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A B S T R A C T

Patients with COVID-19 who require ICU admission might have the cytokine storm. It is a state of out-of-control
release of a variety of inflammatory cytokines. The molecular mechanism of the cytokine storm has not been
explored extensively yet. The attachment of SARS-CoV-2 spike glycoprotein with angiotensin-converting enzyme
2 (ACE2), as its cellular receptor, triggers complex molecular events that leads to hyperinflammation. Four
molecular axes that may be involved in SARS-CoV-2 driven inflammatory cytokine overproduction are addressed
in this work. The virus-mediated down-regulation of ACE2 causes a burst of inflammatory cytokine release
through dysregulation of the renin-angiotensin-aldosterone system (ACE/angiotensin II/AT1R axis), attenuation
of Mas receptor (ACE2/MasR axis), increased activation of [des-Arg9]-bradykinin (ACE2/bradykinin B1R/DABK
axis), and activation of the complement system including C5a and C5b-9 components. The molecular clar-
ification of these axes will elucidate an array of therapeutic strategies to confront the cytokine storm in order to
prevent and treat COVID-19 associated acute respiratory distress syndrome.

1. Introduction

The coronavirus infectious disease 2019 (COVID-19) that is
spreading at the global scale is caused by a severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), an enveloped single-stranded
RNA virus belonging to the Coronaviridae family, genus beta-cor-
onavirus [1]. Non-structural proteins of this virus play a crucial role in
virus replication while structural and auxiliary proteins are involved in
morphogenesis and interfere with the host immunity response, re-
spectively [2].

Accumulating evidence suggests that the host immunity response is
contributing in severe forms of MERS-CoV, SARS-CoV and SARS-CoV-2
infections [3–5]. This immune response has been associated with a
higher intensive care unit (ICU) admissions and mortality in COVID-19.
In fact, higher concentrations of granulocyte-colony stimulating factor
(G-CSF), interferon gamma-induced protein 10 (IP10), monocyte che-
moattractant protein 1 (MCP1), macrophage inflammatory protein
1alpha (MIP1A), and tumor necrosis factor alpha (TNFα) in comparison
to non-ICU patients were reported in patients with COVID-19 [5]. In
another study, higher levels of interleukin-2 (IL-2) receptor,

interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10), and
TNFα were found in deceased patients with COVID-19 compared to
patients who had recovered from the disease [6].

These immunologic reactions in severe COVID-19 may characterize
the cytokine storm that is associated with untoward clinicopathological
consequences. The cytokine storm is an out-of-control cytokine release
that has been observed in some infectious and noninfectious diseases,
leading to a hyperinflammation condition in the host (Fig. 1) [7]. This
uncontrolled cytokine response might be accompanied with more im-
mune cells activation including T helper 17 cell (Th17) differentiation
from CD4+ lymphocytes. In fact, increased Th17 responses were re-
ported in MERS-CoV, SARS-CoV and SARS-CoV-2 [8–11].

At least 10% of the patients with severe COVID-19 will eventually
present lung injury, acute respiratory distress syndrome (ARDS) and
involvement of multiple organs within 8–14 days of the onset of their
illness [12]. These severe cases that develop respiratory failure show a
series of pathological findings such as hyaline membrane formation,
inflammatory infiltration with multinucleated syncytial cells in their
lung pathology and a burst of cytokine release leading to morbidity and
mortality [6,12].
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The initial cellular entry phase of the SARA-CoV-2 requires binding
of its envelope homotrimeric spike glycoprotein to the membrane-
bound form of angiotensin-converting enzyme 2 (ACE2) on the target
cell [12,13]. The attachment of the virus with ACE2, as its cellular
receptor, triggers internalization of the complex into the target cell,
leading to the down-regulation of the ACE2 [14].

ACE2 internalization and its subsequent down-regulation would
potentially result in unopposed function of angiotensin II (AngII) and
decreased levels of angiotensin-(1–7) [14]. Since angiotensin-(1–7) has
a key counter-regulatory role in many of the angiotensin type 1 receptor
(AT1R)-related physiopathological functions, the SARA-CoV-2-medi-
ated downregulation of ACE2 and the resulting increased overall ratio
of Ang II to angiotensin-(1–7) leads to the deterioration of the pul-
monary function and lung injury [13,15].

Therefore, the imbalance of ACE2/ACE levels in COVID-19 and the
dysregulated angiotensin-II /AT1R axis of the renin-angiotensin-aldos-
terone system (RAAS) may partially be responsible for the cytokine
storm and the resulting pulmonary damage [16,17]. The loss of the
modulatory effect of angiotensin-(1–7) via its binding to the Mas re-
ceptor (MasR) that attenuates inflammatory response may be a further
contributing factor to the hyper-inflammation status of severe cases of
COVID-19.

Beyond ACE2 catalytic activity in RAAS and MasR-mediated ac-
tions, it has interesting effects on multiple molecular pathways which
are involved in inflammatory response and cytokine release. However,
potential cellular and molecular mechanisms of the cytokine storm in
COVID-19 have not yet been explored extensively.

In this review, we specifically discuss the complex inflammatory
molecular consequents of downregulation of ACE2 in the context of
SARS-CoV-2, with a particular emphasis on the complement system and
[des-Arg9]-BK or (DABK) in addition to ACE/ angiotensin-II/AT1R and
ACE2/MasR axes. We propose a unifying molecular model to better
understand the complex molecular events behind out-of-control cyto-
kine response in severe COVID-19 patients. Undoubtedly, this insight
will be pivotal to obtain a harmonized therapeutic strategy to confront
this deadly viral infection and to protect the lungs during the cytokine
storm.

2. ACE/Angiotensin II/AT1R axis

The renin-angiotensin-aldosterone system (RAAS), through its va-
soactive peptides, regulates blood pressure, fluid volume, sodium and

potassium balance. This elegant system also plays a significant role in
the promotion and maintenance of inflammation [18].

It appears that activation of the RAAS system can induce in-
flammation in an independent mechanism of blood pressure through
the AT1 receptor (AT1R) in the kidney and vasculature [19]. The se-
cretion of profibrotic cytokines such as transforming growth factor beta
(TFG-β) is stimulated during RAAS activation [20–22]. Furthermore,
increased production of Ang II and activation of AT1R are accompanied
with a pro-inflammatory response via activation of the complement
cascade including C5a, C5b-9 [23]. This implies a cross-talk between
RAAS and the complement system.

Ang II can activate the nuclear factor kappa B (NF-κB) pathway
[24,25] via stimulation of the phosphorylation of the p65 subunit of
NF-κB [26]. This will lead to increased production of IL-6 [27], TNFα,
IL-1B and IL-10 [26]. After AT1R activation, Ang II regulates Mitogen-
Activated Protein Kinases (MAPK) (ERK1/2, JNK, p38MAPK), which
have important functions on cellular processes including the release of
cytokines such as IL-1, IL-10, IL-12 and TNFα (Fig. 2) [28–30].

ACE2 enzyme is expressed in the heart, kidneys, testes, gastro-
intestinal tract and lungs [15,31]. It cleaves the Angiotensin I (Ang I) to
generate the inactive Ang-(1–9) peptide, which can be changed to the
vasodilatory peptide Ang-(1–7) by ACE or other peptidases. ACE2 can
also directly metabolize Ang II to generate Ang-(1–7) [32].

SARS-CoV-2 uses ACE2 in type II pneumocytes of lung alveoli and
club cells in bronchioles as the cellular entry receptor. Very recently,
TMPRSS2 (as a major host protease), and ACE2 co-expression was re-
ported among a subset of type II pneumocytes in the lung [31].

After the attachment of SARS-CoV-2 spike (S)-protein to ACE2, its
intracellular binding site down-regulates ACE2. Consequently, fol-
lowing this down-regulation of ACE2, Ang II level increases in the
serum leading to augmentation of the Ang II/AT1R axis activation,
which is followed by trans-signaling of IL-6-sIL-6Ra complex, in which
the gp 130-mediated activation of STAT3 occurs in the lungs’ epithelial
cells. Although SARS-CoV-2 itself activates NF-κB through pattern re-
cognition receptors, it is the simultaneous activation of NF-κB and
STAT3 that enhances NF-κB activation machinery (the IL-6 amplifier).
This hyper-activation of NF-κB via the IL-6 Amp in the lungs induces a
cytokine storm with subsequent ARDS that had been observed in severe
COVID-19 patients [33,34].

Indeed, down-regulation of ACE2 which was accompanied with
enhancement of Ang II levels in different types of lung injury triggered
those pulmonary pathological changes that are commonly observed in

Fig. 1. SARS-CoV-2 driven ACE2 down-regula-
tion leads to an array of complex and inter-
twined molecular interactions via at least four
axes consisting of dysregulation of the ACE2/
angiotensin II/AT1R axis, attenuation of ACE2/
MasR axis, increased activation of ACE2/brady-
kinin B1R/DABK axis, and activation of the
complement cascades, resulting to a tornado of
inflammatory cytokine responses ,as described
by Tisoncik et al. [7].
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ARDS [35].
Given the above premises, it seems reasonable to speculate that

depletion of ACE2 and activation of ACE/Angiotensin II/AT1R axis
might have a pivotal role in the clinical presentations of COVID-19. In
fact, higher circulatory levels of Ang II were reported in COVID-19
patients than the control subjects and these plasma levels of Ang II were
linearly associated with lung injury [36]. Therefore, in contrast to
earlier clinical experts’ opinions, RAAS inhibitors should not be dis-
continued in stable cases of COVID-19 because the discontinuation of
ACE inhibitors and ARBs may potentially have detrimental effects on
these patients [14,37,38]. In a recent study, the first clinical evidence
has shown that ACE inhibitors or ARB therapy in COVID-19 patients
with hypertension were associated with a lower rate of disease severity,
a trend toward lower IL-6 levels, and higher circulatory CD3+ and
CD4+ T cells counts [39].

The protective effect of ACE2 in severe acute lung failure has been
shown in animal models [40]. The accumulating clinical-epidemiolo-
gical evidence about COVID-19 implies that SARS-CoV-2 associated
ACE2 depletion is accompanied with a severe clinical course of disease
in those clinical and epidemiological conditions that jeopardize the
levels of ACE2 expression including older age, male sex, and medical
conditions (diabetes mellitus, hypertension and cardiovascular dis-
eases, and obesity) [41,42]. Under these medical conditions, the
COVID-19 infection-induced ACE2 depletion could not overcome al-
ready exaggerated ACE/Angiotensin II/AT1R axis activity. Hence, ad-
ministration of recombinant soluble ACE2 to patients with severe

COVID-19 infection may be a therapeutic modality. However, it is
worthwhile to consider targeting downstream of ACE/Angiotensin II/
AT1R axis, such as IL-6-STAT3 axis [34] to combat the observed cyto-
kine storm in COVID-19 in order to prevent lung inflammation and end
organ damage.

3. ACE2/MasR axis

ACE2, Ang-(1–7) and Ang-(1–7) receptor Mas are the constituents of
the other arm of the RAS system which counteracts and attenuates the
effects of ACE-Ang II-AT1R axis [43,44]. ACE2 derives vasodilatory
peptide Ang-(1–7) from Ang II following a cleavage activity. This va-
sodilatory peptide has anti-proliferative, anti-thrombotic and anti-in-
flammatory activities [45–47].

Ang-(1–7) reduces the expression of p38 MAPK and NF-κB and in-
flammatory factors such as IL-6, TNFα and IL-8 [48–51]. Thus, Ang-
(1–7) per se has an anti-inflammatory effect and ameliorates in-
flammatory damages, as revealed in several animal studies [52,53]. It
has been shown that Ang-(1–7) reduces inflammatory cardiac injury in
diabetic hypertensive rats [52] and glomerular involvement in me-
sangial proliferative glomerulonephritis (MPGN) rat models [53].

The protection of vascular endothelium and renal tubular cells,
diuresis and vasodilation-dependent Ang-(1–7) effects occur via MasR
[54,55]. Mas receptors express in the epithelium and bronchial smooth
muscle; therefore, Ang (1–7) could modulate acute and chronic in-
flammatory processes in the lung via activation of MasR [56]. A range

Fig. 2. ACE/Angiotensin II/AT1R and ACE2/
MasR axis. The SARS-CoV-2 induced imbalance
of ACE2/ACE that results in AT1R-mediated in-
flammatory response which will be accompanied
with activation of the complement system,
MAPK and NF-kB. The decrement of Ang (1–7)
following SARS-CoV-2-mediated ACE2 down-
regulation results in attenuation of MasR func-
tion. The MasR modulates AT1R-mediated in-
flammatory cytokine responses. