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Abstract Porcine epidemic diarrhea (PED), caused by

porcine epidemic diarrhea virus (PEDV) infection, leads to

significant economic losses in the swine industry world-

wide. In our studies, we found that glycyrrhizin, the major

component of licorice root extracts, could moderately

inhibit PEDV infection in Vero cells, when analyzed by

western blot, qRT-PCR and a plaque formation assay. We

also revealed that glycyrrhizin inhibited the entry and

replication of PEDV. In addition, we demonstrated that

glycyrrhizin decreased the mRNA levels of proinflamma-

tory cytokines. Since glycyrrhizin is a competitive inhibitor

of high mobility group box-1 (HMGB1), we confirmed that

TLR4 and RAGE (£ associated with PEDV pathogenesis

during the infection in Vero cells. In summary, our studies

provide a molecular basis for developing novel therapeutic

methods to control PEDV infection, based on glycyrrhizin

and its derivatives.

Introduction

Porcine epidemic diarrhea virus (PEDV), an enveloped,

single-stranded and positive-sense RNA virus, is the cau-

sative agent of porcine epidemic diarrhea (PED) [1, 2].

PEDV belongs to the Alphacoronavirus genus, the family

of Coronaviridae and the subfamily of Coronavirinae [3].

PEDV encodes several structural proteins, including the

spike (S), envelope (E), membrane (M), and nucleoprotein

(N) [4–6]. PEDV infection causes 80 to 100% fatality rates

in suckling piglets [7]. It was originally reported in Bel-

gium and the United Kingdom [8]. PEDV outbreaks

emerged in the United States in 2013 [9–11]. In 2014,

PEDV swept through three farms in South-Western Ger-

many [12]. More importantly, PEDV has been proposed to

be a potential threat to other species, especially humans

[13]. Currently, no antiviral drugs are available to control

the infection of PEDV.

Glycyrrhizin (GLY) is the major component of licorice

root extracts, which is the most intensively investigated

bioactive compound in licorice root (Glycyrrhiza Radix)

[14]. GLY is a glycosylated saponin, containing one

molecule of glycyrretinic acid and two molecules of glu-

curonic acid [15, 16]. It has been used as a traditional

Chinese medicinal herb for treating hepatitis because of its

anti-inflammatory properties [17]. GLY possesses several

beneficial activities including expectorant, anti-ulcer, anti-

allergy, anti-coagulative, anti-oxidative, antiviral, anti-tu-

mor, and anti-inflammatory activities [18–21]. The mech-

anism of how GLY exerts these diverse effects remains

largely unclear.

The antiviral effect of GLY has been reported previ-

ously on various viruses, such as human cytomegalovirus

[22], influenza virus [23], severe acute respiratory syn-

drome [24], herpes simplex type 1 [25], hepatitis A [16]

and B virus [26]. However, an antiviral effect of GLY

against PEDV has not yet been reported.

GLY is a competitive inhibitor of high mobility group

box1 (HMGB1) that can inhibit the cytokine activity of

HMGB1 [27]. Extracellular HMGB1 functions as a dam-

age-associated molecular pattern (DAMP) molecule and

activates proinflammatory signaling pathways by activating

pattern recognition receptors including Toll-like receptors-
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2, -4 [28, 29] and the receptor for advanced glycation end-

products (RAGE) [30, 31]. HMGB1 is a unique mediator of

innate immune responses and inflammation-associated

events [32–35]. In addition, extracellular HMGB1 con-

tributes to the pathogenesis of various chronic inflamma-

tory and autoimmune diseases [36–40].

In our studies, we first explored the antiviral effect of

GLY against PEDV infection. Next, we revealed that GLY

inhibited entry and replication of PEDV. In addition, we

demonstrated that GLY also decreased the mRNA levels of

proinflammatory cytokines. We also confirmed that TLR4

and RAGE (receptors for HMGB1) might be associated

with PEDV infection-related pathogenesis.

Material and methods

Cell and virus

The African green monkey kidney cell line (Vero) was

cultured in high-glucose Dulbecco’s modified Eagle’s

medium (DMEM, Invitrogen) supplemented with 10%

newborn calf serum (16010-159, GiBCO). Porcine epi-

demic diarrhea virus (strain HLJBY) was propagated in

Vero cells in DMEM supplemented with 2% newborn calf

serum. PEDV HLJBY strain was isolated from the feces of

piglets suffering from severe diarrhea and was propagated

in Vero cells [41]. PEDV was adapted for eight passages in

Vero cells. PEDV was inactivated by UV light exposure

[42]. The loss of infectivity of UV-inactivated virus was

confirmed using the plaque formation assay.

Reagents and antibodies

Glycyrrhizin was purchased from Sigma. Small interfering

RNAs (siRNAs) were purchased from Biotend (China).

The sequence of the siRNA specifically targeting RAGE

was 50-GCCGGAAAUUAUAGAUUCUdTdT-30, and the

negative control siRNA was 50-UUCUCCGAACGUGU
CACGUTT-30. Antibodies against RAGE were obtained

from Cell Signaling Technology. The polyclonal antibody

for the PEDV-N protein was previously generated in our

lab.

Plasmid constructs

In order to construct a HA-tagged HMGB1 protein-ex-

pressing plasmid, HMGB1 was first amplified using PCR

with specific primers (Table 1) carrying EcoRI and XhoI

restriction sites in the forward and reverse primers. The

PCR product was digested with EcoRI and XhoI and

ligated into pCAGGS-HA (PCA), previously digested with

the same enzymes for 16 h at 4 �C. The HMGB1 mutants

HMGB1-C45S(C45S), HMGB1h-C106S(C106S), and

HMGB1-C45S/C106S (C45S/C106S) were prepared with

MutExpress� II Fast Mutagenesis kit (Vazyme, China)

using specific primers (Table 1) according to the manu-

facturer’s instructions using pCAGGS-HMGB1 as the

template.

RNA interference

Vero cells were grown to 50–60% confluency in 6-well cell

culture plates and then transiently transfected with siRNAs

targeting RAGE (siRAGE) using Lipofectamine 2000. The

silencing efficiency of siRNA was analysed by western

blotting and qRT-PCR. The control non-targeted siRNA

(NC) was used as the negative control.

Antiviral activity of GLY

To assess the antiviral effect of GLY against PEDV

infection, Vero cells were treated with different concen-

trations of GLY (diluted with DMEM medium supple-

mented with 2% newborn calf serum) for 2 h. The cells

were then washed with PBS for three times before being

infected with PEDV (multiplicity of infection (MOI)=0.1,

1 or 10) for 24 h in the presence of different concentrations

of GLY. The supernatant was collected for a plaque for-

mation assay, and the cells were collected for western blot

or qRT-PCR analysis.

The effect of GLY on PEDV entry

Vero cells were first grown in a 6-well plate to 70-80%

confluency and then incubated with GLY (0.1-0.8 mM) at

37 �C for 2 h. Next, the cells were incubated with UV-

inactivated PEDV (MOI =1) at 4 �C for 1 h before one-

hour incubation at 37 �C. The cells were then washed with

the citric acid solution (40 mM citric acid, 10 mM KCl, 135

mM NaCl, pH 3.0) for 3 times to remove un-internalized

virus particles. The cells were next washed with PBS 3

times. Total protein was then prepared from these Vero

cells for western blot analysis.

The effect of GLY on PEDV replication

To assess the inhibitory effect of GLY on PEDV replica-

tion, Vero cells were seeded a 6-well plate and then

infected with PEDV (MOI=0.1) for 1 h at 37 �C. The cells
were washed with PBS for three times before being incu-

bated with fresh DMEM supplemented with 2% newborn

calf serum in the presence of GLY (0.4 mM). The cells

were collected at 4, 8, 12 h post infection (hpi) for western

blot or qRT-PCR analysis.

