
inhibitors and neutralizing antibodies against SARS-CoV-2 
and virus-host interactions without risk of SARS-CoV-2 
infection. Pseudoviruses also help with accessibility for 
laboratories that do not have access to BSL-3 or BSL-4 
facilities [415]. Three packaging systems have been used as 
the backbone for SARS-CoV-2 pseudoviruses: HIV-based 
lentiviral particles, murine leukemia virus (MLV)-based 
particles [416], and vesicular stomatitis virus (VSV) [417]. 
Ou et al. [418] and Hu et al. [419] generated a luciferase 
(Luc)-expressing pseudovirus that contained the S protein 
within a HIV-1 system. They also established a pseudovirus 
inhibition assay for testing two protease inhibitors that target 
virus entry after transfection with ACE2 receptors into the 
HEK293T cell line. Similarly, Nie et al. [415] and Hoff-
mann et al. [420] developed a pseudotyped virus expressing 
the S protein on a VSV backbone to quantify SARS-CoV-2 
neutralizing antibodies. Case et al. [421] compared the neu-
tralization activity between VSV-SARS-CoV-2 (spike) and 
SARS-CoV-2 isolates grown on Vero E6 cells, and found 
a strong correlation between the two tests as well as con-
cordance between their EC50 values. Various commercial 
SARS-CoV-2 pseudoviruses are also available for purchase 
from mybiosource.com, Takara, eEnzyme, and multiple 
other companies. Limitations of this platform include the 
need to create a separate assay to test different aspects of 
virus mechanisms or other proteins and potential variabil-
ity between the protein functions of pseudotyped virus and 
wild type virus [422]. While some studies as in Case et al. 
[421] had determined strong correlations between pseudovi-
rus results and wild type, few studies using pseudoviruses 

confirm findings with wild type virus. Thus, more data need 
to evaluate how accurately pseudoviruses reflect the anti-
genic properties of wild type SARS-CoV-2 viruses.

High‑throughput neutralization assays  Several high-
throughput neutralization assays have been developed to 
meet the detection demands for the tremendous quantities 
of COVID-19 specimens. Muruato et al. [423] developed 
a fluorescent-based high-throughput neutralization assay. 
In this assay, the reporter virus was modified to introduce 
the mNeonGreen gene into the ORF7 of the SARS-CoV-2 
virus genome. After being incubated with the testing sera, 
the reporter virus is inoculated onto Vero cells and the quan-
tities of neutralizing titers are determined by the fluores-
cence signals quantified by high-content imaging. A strong 
correlation between this assay and the PRNT was observed 
(R2 of 0.85), and the reporter virus was shown to have simi-
lar replication ability with wild type virus [423]. Compared 
with other neutralization assays, this reporter virus-based 
assay can shorten the assay turnaround time by eliminat-
ing the immunostaining step and can be scalable to 384- 
or even 1536-well plates. Instead of a reporter virus, most 
other high-throughput neutralization assays use a surrogate 
virus and thus are called surrogate virus neutralization test 
(sVNT) [424–427]. Similar to conventional pseudovirus 
neutralization assays, sVNTs detect antibodies that are only 
specific to the spike protein or the RBD [428]. For example, 
the sVNT by Fenwich et al. [429] is developed based on the 
competitive inhibition of ACE2 binding to the spike protein 
trimer coupled with Luminex beads, and the quantification 
is dependent on the measurement of ACE2 recruited by the 
beads, which are fluorescently tagged in recognition of the 
ACE2-Fc fusion protein on a Bio-Plex 200 system. Com-
pared with those assays with live viruses, the pseudovirus 
neutralization assays, especially those based on fluorescent 
pseudoviruses, are highly scalable [430, 431]. Nevertheless, 
compared with the conventional VN assays, one common 
challenge for these high throughput neutralization assays is 
that both systems need to update the virus component in 
either a reporter virus or a surrogate virus to match those 
of the epidemic strains, which, as an RNA virus, evolves 
rapidly.

mRNA vaccine and antigenic characterization 
of influenza viruses and SARS‑CoV‑2

A number of challenges were described for influenza anti-
genic variant analyses and vaccine strain selection, which are 
associated with the conventional vaccine platforms involving 
virus culture. Hence, rapid and flexible virus culture-inde-
pendent vaccine production platforms, such as recombinant 
HA vaccines and nucleic acid vaccines (DNA vaccines and 
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mRNA vaccines), are important and can potentially over-
come those challenges.

Recombinant HA vaccines against seasonal influenza 
viruses (Flublock) have been licensed by the US Food 
and Drug Administration since 2013 [432]. However, they 
require threefold higher HA content than inactivated vac-
cines to provide a similar level of protection [433]. As for 
DNA vaccines, the main challenges are poor immunogenic-
ity in humans and larger animal models compared to mouse 
models [434], eliciting of unintended antibody production 
that may lead to autoimmune diseases [435, 436], low speci-
ficity for target cells, poor anti-vector immunity, concerns 
for genome integration [437], and the requirement of high 
doses and devices (e.g., electroporation, aerosol, polymer 
condensing agents) [434, 438–440].

In recent decades, mRNA vaccines have emerged as a 
new vaccine platform. This platform began with the success-
ful translation of mRNA injected into mice by Wolff et al. 
in 1990 [441], and multiple mRNA vaccine platforms have 
since been shown to elicit immunity against the influenza 
virus [442, 443], Zika virus [444, 445], rabies virus [446], 
and even some cancer types [447–449] in animal models 
[450]. Among the many advantages of current mRNA vac-
cines include its safety profile which removes the risks of 
potential infection or genome integration, efficient delivery 
to the cytoplasm rather than transfection to the nucleus as in 
DNA vaccines [451], stability and highly translatable nature 
after delivery [452], and potential for inexpensive, rapid, 
and scalable production [453]. The benefits conferred from 
mRNA vaccines (e.g., BNT162b2 [Pfizer-BioNTech] and 
mRNA-1273 [Moderna]) for human use was demonstrated 
during the COVID-19 pandemic as the fastest vaccines 
developed, with the aid of the Emergency Use Authoriza-
tion by the United States Food and Drug Administration, at 
an astonishing 95% efficacy with minimal adverse effects 
[417]. The success of these vaccines is attributed to the use 
of nucleoside-modified mRNA to enhance translation capac-
ity and reduce the innate immunity response and the unique 
use of lipid nanoparticles (LNPs) to improve mRNA stabil-
ity and cellular penetration [454, 455]. As with all vaccine 
platforms, mRNA vaccines also present challenges that will 
need to be addressed moving forward which include ther-
mal instability at elevated temperatures, allergic reactions to 
LNPs, and the unknowns of long-term properties in humans 
including the effects of repeated administration [417, 456]. 
However, the unprecedented speed and efficacy of these 
mRNA vaccines for COVID-19 opens the world of nanopar-
ticle delivery systems for other infectious diseases and may 
become a viable option for future influenza vaccinations.

The mRNA vaccine platform can help overcome chal-
lenges in vaccine seed preparation and in vaccine manu-
facturing. The remaining challenges for the mRNA vaccine 
platforms rely on vaccine strain selection and antigenic 

characterization. A rapid and robust tool for sequence-
based antigenicity analyses is urgently needed for influenza 
and SARS-CoV-2 viruses as well other potential diseases, 
and such tools will enable the assessment of virus antigenic 
properties using clinical samples directly, including swabs 
or genomic sequences as describe earlier [71, 72].

Conclusions

In summary, the importance of antigenic characterization for 
outbreak response and prevention, prediction of viral evo-
lution, and vaccine strain selection cannot be understated. 
The necessity of these continuously improving techniques 
for characterizing antigenic properties of infectious diseases 
has been prominently displayed throughout the history of 
influenza epidemic outbreaks and pandemics. These existing 
methods have been modified and have become invaluable in 
identifying the mechanisms of infection, differences in line-
ages, and the unprecedented rapidity of response against the 
deadly COVID-19 pandemic, allowing for >90% effective 
vaccines to be developed within 1 year.

Currently available analytic methods for antigenic char-
acterization include hemagglutination inhibition, neurami-
nidase inhibition, neutralization, and micro-neutralization 
assays as well as enzyme-linked lectin assays and antigenic 
cartography for influenza. Likewise, multiple existing 
methods have been modified to characterize SARS-CoV-2. 
Enzyme-linked immunosorbent assay, pseudoviruses, and 
micro-neutralization assays have been instrumental towards 
the rapid characterization of SARS-CoV-2 and the pandemic 
response. These methods are routinely used to assess the 
antigenic properties of emerging and re-emerging viruses 
and to identify antigenic variants of these viruses.

One major barrier of these current influenza characteriza-
tion methods include the need for a larger quantity of viruses 
than what is typically available from the original clinical 
samples, requiring isolation and amplification in cells or 
embryonated chicken eggs. This presents opportunities 
for culture-adapted mutations of the testing strain, which 
may generate modifications of the virus phenotype leading 
to antigenic mismatch during vaccine development. Addi-
tionally, vaccine composition must be determined almost 
6 months prior to peak seasonal influenza activity, allow-
ing time for antigenic drift to occur. This is another poten-
tial cause of vaccine mismatch with the circulating strain. 
SARS-CoV-2 characterization faces similar challenges. In 
addition to the requirement of high virus quantity and poten-
tial laboratory-acquired mutations, testing of each aspect of 
virus function requires a generation of a separate pseudovi-
rus. The high mutations rates of both influenza and SARS-
CoV-2 also present challenges for the relevancy of each test 
to the circulating strains.
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Ideally, antigenic characterization would include com-
prehensive virus surveillance and sampling, use of original 
clinical specimens rather than virus isolates, genome-based 
methods, and increased efficiency of vaccine production 
from time of strain selection. Current methods in develop-
ment to improve the techniques for antigenic characteriza-
tion include mechanical and automated hemagglutination 
inhibition assays, synthetic erythrocytes, the enzyme-linked 
lectin assay, the combination of assays with imaging to 
increase quantification efficiency and throughput, 3D antigen 
cartography techniques for visualization and for mitigating 
bias introduced during multi-dimensional scaling, the novel 
polyclonal antibody-based proximity ligation assay which 
reduces the sample volume requirement while improving 
specificity, and advanced machine learning algorithms. 
These improved methods will help optimize sensitivity, 
specificity, and assay time. While antigenic characterization 
of influenza is complex, there are continuous advancements 
and innovation in the field, which have already served to 
rapidly address the COVID-19 pandemic. These advance-
ments for both fields will continue to improve the accuracy, 
precision, and speed for characterizing and selecting vaccine 
strains in influenza and SARS-CoV-2.
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