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Abstract
The phosphatidylcholine floppase multidrug resistance protein 3 (MDR3) is 
an essential hepatobiliary transport protein. MDR3 dysfunction is associated 
with various liver diseases, ranging from severe progressive familial intrahe-
patic cholestasis to transient forms of intrahepatic cholestasis of pregnancy 
and familial gallstone disease. Single amino acid substitutions are often found 
as causative of dysfunction, but identifying the substitution effect in in vitro 
studies is time and cost intensive. We developed variant assessor of MDR3 
(Vasor), a machine learning-based model to classify novel MDR3 missense 
variants into the categories benign or pathogenic. Vasor was trained on the 
largest data set to date that is specific for benign and pathogenic variants of 
MDR3 and uses general predictors, namely Evolutionary Models of Variant 
Effects (EVE), EVmutation, PolyPhen-2, I-Mutant2.0, MUpro, MAESTRO, 
and PON-P2 along with other variant properties, such as half-sphere ex-
posure and posttranslational modification site, as input. Vasor consistently 
outperformed the integrated general predictors and the external predic-
tion tool MutPred2, leading to the current best prediction performance for 
MDR3 single-site missense variants (on an external test set: F1-score, 0.90; 
Matthew's correlation coefficient, 0.80). Furthermore, Vasor predictions cover 
the entire sequence space of MDR3. Vasor is accessible as a webserver at 
https://cpclab.uni-duess​eldorf.de/mdr3_predi​ctor/ for users to rapidly obtain 
prediction results and a visualization of the substitution site within the MDR3 
structure. The MDR3-specific prediction tool Vasor can provide reliable pre-
dictions of single-site amino acid substitutions, giving users a fast way to 
initially assess whether a variant is benign or pathogenic.
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INTRODUCTION

Bile formation is a carefully regulated system, from 
bile acid synthesis to secretion of bile acids across the 
canalicular membrane. Adenosine triphosphate (ATP)-
binding cassette (ABC) transporters present on the 
canalicular membrane of hepatocytes are responsible 
for the transport of primary bile components, namely, 
bile acids through the bile salt export pump (BSEP, 
ABCB11), cholesterol through the ABC subfamily G 
members 5 and 8 (ABCG5/ABCG8), and phospho-
lipids through multidrug resistance protein 3 (MDR3, 
ABCB4). MDR3 acts as a floppase, translocating sub-
strates, such as phosphatidylcholine, from the inner to 
the outer membrane leaflet[1,2] and exposing the sub-
strate for extraction into primary bile.[3] Recent studies 
have suggested different transport pathways that follow 
either an alternating two-site access model through the 
protein's inner cavity[4] or a credit-card swipe mecha-
nism along transmembrane helix 7 (TM H7).[5] MDR3 
dysfunction has been linked to various liver-associated 
diseases, including intrahepatic cholestasis of preg-
nancy, low phospholipid-associated cholelithiasis, 
drug-induced liver injury, progressive familial intrahe-
patic cholestasis type 3, liver fibrosis/cirrhosis, and 
hepatobiliary malignancy.[6–12]

It is estimated that at least 70% of disease-causing 
ABCB4 variants are amino acid substitutions, whereas 
variants leading to premature stop codons and protein 
truncations are in the minority.[13] However, while the ad-
vancement of sequencing allows rapid testing of patients, 
it remains challenging for clinicians and researchers to 
assess the potential impact of novel missense variants.

Evaluation of newly found MDR3 amino acid substi-
tutions by in vitro cellular assays remains time consum-
ing. Machine-learning-based prediction tools instead 

offer rapid analysis and have led in recent years to many 
predictors.[14,15] Nonetheless, general predictors do not 
consistently perform well on all proteins, necessitating 
the development of protein-specific prediction tools. To 
date, there is no MDR3-specific predictor available for 
classifying amino acid substitutions despite the vital 
role of MDR3 in bile homeostasis. An initial evaluation 
of general predictor performances on MDR3 variants 
suggested MutPred as a well-performing tool[16,17]; 
however, generalization is difficult due to only 21 tested 
variants with established cellular effects. Additionally, 
the tested variants presented a clear bias toward patho-
genic effects.

Here, we created an MDR3-specific variant data set 
and trained a machine-learning algorithm using estab-
lished general prediction tools, namely Evolutionary 
Models of Variant Effects (EVE), EVmutation, 
PolyPhen-2, I-Mutant2.0, MUpro, MAESTRO, and 
PON-P2,[18–24] as well as half-sphere exposure and 
posttranslational modification (PTM) site influence as 
features to obtain an MDR3-specific prediction tool for 
help in classifying variants as benign or pathogenic 
(see Figure 1 for a graphical overview). Our predictor, 
variant assessment of MDR3 (Vasor), performed bet-
ter than each integrated general predictor. Additionally, 
Vasor outperformed MutPred2,[25] a general predictor 
we chose for comparison based on the suggested high 
performance of its predecessor MutPred on MDR3.[16] 
We provide easy access to Vasor through a webserver 
where users can enter a missense variant of interest 
and obtain a prediction if it is benign or pathogenic to-
gether with an estimate of the prediction probability. 
Additionally, the mutation site is displayed on the struc-
ture of MDR3, giving the user a comprehensive view of 
the local site and the overall position of the assessed 
variant.

F I G U R E  1   Graphical overview of data set generation and machine-learning approach. For details, see text. EVE, Evolutionary Models 
of Variant Effects; gnomAD, Genome Aggregation Database; MDR3, multidrug resistance protein 3; PTM, posttranslational modification. 
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MATERIALS AND METHODS

MDR3 missense variants

MDR3 variants were obtained from a literature search 
for variants causative of MDR3 dysfunction or known 
variants with no effect in any MDR3-associated disease 
(see Table S1). We excluded variants with unclear infor-
mation on disease association (i.e., no in vitro verifica-
tion analysis and no information on clinical indications 
for disease association) to eliminate false positives 
(FPs) or false negatives (FNs). As studied benign vari-
ants for MDR3 are rare,[13,16] further missense variants 
were obtained from Genome Aggregation Database 
(gnomAD) v2.1.1[26] to increase the number of benign 
variants. During the generation of the gnomAD data-
base, individuals with severe pediatric diseases are 
removed; however, it is possible that pathogenic vari-
ants exist in the gnomAD data set. Accordingly, we em-
ployed a selection step to exclude FN cases of MDR3 
variants. Using the platform VarSome,[27] variants were 
preclassified following the guidelines of The American 
College of Medical Genetics and Association for 
Molecular Pathology (ACMG-AMP)[28] rules, and vari-
ants with a likely pathogenic or pathogenic effect were 
removed, whereas variants with uncertain significance, 
likely benign, or benign classification by VarSome were 
integrated into the data set. These steps were included 
to create a high-quality data set to keep the number of 
misclassified variants low but at the same time retain 
a sufficiently high number of variants. The final list of 
variants contained 85 pathogenic and 279 benign vari-
ants. Every variant was mapped to the longest MDR3 
isoform, corresponding to Uniprot[29] entry P21439-1.

Data set and features

The list of MDR3 variants was subjected to general 
predictors for missense mutations (EVE, PolyPhen-2, 
I-Mutant2.0, MUpro, MAESTRO, PON-P2, and 
EVmutation), and additional features (half-sphere ex-
posure, secondary structure disruption, PTM site, and 
relative solvent accessibility) were computed, creating 
an MDR3-specific feature set.

EVE is a recently developed, unsupervised, compu-
tational method that trained Bayesian variational auto-
encoders on multiple sequence alignments to classify 
variant effects based on a computed evolutionary index 
followed by a fitted global–local mixture of Gaussian 
mixture models.[18] PolyPhen-2 employs a naive Bayes 
classifier for predicting variant effects using sequence-
based features and structure-based features.[19] I-
Mutant2.0 predicts protein stability changes by using 
a support vector machine-based tool trained on either 
sequence or structural information.[20] MUpro predicts 
stability changes on single-site mutations by using 

sequence and structural information with a support vec-
tor machine.[21] Both I-Mutant2.0 and MUpro predict the 
direction of stability change and the energy difference. 
MAESTRO employs a combination of machine-learning 
approaches to predict the energy difference introduced 
by missense mutations based on consensus, along 
with predicting a confidence score.[22] PON-P2 applies 
selected features from evolutionary conservation and 
biochemical properties of amino acids to develop a ran-
dom forest classifier that classifies mutations as benign 
or pathogenic or those with unknown significance.[23] 
EVmutation explicitly considers interdependencies be-
tween residues or nucleotide bases in their unsuper-
vised statistical method to include epistasis.[24]

EVE and EVmutation predictions for the MDR3 
protein were accessed using the precomputed data 
set available from the method creators (https://evemo​
del.org/, https://marks.hms.harva​rd.edu/evmut​ation/​
human_prote​ins.html). I-Mutant2.0, Mupro, and 
MAESTRO predictions were generated using their 
standalone downloadable versions. PolyPhen-2 pre-
dictions were accessed using the batch query of the 
webserver (http://genet​ics.bwh.harva​rd.edu/pph2/bgi.
shtml) with the default values. PON-P2 predictions 
were generated using the sequence submission fea-
ture for variants of the webserver (http://struc​ture.bmc.
lu.se/PON-P2/).