1468 C. Huan et al.

123



The effect of GLY on PEDV assembly and release

To explore the effect of GLY on virus assembly, Vero cells

were infected with PEDV in the presence of GLY at 37 �C
for 24 h. The supernatant and cells were collected sepa-

rately for qRT-PCR analysis. The ratio between ORF3

RNA levels in the supernatant and in the cells was used as

the index for virus assembly. To explore the role of GLY

on virus release, virus titers in the supernatant and in the

cells was determined using a plaque formation assay. The

ratio between virus titers in the supernatant and in the cells

was used as an index of virus release [42].

The effect of GLY on levels of proinflammatory

cytokine mRNAs

Vero cells were seeded in a 24-well plate. The cells were

pre-treated with different concentrations of GLY for 2 h

before PEDV infection (MOI=0.1, 1 h) in the presence of

different concentrations of GLY. The cells were further

incubated for 5, 11, or 23 h in the presence of GLY before

harvest. The mRNA levels of proinflammatory cytokines

were determined by qRT-PCR.

Western blotting analysis, qRT-PCR, and plaque

formation assay

Vero cells were washed with 1 ml ice-cold PBS for three

times. The cells were lyzed with 100 ll 29 SDS loading

buffer. Proteins were subjected to SDS-PAGE before being

transferred to polyvinylidene fluoride (PVDF) membrane.

The membrane was blocked with 3% BSA in PBST (4.3

mM Na2HPO4, 1.4 mM KH2PO4, pH 7.4, 137 mM NaCl,

2.7 mM KCl, 0.05% Tween-20) for 1 h at room tempera-

ture, followed by incubation for 2 h with the appropriate

primary antibody (anti-PEDV-N, actin or RAGE). After

extensive washing with PBST, the membranes were further

incubated for 1 h with the appropriate secondary antibody

(HRP-anti-rabbit IgG or HRP-anti-mouse IgG).

Immunoreactive bands were detected by an ECL enhanced

chemiluminescence system (Biouniquer, China) and ana-

lyzed using ImageJ software.

Total RNA was extracted and purified from cells using

TRIZOL reagent (Invitrogen). The reverse transcription

and qRT-PCR were performed according to the previously

described method [43]. The primer sequences for qRT-

PCR or cloning (IL-1b, IL-6, IL-8, TNF-a, GADPH, ORF3
of PEDV) are listed in Table 1. GAPDH was used as the

internal control. The relative expression levels of the

detected genes were compared with that of the GAPDH

gene by the 2 –DDCt method. Each qRT-PCR assay was

performed in triplicate.

Virus culture supernatant was 10-fold diluted (from 102

to 105) and added to 6-well plates with a confluent

monolayer of cells for 1 h before overlay medium (2.5%

low melting point agarose in DMEM medium containing

4% newborn calf serum) was added to each well. The cells

were further incubated at 37 �C with 5% CO2 for 3 days

before being stained with 0.5% crystal violet.

Cytotoxicity assay

Approximately 29104 Vero cells per well were added to a

96-well cell culture plate and cultured for 24 h at 37 �C in

the presence of 5% CO2. The medium was replaced with

fresh DMEM (supplemented with 2% newborn calf serum)

in the presence of inhibitors (GLY). The plates were

incubated for up to 24 h. The cytotoxicity was assayed by

measuring lactate dehydrogenase (LDH) released from the

cells using Cytotox-One homogenous membrane integrity

Table 1 Sequences of the

primers used for cloning or

qRT-PCR

Name Sequence

PEDV-ORF3 Forward: TTTGCACTGTTTAAAGCGTCT

Reverse: AGTAAAAGCAGACTAAACAAAGCCT

GAPDH Forward: AGGTCGGAGTCAACGGATTT

Reverse: TAGTTGAGGTCAATGAAGGG

IL-1b Forward: GGAAGACAAATTGCATGG

Reverse: CCCAACTGGTACATCAGCAC

IL-6 Forward: AGAGGCACTGGCAGAAAAC

Reverse: TGCAGGAACTGGATCAGGAC

IL-8 Forward: AGGACAAGAGCCAGGAAGAA

Reverse: ACTGCACCTTCACACAGAGC

TNF-a Forward: TCTGTCTGCTGCACTTTGGAGTGA

Reverse: TTGAGGGTTTGCTACAACATGGGC

HMGB1 Forward: GACGTGAATTCATGGGCAAAGGAGATCCTA

Reverse: GACGTCTCGAGTTATTCATCATCATCATCTTCTTCT
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kit (Promega, USA), according to the manufacturer’s

instruction.

Statistical analysis

All data were determined in triplicate and are representa-

tive of at least two separate experiments. The results rep-

resent the means ± standard deviations of each triplicate

data set. The differences between means were considered

to be significant at * p\0.05, and very significant at ** p

\0.01. All analyses were performed by one-way ANOVA

using the SPSS software package (version 16.0, SPSS Inc.,

Chicago, IL, USA).

Results

Antiviral effect of glycyrrhizin against PEDV

infection

The antiviral activity of glycyrrhizin (GLY) has been

reported previously on several viruses. To assess the

antiviral effect of GLY against PEDV infection, Vero

cells were treated with different concentrations of GLY

for 2 h before PEDV infection (MOI=0.1). The infected

cells were further incubated for 24 h in the presence of

GLY before western blotting analysis, which showed

that PEDV-N protein expression was moderately

reduced in a dose-dependent manner (Fig. 1A),

demonstrating the antiviral activity of GLY against

PEDV infection in Vero cells. The antiviral activity of

GLY was further confirmed by qRT-PCR assay, which

showed that GLY treatment resulted in, approximately,

a 70% reduction of viral ORF3 gene expression at a

concentration of 0.8 mM (Fig. 1B). A similar dose-de-

pendent inhibition of virus infection was observed in the

plaque formation assay (Fig. 1C). The cytotoxicity

experiment showed GLY did not cause significant

cytotoxic effects in Vero cells (at concentrations up to

0.8 mM for 24 h) (Fig. 1D). In summary, our data

established the antiviral activity of GLY against PEDV

infection in Vero cells.

In addition, the antiviral activities of GLY were inves-

tigated at two MOIs (1 and 10), which indicated that GLY

had improved inhibitory effects on PEDV infection when

cells were infected at a lower MOI (Fig. 1E).

The effect of GLY on PEDV entry, replication,

assembly and release

To investigate the effect of GLY on PEDV entry Vero

cells, pre-treated with GLY (37 �C, 2 h), were infected with
UV-inactivated PEDV (MOI=1) for 1 h at 4 �C before 1 h

incubation at 37 �C. The un-internalized PEDV was

washed away with the citric acid solution. The cells were

immediately subjected to western blot analysis of PEDV-N

protein. The result revealed that PEDV-N protein levels

were decreased in a dose-dependent manner (Fig. 2A).

Therefore, our results suggested that virus entry was

affected by GLY.

To determine whether GLY has an inhibitory effect on

PEDV replication, Vero cells were incubated at 37 �C in

the presence of GLY (0.4 mM) after Vero cells had already

been infected with PEDV (MOI=0.1, 1 h, 37 �C). PEDV-N
protein levels in the infected cells were analyzed at 4, 8 and

12 hpi by western blot (Fig. 2B). The result showed PEDV-

N expression was inhibited by GLY. In addition, viral

ORF3 RNA levels were also decreased after GLY treat-

ment, as demonstrated by qRT-PCR analysis at 4 hpi

(*25%), 8 hpi (*33.3%) and 12 hpi (54.5%) (Fig. 2C).

The results suggested that GLY inhibited the replication of

PEDV.

To study the effect of GLY on virus assembly, we

analyzed RNA levels of the PEDV-ORF3 gene in super-

natant and in cells. Vero cells were incubated at 37 �C for

24 h with different concentrations of GLY after Vero cells

had been infected with PEDV (1 h). The supernatant and

the cells were collected for qRT-PCR analysis. The ratio

between ORF3 RNA levels in the supernatant and in the

cells was similar between GLY-treated and mock-treated

samples (data not shown), indicating that GLY might not

affect PEDV assembly.

To determine whether GLY affected virus release, virus

titers in the supernatant and in cells were determined using

a plaque formation assay. Vero cells were incubated with

different concentrations of GLY after Vero cells had

already been infected. The cells were freeze-thawed three

times after PBS washing. The plaque formation assay

revealed the virus titer ratio between supernatant and cells

was similar between GLY-treated and mock-treated cells

(data not shown), suggesting that GLY might not affect

virus release either.

GLY reduces levels of proinflammatory cytokine

mRNAs during PEDV infection

Low amounts of proinflammatory cytokines may be pro-

tective against viral invasion. However, overproduced

cytokines will sabotage the host immune responses [44]. It is

reported that host cells initiate immune responses by pro-

ducing various proinflammatory cytokines during the

infection of various viruses, including West Nile virus [45],

SARS-CoV [46–48], and hepatitis (A, B, C) viruses [49].

Therefore, we studied whether GLY treatment affected the

levels of proinflammatory cytokine mRNAs during PEDV

infection. Our data showed that PEDV infection increased
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the mRNA levels of the proinflammatory cytokines IL-1b,
IL-6, IL-8, TNF-a, while GLY treatment decreased the

mRNA levels of these cytokines at 6, 12 and 24 hpi: IL-1b
(20%, 49%, 75%), IL-6 (39%, 53%, 80%), IL-8 (46%, 47%,

94%), and TNF-a (51%, 56%, 91%) (Fig. 3A, B and C).

Since we had previously found that GLY treatment

affected PEDV entry, we performed another experiment to

rule out the possibility that the effect of GLY on proin-

flammatory cytokines might be caused by a decrease in the

MOI. The cells were first infected with PEDV for 1 h to

Fig. 1 Antiviral effect of GLY against PEDV infection. (A) Vero

cells were pretreated with GLY for 2 h before being infected with

PEDV (MOI=0.1) in the presence of GLY. Vero cells were lysed at 24

h post-infection (hpi). The PEDV-N protein expression level was

analyzed by western blot. Beta-actin was used as the sample loading

control. (B) RNA levels of the ORF3 gene were evaluated by qRT-

PCR. (C)Virus titer in the supernatant after GLY treatment was

measured using the plaque formation assay. (D) The cytotoxicity of

GLY was measured by Cytotox-One homogenous membrane integrity

kit at 24 h. (E) The cells were pretreated with GLY for 2 h before

being infected with PEDV (MOI=1 or 10) in the presence of GLY.

The expression level of the PEDV-N protein was analyzed by western

blot at 24 hpi. The results are representative of at least two different

experiments

Fig. 2 Effects of GLY on PEDV entry and replication. (A) Vero cells

were pretreated with different concentrations of GLY for 2 h at 37 �C.
Vero cells were infected with UV-inactivated PEDV (MOI=1) for 1 h

at 4 �C before one-hour incubation at 37 �C. The un-internalized

PEDV was washed away with citric acid solution. The total proteins

were extracted from the Vero cells for western blot. (B) Vero cells

were incubated at 37 �C in the presence of GLY (0.4 mM) after Vero

cells were infected with PEDV for 1 h at 37 �C. PEDV-N protein

levels were analyzed at 4, 8, 12 hpi by western blot. (C) Vero cells

were incubated at 37 �C in the presence of GLY (0.4 mM) after Vero

cells were infected with PEDV for 1 h at 37 �C. PEDV ORF3 gene

was analyzed at 4, 8, 12 hpi by qRT-PCR
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enable virus entry. Unbound viruses were then removed

using the citric acid solution. The infected cells were then

incubated with GLY before the first round of virus release

into the extracellular environment (6 h). We analyzed the

levels of proinflammatory cytokine mRNAs at 4 hpi by

qRT-PCR, and revealed that GLY indeed decreased the

levels of proinflammatory cytokine mRNAs: namely IL-1b
(12%), IL-6 (34%), IL-8 (33%), and TNF-a (41%)

(Fig. 3D). All these results suggest that GLY treatment

attenuated the proinflammatory responses of the cells

during virus infection.

HMGB1 exerts its biological function during PEDV

infection through TLR4 and RAGE

GLY is a competitive inhibitor of High Mobility Group

Box-1 (HMGB1). Many studies have found that HMGB1

induces proinflammatory cytokine expression through the

TLR4 signal pathway. When HMGB1 exerts its effect

through TLR4, a disulfide bond forms between Cys23 and

Cys45 [50] and a reduced Cys106 in HMGB1 is required

[51]. We therefore constructed three HMGB1 mutants to

investigate their effects on virus infection. Vero cells were

transfected for 12 h with HMGB1 mutant plasmids

HMGB1-C45S, HMGB1-C106S, HMGB1-C45S/C106S or

control plasmid pCAGGS-HA (PCA) before PEDV infec-

tion (MOI=0.1). The cells were collected at 24 hpi for

western blot analysis. The expression of HMGB1-C45S,

C106S and C45S/C106S was confirmed (shown in

Fig. 4A). PEDV-N protein expression levels decreased

about 29%, 20%, and 48% in HMGB1-C45S, C106S, and

C45S/C106S over-expressing cells, respectively (Fig. 4A).

The RNA levels of the viral ORF3 gene were also

decreased by approximately 51%, 20%, and 65% in

HMGB1-C45S, C106S, and C45S/C106S over-expressing

cells, respectively (Fig. 4B). In addition, the effect of the

double mutant on mRNA levels of IL-1b, IL-8, and TNF-a
was more significant when compared to the single mutants

(Fig. 4C).

RAGE is one of the main receptors of HMGB1 [52]. We

knocked down RAGE expression by siRNA to determine

the influence of RAGE on PEDV infection. As expected, a

decline in PEDV-N expression and PEDV ORF3 RNA

levels (62%) was observed after RAGE knockdown (85%

knockdown efficiency) (Fig. 5A, B, C). We determined the

effect of RAGE knockdown on infection using the plaque

formation assay, which showed that the virus titer in the

supernatant was decreased (Fig. 5D). Furthermore,

Fig. 3 GLY inhibits the expression of proinflammatory cytokines

induced by PEDV infection. Vero cells were pretreated with GLY

(0.8mM) for 2 h before being infected with PEDV (MOI =0.1) in the

presence of GLY (0.8mM). (A-C) The mRNA levels of the

proinflammatory cytokines IL-1b, IL-6, IL-8 and TNF-a were

measured at 6, 12 and 24 hpi. (D) Vero cells were infected with

PEDV for 1 h before being treated with GLY (0.8mM). The mRNA

levels of the proinflammatory cytokines IL-1b, IL-6, IL-8 and TNF-a
were analyzed at 4 hpi by qRT-PCR (before the first round of virus

release). The results are representative of at least two different

experiments
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siRAGE treatment significantly reduced the levels of IL-1b
(23%), IL-6 (22%), IL-8 (25%), and TNF-a (52%) mRNA,

when compared to NC-treated cells (Fig. 5E). Based on

these experiments, we concluded that HMGB1 might exert

its biological function through TLR4 and RAGE during

PEDV infection in Vero cells.

Discussion

Glycyrrhizin (GLY), the main component of licorice root

extracts, inhibits the infection of many viruses. In our

studies, we revealed that GLY could moderately inhibit

PEDV infection in Vero cells (Fig. 1). It was reported

previously that GLY affects porcine reproductive and res-

piratory syndrome virus (PRRSV) entry [53] and inhibits

the replication of SARS-CoV in vitro [24]. In our studies,

we also demonstrated that GLY inhibited the entry and

replication of PEDV, but had no effects on virus assembly

and release.

GLY is a competitive inhibitor of high mobility group

box1 (HMGB1) that can inhibit the cytokine activity of

HMGB1. Our previous studies show that PEDV infection

results in the acetylation and release of HMGB1, which

would promote the release of proinflammatory cytokines

[54]. In this study, we demonstrated that GLY inhibited the

increase in proinflammatory cytokines induced by PEDV

infection (at the mRNA level) (Fig. 3A, B, C). A similar

result was observed in infected cells which were treated

with GLY after virus internalization (Fig. 3D).

HMGB1 binding to TLR4 to trigger cytokine release

requires the reduced C106, and a disulfide bond between

C23 and C45 in HMGB1 [55]. Our studies on HMGB1

mutants (C45S, C106S, and C45S/106S) corroborates that

extracellular HMGB1 binding to TLR4 promotes inflam-

matory responses (Fig. 4), implying that the correct redox

state of HMGB1 is essential for its cytokine activity. We

also confirmed the involvement of RAGE in PEDV

pathogenesis using a RAGE knockdown experiment

(Fig. 5).

Our studies suggest GLY could be used as an

immunomodulatory agent against PEDV infection because

our in vitro experiments showed that PEDV infection

results in a significant increase in proinflammatory

cytokines, whereas GLY treatment attenuated the produc-

tion of these cytokines accompanied by a decrease in virus

infectivity. An animal experiment shows that suckling pigs

and weaned pigs infected by PEDV release a large amount

of TNF-a at different time points, while serum IL-8 levels

were, remarkably, higher in infected weaned pigs when

compared to infected suckling pigs [56]. Although the

study did not determine the expression levels of other

proinflammatory cytokines, we suspect PEDV infection

might cause the un-controlled release of cytokines in pigs.

The aberrant release of cytokines has been suggested to

play a role in the pathogenesis of diarrhea. Proinflamma-

tory and anti-inflammatory cytokine production locally, or

in other organs, induces inflammation and cellular infil-

tration in to the lamina propria and other layers of the

intestinal wall, which subsequently causes diarrhea and

finally dehydration [57]. Therefore, we propose that

manipulation of the proinflammatory responses by a

chemical agent such as GLY will attenuate the severe

impact of PEDV infection on animals.

GLY has been shown to protect vital organs against

porcine endotoxemia through modulation of systemic

inflammatory responses, by reducing the protein and

mRNA levels of HMGB1 and other pro-inflammatory

cytokines [58]. It is known that administration of large

amount of GLY (licorice extract) causes hypokalemia and

serious hypertension in both animals and humans [59, 60],

but these effects are reversible after GLY withdrawal [61].

Fig. 4 HMGB1 exerts its biological function during PEDV infection

through TLR4. (A-C) Vero cells were transfected with HMGB1

mutant plasmids C45S, C106S, C45S/C106S or the control pCAGGS

plasmid (PCA) for 24 h, and then were infected with PEDV

(MOI=0.1) for 24 h. (A) The expression of HMGB1 mutant plasmids

and PEDV-N expression was analyzed by western blot. (B) The

effects of the HMGB1 mutants on the RNA levels of the ORF3 gene

were analyzed by qRT-PCR. (C) The effects of the HMGB1 mutants

on the mRNA levels of the proinflammatory cytokines IL-1b, IL-6,
IL-8 and TNF-a were evaluated by qRT-PCR. The results are

representative of at least two different experiments
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Hence, short-term administration of GLY or its derivatives

might not lead to significant harm to animals.

Collectively speaking, our study suggested GLY might

be used as an immunomodulatory agent to attenuate the

severe clinical symptoms in pigs infected by PEDV.
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Fig. 5 HMGB1 exerts its biological function during PEDV infection

through RAGE. Vero cells were transfected with specific siRNA to

knockdown RAGE expression for 24 h. NC was used as the negative

control. (A) The RAGE knockdown cells were infected with PEDV

for 24 h. The expression of RAGE and PEDV-N were analyzed by

western blot. (B, C) The effects of siRAGE on the RNA levels of

RAGE and PEDV ORF3 were measured by qRT-PCR. (D) The virus

titer in the supernatant after RAGE knockdown was measured using

the plaque formation assay. (E) The effect of siRAGE on the mRNA

levels of the proinflammatory cytokines IL-1b, IL-6, IL-8 and TNF-a
was evaluated by qRT-PCR. The results are representative of at least

two different experiments
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