Additional features were added to explicitly integrate 
effects on PTM sites, variant location in α-helical or β-
sheet secondary structure, and effects on residue sol-
vent accessibility. Known PTM sites from the literature 
were supplemented by potential PTM sites predicted 
by PhosphoMotif,[30] PhosphoSitePlus,[31] NetPhos,[32] 
and the Eukaryotic Linear Motif (ELM) database.[33] 
The secondary structure was extracted from the MDR3 
structure (Protein Data Bank identification [PDB ID]: 
6S7P), using the database of secondary structure as-
signments DSSP.[34,35] Relative solvent accessibility 
was computed based on residue exposure calculated 
with DSSP divided by the maximal residue solvent 
accessibility.[36] Half-sphere exposure was introduced 
before[37] to measure residue solvent exposure and 
surpass limitations of relative solvent accessibility. 
It was implemented using values from the Biopython 
HSExposure module calculated according to the half-
sphere corresponding to the direction of the sidechain 
of the residue as measured from the Cα atom.

Machine learning

The obtained data set was cleaned from non-
numerical values. In the case of binary features, such 
as classification features of general predictors, −1 
was set if no prediction was available to distinguish 
from benign (value 0) or pathogenic (value 1) predic-
tions. Additionally, relative solvent accessibility and 

https://evemodel.org/
https://evemodel.org/
https://marks.hms.harvard.edu/evmutation/human_proteins.html
https://marks.hms.harvard.edu/evmutation/human_proteins.html
http://genetics.bwh.harvard.edu/pph2/bgi.shtml
http://genetics.bwh.harvard.edu/pph2/bgi.shtml
http://structure.bmc.lu.se/PON-P2/
http://structure.bmc.lu.se/PON-P2/
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half-sphere exposure were set to −1 if no prediction 
value was obtained in order to distinguish from pre-
diction values of 0. Other numerical features were 
replaced by 0 if no prediction for the respective fea-
ture was available. The correlation between features 
within the data set was assessed by the Spearman R 
correlation coefficient.

A test set was generated by selecting 20 benign 
and 20 pathogenic variants from the overall data set. 
To avoid a bias toward specific amino acids, we mini-
mized the root-mean-square deviation (RMSD)-based 
difference between the amino acid distribution of the 
variants within the test set compared to the overall 
data set (Figure S1). After randomly drawing 10 vari-
ants into the test set, the RMSD-based difference 
between the amino acid distribution of the general 
data set and current test set was computed; further 
variants were only transferred into the test set if they 
met one of the following conditions: (a) the RMSD 
between reference sequence and substituted amino 
acid distributions decreased by addition of the new 
variant, (b) the RMSD between reference sequence 
amino acid distributions decreased while the RMSD 
between substituted amino acid distributions did not 
increase more than 0.1, or (c) the RMSD between 
substituted amino acid distributions decreased while 
the RMSD between reference sequence amino acid 
distributions did not increase more than 0.1. Due to 
the limited size of the data set, it might not otherwise 
be possible to draw a variant for the test set. The test 
set was withheld from the machine-learning training 
step and used for final validation.

To handle the imbalance between the pathogenic 
(85 variants) and benign (279 variants) class, we 
used the synthetic minority oversampling technique 
(SMOTE).[38] This method generates new synthetic 
data points by using existing minority data points within 
the N-dimensional data set space, drawing lines to the 
five nearest minority class neighbors, and randomly 
selecting synthetic data points along these lines to bal-
ance out the classes.

On the training data set, the XGBoost algorithm[39] 
(as implemented in the Python library) was trained 
using the default gradient-boosted tree (gbtree); the 
maximum depth of a tree (max_depth) was 3, subsam-
ple 0.6, and step size (learning_rate) 0.02. The training 
was evaluated using repeated k-fold cross-validation, 
with k  =  3 and the value of repeats (n_repeats)  =  5. 
Using this procedure, the training data set was ran-
domly split into three equally sized folds, where each 
fold is used as an internal test data set with the remain-
ing two folds as training data sets. The performance 
results were measured and visualized in receiver oper-
ating characteristic (ROC) curves for comparison to the 
final test set. These steps were repeated 5 times.

To reduce features and estimate feature impor-
tance, we analyzed the tree-based feature importance 

and the permutation importance, leading to the re-
moval of the four least informative features shared in 
both feature-importance measures: relative solvent 
accessibility, I-Mutant2.0 stability sign, I-Mutant2.0 
deltaG value, and secondary structure disruption. 
Tree-based feature importance was computed using 
the XGBoost algorithm built-in feature and the “gain” 
(average gain across all splits where a feature is 
used). Permutation-based feature importance was 
computed by random shuffling each feature consec-
utively, followed by a performance test; this denoted 
performance alterations following feature permuta-
tion. The performance of the model without feature 
selection is shown in Figure S2.

The trained model, termed Vasor, predicts a proba-
bility ranging from 0 to 1 for a given variant to belong to 
the pathogenic class. Predictions above (below) 0.5 are 
classified as pathogenic (benign).

Comparison to established predictors

To assess the general performance of Vasor, we com-
pared it to the general predictors EVE, PolyPhen-2, 
PON-P2, and MutPred2. MutPred2 predictions were 
used to compare our prediction tool to an external gen-
eral predictor as MutPred2 was not used as an input 
feature for Vasor. The standalone version of MutPred2 
was used to classify each variant within the entire data 
set, and a threshold of 0.5 was used to classify patho-
genicity.[25] The performance of Vasor and the other 
predictors was evaluated on the entire data set and the 
test set. This ensured increased fairness for the perfor-
mance comparison as Vasor may have an advantage 
over other predictors based on its training on the train-
ing data set. ROC and precision-recall curves were ad-
justed to the availability of variants each predictor was 
able to classify over the entire data set (i.e., if general 
predictors did not classify a variant into the category 
benign or pathogenic, the respective variant could not 
be assessed and curves were shown only on assess-
able variants). To account for this, the coverage of each 
predictor of the MDR3 data set was computed.

Performance evaluation

The performance of Vasor and the other prediction 
tools was evaluated using recommended measures 
for binary classifiers,[40] including additionally the F1-
score as well as visualization in ROC and precision-
recall curves. The measures are based on the values 
of correctly classified variants, indicated by true posi-
tives (TPs) for correctly predicted pathogenic variants 
and true negatives (TNs) for correctly predicted be-
nign variants as well as incorrectly classified variants 
indicated by FPs for variants predicted as pathogenic 
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albeit benign and false negatives FNs for variants 
predicted as benign albeit pathogenic. The analyzed 
measures of recall, specificity, precision, negative 
predictive value (NPV), accuracy, F1-score, and 
Matthew's correlation coefficient (MCC) were calcu-
lated as

Webserver tool

Vasor can be accessed online at https://cpclab.uni-
duess​eldorf.de/mdr3_predi​ctor/. Users can enter a 
single-site amino acid missense MDR3 variant; the tool 
will only recognize MDR3 variants corresponding to the 
largest protein isoform UniProt ID: P21439-1. The entry 
needs to be in the format of the standard International 
Union of Pure and Applied Chemistry code for amino 
acids, entering first the one-letter code of the amino 
acid of the reference sequence, followed by the posi-
tion and the amino acid substitution of interest. On the 
results page, users can see the predicted classifica-
tion (either benign or pathogenic) and the probability 
of pathogenicity (PoP). This probability ranges from 0 
(highest probability for the variant to be benign) to 1 
(highest probability for the variant to be pathogenic). 
Probability values close to 0.5 indicate less confidence 
in the prediction.

Additionally, the results page displays the structure 
of the MDR3 protein (PDB ID: 6S7P) with the NGL 
Viewer,[41,42] including the membrane localization ob-
tained from the Orientations of Proteins in Membranes 
database[43] as a red and blue plane. The substituted 
residue is colored according to the predicted ef-
fect either in red (pathogenic) or green (benign). The 
user can download a zip archive containing a high-
resolution image of the complete protein, PDB files of 

the reference sequence and the variant protein, and 
high-resolution images of the position with the refer-
ence sequence residue or the substituted one.

Code availability

The code for Vasor was written in Python 3.9 and is 
provided for download at https://cpclab.uni-duess​el-
dorf.de/index.php/Software.

RESULTS

Generation of a data set with informative 
features and good overall coverage of the 
MDR3 protein

To establish an MDR3-specific prediction tool, we 
prepared a data set of benign and pathogenic MDR3 
variants. Relevant literature on MDR3-associated dis-
eases was screened. Variants with unclear association 
to effects were omitted to avoid misclassified variants. 
Additionally, the gnomAD database[26] was screened 
for MDR3 variants, and the results were subjected to 
filtering by VarSome[27] using ACMG-AMP rules[28] 
to remove variants with a high potential for a patho-
genic effect. This step was necessary as pathogenic 
MDR3 variants on a single allele with a potential late-
onset or mild phenotype might have been included 
in the gnomAD database. Next, we used general 
predictors (EVE,[18] EVmutation,[24] PolyPhen-2,[19] 
I-Mutant2.0,[20] MUpro,[21] MAESTRO,[22] and PON-
P2[23]) and descriptors of the variant site, namely, the 
disruption of secondary structure, possible PTM site 
disturbance, and changes in the relative solvent ac-
cessibility and half-sphere exposure of the position in 
question, as features in the data set. Projecting the 
variant locations from the data set onto the known cry-
ogenic electron microscopy structure of MDR3 (PDB 
ID: 6S7P)[4] revealed a broad coverage of the struc-
ture with benign and pathogenic variants (Figure 2A). 
No functional domain is devoid of variants, and we 
do not observe large clusters of benign or pathogenic 
variants, which may indicate a potential bias within 
the data set. Such a bias might prevent applying the 
tool to areas of low coverage. Hence, we expect that 
our tool can generalize predictions to every position 
of MDR3.

To further probe for domains of low applicability, we 
mapped variants misclassified by Vasor to the MDR3 
structure. Misclassified variants from the data set tend 
to occur on the solvent-exposed surface of the pro-
tein rather than within buried regions of the protein 
(Figure S3). As solvent-exposed residues are less evo-
lutionary conserved than buried residues,[44] the ob-
tained trend might visualize the underlying increased 

(1)Recall =
TP

TP + FN

(2)Specificity =
TN

TN + FP

(3)Precision =
TP

TP + FP

(4)NPV =
TN

TN + FN

(5)Accuracy =
TP + TN

TP + TN + FP + FN

(6)

F1 − score = 2 ×
Precision × Recall

Precision + Recall
=

2 TP

2 TP + FP + FN

(7)MCC =
TP × TN − FP × FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

https://cpclab.uni-duesseldorf.de/mdr3_predictor/
https://cpclab.uni-duesseldorf.de/mdr3_predictor/
https://cpclab.uni-duesseldorf.de/index.php/Software
https://cpclab.uni-duesseldorf.de/index.php/Software
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uncertainty of those integrated general predictors 
that are based on evolutionary sequence conserva-
tion. Overall, also given the small number of misclas-
sifications, we do not see indications of domains of 
increased uncertainty for MDR3 predictions. The cor-
relation coefficients between input features range from 
−0.64 to 0.76 (RMS value, 0.25) over the 18 features 
(Figure 2B), indicating that each feature adds informa-
tion that does not overlap with information from another 
feature.

Generating Vasor: training the XGBoost 
algorithm on the data set

For machine-learning models to function reliably, it is 
vital to estimate potential overfitting or underfitting of 
the trained model. One of the most important tech-
niques in that respect is the hold-out method, where a 
subsection of the entire data set is split off as an exter-
nal test set. Ideally, the test set has a similar probability 

distribution as the entire data set[45]; however, this is not 
certain if a test set is randomly drawn. Therefore, we 
paid attention to drawing our test set with a similar dis-
tribution of amino acids as to both reference sequence 
and variant amino acid distributions by minimizing the 
RMSD-based difference in amino acid distributions to 
the overall data set; the test set contained 20 benign 
and pathogenic variants each (Figure S1).

Next, for the remaining data set, SMOTE[38] was 
used to create synthetic examples of the minority class 
(pathogenic variants) to balance the classes. The final 
training data set consisted of 259 data points for each 
class, benign and pathogenic, on which an XGBoost 
algorithm was trained. To evaluate the most important 
features, we measured and visualized feature impor-
tance (Figure  S4) and removed the four consistently 
least important features (Figure  S5) without reducing 
performance. Of note, EVE is highly important for the 
prediction outcome of the model, indicating that Vasor 
primarily relies on EVE's predictions compared to other 
features.

F I G U R E  2   Coverage of MDR3 by the data set and correlation analysis of features. (A) Mapping of data set variants onto the MDR3 
structure. Benign variants are marked in green and pathogenic variants in magenta. (B) Spearman rank correlation matrix of features 
computed for the data set. conf., confidence; cyto., cytosolic; epi., epistatic; EVE, Evolutionary Models of Variant Effects; exo., extracellular; 
HSE, half-sphere exposure; ind., independent; MDR3, multidrug resistance protein 3; NBD, nucleotide-binding domain; prob., probability; 
PTM, posttranslational modification; RI, reliability index; RSA, relative solvent accessibility; Sec. structure, secondary structure; st. sign, 
stability sign. 
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Performance estimates were visualized within a 
repeated k-fold cross-validation and compared to the 
performance against the held-out test set (Figure 3A). 
The trained model performs on the test set with an ac-
curacy of 90%, with 18 out of 20 variants being pre-
dicted correctly, both for the benign and the pathogenic 
class (Figure 3B). Notably, the performance based on 
the k-fold cross-validation does not differ from that on 
the independent test set, indicating a well-fit model 
without overfitting or underfitting.

Vasor outperforms integrated general 
predictors and the external general 
predictor MutPred2

We compared the performance of Vasor with general 
predictors on the entire data set. We compared Vasor 
to EVE, PolyPhen-2, and PON-P2, integrated as fea-
tures into the data set on which Vasor was trained. 
Vasor should outperform each predictor due to the ad-
ditional information gathered from the other features. 
Additionally, we compared Vasor to MutPred2[25] as an 
external prediction tool; the predecessor tool MutPred 
was indicated to perform well on MDR3 classification 
problems.[16] Vasor outperformed EVE, PolyPhen-2, 
PON-P2, and MutPred2 according to ROC (Figure 4A) 
and precision-recall curves (Figure 4C), with an area 
under the curve (AUC) of 0.98 for Vasor against 0.90 
for EVE, 0.89 for MutPred2, 0.87 for PolyPhen2, and 
0.81 for PON-P2 for the ROC and an AUC of 0.94 
for Vasor against an AUC of 0.86 for EVE, 0.74 for 
MutPred2, 0.72 for PolyPhen2, and 0.55 for PON-P2 
for the precision-recall curves. Precision-recall curves 
have been shown to be more robust and accurate for 
binary classifiers on imbalanced data sets.[46]

Noteworthy, the second best performing predictor, 
EVE, was the most important feature for Vasor, sug-
gesting that the machine-learning model recognized 

the information contained within this feature as highly 
correlated with the true output and its value in pre-
dicting the output correctly. However, EVE could only 
predict 85.7% of the variants in the data set, whereas 
Vasor, by design, predicted an outcome for every pos-
sible missense variant of MDR3 (Figure 4B; Table 1).

Additional performance measures are summarized 
in Table  1, indicating that Vasor outperforms existing 
prediction tools according to the weighted measures 
F1-score (0.85) and MCC (0.80). Specifically, Vasor 
achieved a low number of FNs. Comparable low values 
in FNs were achieved by PolyPhen2 and MutPred2 (but 
at the cost of an increased number of FPs) and PON-
P2, but only at coverage of 45.1% of the variants in the 
MDR3 protein and an increased number of FPs.

When comparing the performance of the missense 
predictors on the test set (Table S2), our tool reached 
the best scores in F1-score and MCC (0.90 and 0.80, 
respectively) compared to other predictors with full 
coverage of the test set. EVE showed F1-score and 
MCC values of 0.91 and 0.83, respectively, on a subset 
(82.5%) of variants where it reached a prediction. By 
contrast, MutPred2 was able to predict every patho-
genic variant as pathogenic, albeit at the cost of pre-
dicting almost half of the benign variants as pathogenic, 
resulting in a high number of FPs.

Overall, Vasor outperformed other predictors con-
sistently according to ROC and precision-recall curves, 
revealing a well-balanced prediction with few FNs and 
FPs, both on the entire data set and the test set.

Vasor classifies the majority of variants 
with high certainty

Additionally, we investigated the distribution of Vasor's 
output, the PoP values. Vasor assigns the majority 
of benign cases low probability values (74% of be-
nign variants <0.24 PoP), whereas the majority of 

F I G U R E  3   Performance of Vasor on the test set. (A) ROC curve of Vasor performance on the test set (green line) compared to 
performance estimates from repeated k-fold cross-validation (black lines). (B) Confusion matrix of Vasor performance on the test set. 
AUC, area under the curve; ROC, receiver operating characteristic; Vasor, variant assessor of MDR3. 



      |  3105HEPATOLOGY COMMUNICATIONS 

pathogenic cases are assigned a high probability value 
(75% of pathogenic variants >0.74 PoP) (Figure  5). 
Furthermore, Vasor showed no misclassifications of 
variants in the data set for values below 0.23 and above 

0.84, indicating high certainty for benign variant predic-
tions in the range 0–0.23 (74% of the benign variants) 
and pathogenic variant predictions in the range 0.84–1 
(60% of the pathogenic variants).

F I G U R E  4   Performance of Vasor in comparison to established general predictors. (A) ROC curve of the performance of Vasor, EVE, 
PolyPhen-2, PON-P2, and MutPred2 on the variants of the entire data set. Note that the performance was determined for those variants 
each predictor was able to make a prediction for (see [B]). (B) Coverage of data set variants by the predictors. (C) Precision-recall curves of 
the predictors. Performance was determined for those variants each predictor was able to make a prediction for. AUC, area under the curve; 
EVE, Evolutionary Models of Variant Effects; ROC, receiver operating characteristic; Vasor, variant assessor of MDR3. 

TA B L E  1   Detailed performance measurements of Vasor in comparison to EVE, PolyPhen-2, PON-P2, and MutPred2 on the entire data 
set

Vasor EVE PolyPhen-2 PON-P2 MutPred2

Recall 0.84 0.73 0.84 0.74 0.93

Specificity 0.96 0.98 0.74 0.89 0.67

Precision 0.86 0.91 0.49 0.52 0.46

NPV 0.95 0.93 0.94 0.95 0.97

Accuracy 0.93 0.92 0.76 0.87 0.73

F1-score 0.85 0.81 0.62 0.61 0.61

MCC 0.80 0.77 0.50 0.54 0.51

TP 71 52 71 17 79

FN 14 19 14 6 6

TN 267 236 206 125 186

FP 12 5 73 16 93

Coverage (%) 100 85.7 100 45.1 100

Abbreviations: EVE, Evolutionary Models of Variant Effects; FN, false negative; FP, false positive; MCC, Matthew's correlation coefficient; NPV, negative 
predictive value; TN, true negative; TP, true positive; Vasor, variant assessor of MDR3.
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We further investigated the use of SMOTE to gen-
erate data points for the minority class (i.e., patho-
genic variants). Due to the method underlying SMOTE, 
SMOTE-generated data points are expected to follow 
the distribution of pathogenic variants within the PoP 
curve. Accordingly, no SMOTE data point was pre-
dicted with a lower value of PoP than 0.28, and data 
points mainly clustered within the high certainty zone 
(Figure S6).

Overall, Vasor showed a robust separation of PoP 
values of both variant classes, indicating that Vasor 
classified most variants within the data set with high 
certainty.

Easy accessibility of Vasor as a 
webserver tool

Using Vasor, we precalculated the effect of every pos-
sible amino acid substitution for MDR3, resulting in a 
heatmap of 1286 × 20 probabilities of pathogenicity 
(Figure 6; Table S3). We mapped the average PoP of 
each position onto the MDR3 protein structure to visu-
alize positions that are functionally more sensitive to 
substitutions (Figure  7). As expected, areas near the 
ATP-binding site within the nucleotide-binding domain 
displayed a high average PoP. Similarly, buried resi-
dues within the helices forming the TM part showed 
high sensitivity as several missense mutations may 
lead to a disruption of the helical structure. More ex-
posed residues located on the outsides of helices or in 
flexible regions, such as the small extracellular loops, 
displayed less sensitivity. However, this trend does not 
exclude that specific variants at seemingly less sensi-
tive sites can be pathogenic and vice versa.

To indicate the usage of the webserver more specif-
ically, we exemplarily predicted the effect of two vari-
ants, V428D and N902D, identified in Dröge et al.[9] 
These variants were identified in patients without fur-
ther in vitro analysis and not used in the data set for 
creating Vasor. The variant V428D is predicted to be 
pathogenic by Vasor with a PoP of 0.77, indicating a 
good level of certainty for a correct prediction of the 
pathogenic effect as only four out of 12 variants from 
the data set were falsely predicted with a similarly high 
score (Figure 5). V428D is located directly before the 
Walker A motif, which is important for correctly coordi-
nating the adenosine and the phosphate moiety of ATP 
in combination with the Walker B motif. Accordingly, 
the variant might disturb this recognition, resulting in a 
distorted functionality of MDR3. The variant N902D is 
predicted to be pathogenic by Vasor with a PoP of 0.90, 
indicating a high level of certainty for a correct predic-
tion as no false predictions within the data set were ob-
served at such high values (Figure 5). N902D is located 
in the cytosol-facing part of TM10, with the potential 
to interact with residues of the X loop of nucleotide-
binding domain 1, especially R529. As the X loop is 
likely involved in relaying the ATP-binding event to the 
TM domains through conformational change,[47] N902D 
might exert its effect by hindering this transmission.

We also used the precomputed heatmap for rapid 
lookup and output generation of the webserver tool, 
thus eliminating waiting time for users needing a predic-
tion for a specific MDR3 variant. The webserver can be 
accessed at https://cpclab.uni-duess​eldorf.de/mdr3_
predi​ctor/. It requires as input an MDR3 variant (with 
the amino acid of the reference sequence in the one-
letter format, its position within the canonical sequence 
of Uniprot ID: P21439-1, and the substituted amino acid 

F I G U R E  5   Distribution of probability of pathogenicity values over the entire data set. Distribution of Vasor's probability of pathogenicity 
output for benign (blue) and pathogenic (red) variants. Vasor classified 74% of benign variants into the benign category with values below 
0.22, which is below the lowest probability value of any pathogenic variant (0.23) within the data set; 60% of pathogenic variants were 
classified into the pathogenic category with values above 0.85, which is greater than the highest probability value of any benign variant 
(0.84) within the data set; 75% of pathogenic variants were classified with probability values greater than 0.74. Vasor, variant assessor of 
MDR3. 

https://cpclab.uni-duesseldorf.de/mdr3_predictor/
https://cpclab.uni-duesseldorf.de/mdr3_predictor/
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in the one-letter format) and yields the predicted effect 
of the entered variant, either benign or pathogenic, to-
gether with the PoP. Additionally, the variant position is 
depicted in the three-dimensional structure of MDR3, 
and high-quality images of reference sequence amino 
acid, variant, and the overall MDR3 structure can be 
downloaded. The heatmap is also downloadable from 
the webserver for implementation in other applications.

DISCUSSION

Although recent years have resulted in many general 
predictors for protein properties, their performance on 
specific proteins of interest can differ greatly.[48] While 
existing state-of-the-art tools to predict substitution ef-
fects perform admirably on the MDR3 protein, especially 
EVE,[18] the potential for improvement is given both for 
the performance on and coverage of the MDR3 data 
set because not every general predictor can classify 
each MDR3 variant. To improve predictions, we created 

what is to our knowledge the largest data set specific for 
pathogenic and benign variants of MDR3, obtained from 
the literature and gnomAD database and comprising 85 
pathogenic and 279 benign variants. As the generation 
of a high-quality data set is a critical first step for any 
machine-learning approach,[45,49] we carefully screened 
the literature specifically for MDR3 variants, filtering out 
variants with unclear disease associations. To counter-
act the bias that mainly pathogenic variants are chosen 
for detailed in vitro or in vivo analysis, we obtained vari-
ants from the gnomAD database.[26] Because there may 
be potentially disease-associated variants in the da-
tabase, we implemented an additional filtering step of 
removing variants categorized as likely pathogenic or 
pathogenic as evaluated by VarSome[27] to exclude FN 
variants. The data set resulting from this strategy was 
then kept as is (i.e., no variants were added or removed), 
thus eliminating the potential to introduce bias from the 
researcher. Using established general predictors and 
variant site properties, we trained an MDR3-specific 
machine-learning model, termed Vasor, to classify 

F I G U R E  6   Heatmap of predictions for every possible amino acid substitution in MDR3. (A) Color-coded predictions for every position 
(displayed on the y axis) within the MDR3 protein and every possible amino acid substitution (x axis). Prediction values range from likely 
benign (blue) to likely pathogenic (red). (B) Secondary structure of MDR3. α-helical stretches are depicted as green zig-zag curves, 
β-sheet stretches as orange arrows. (C) Domains, secondary structure elements, and characteristic motives are indicated on the right. 
MDR3, multidrug resistance protein 3; NBD, nucleotide-binding domain; TM H, transmembrane helix. 

F I G U R E  7   Mapping the average pathogenicity onto the structure of MDR3. Prediction values for each position were averaged over all 
possible substitutions. Values closer to 0 (most likely benign) correspond to blue, values closer to 1 (most likely pathogenic) correspond to 
red residues. MDR3, multidrug resistance protein 3. 
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protein missense variants into benign or pathogenic. 
Vasor outperformed general predictors. Over the entire 
data set, Vasor showed F1-score and MCC values of 
0.85 and 0.80, respectively; the second best method, 
EVE, followed with scores of 0.81 and 0.77, respectively, 
but coverage of only 85.7%. By contrast, Vasor ensured 
high-quality predictions for all MDR3 missense variants. 
As machine-learning models trained on a specific data 
set exhibit a bias toward overperformance on this data 
set, Vasor has an inherent advantage when evaluated 
on the entire data set over other predictors. Notably, the 
superior performance of Vasor was also present on the 
independent test set where Vasor only misclassified two 
(5%) benign and two (5%) pathogenic variants, leading 
to the highest performance compared to other predic-
tors, as indicated by F1-score and MCC of 0.9 and 0.8, 
respectively. Although EVE and PON-P2 achieved simi-
lar performances for the test set, they only covered a 
fraction of the variants (82.5% and 37.5%, respectively). 
Overall, no other analyzed predictor provided a similarly 
good balance of consistently low FN and FP predictions. 
Both measures have important implications for using 
Vasor within a clinical setting. Predictors with a high 
number of FNs will lead to variants found within patients 
being falsely given no attention, whereas a high number 
of FPs will result in a predictor raising too often a false 
alarm for an actually benign variant.

We established an easily accessible webserver for re-
liable and fast predictions of novel MDR3 variants based 
on Vasor. It can serve as an important step for deciding 
which variants to study and to provide the first indica-
tion of a variant effect. It does not eliminate the need for 
classical in vitro studies for mutational impact, however, 
and in a clinical setting, the ACMG-AMP guidelines[28] 
should be followed. The webserver classifies single-site 
amino acid substitutions into the categories benign or 
pathogenic. Truncation, insertion, and deletion variants 
of MDR3 cannot be assessed. However, the PoP for 
such variants is often more definite.[50] Of note, the effect 
of a single missense variant within the biological context 
might not always be a clear-cut pathogenic or benign ef-
fect. Therefore, the PoP provided by the webserver can 
act as an indicator of prediction reliability.

As a limitation, the exact mechanism underlying a 
pathogenic variant cannot be inferred from the current 
tool. MDR3 missense variants may impact protein fold-
ing and maturation, activity, or stability,[13] and several 
of these categories can be influenced. Information on 
mechanistic dysfunction may aid in targeted therapy. 
In terms of machine learning, such a multiclass clas-
sification problem might be solved—with the prem-
ise of a sizeable data set of quality-assured variants. 
Unfortunately, we are unaware of such a data set for 
MDR3. The currently employed data set strived for such 
quality-assured variants; however, especially lacking 
large-scale functional studies of benign variants, vari-
ants indicated by VarSome as of unclear significance 

were included. Thus, we encourage the scientific com-
munity to submit novel MDR3 variants with a proven 
effect on folding, maturation, activity, and stability to the 
authors to be added to the data set to improve and de-
velop Vasor further.
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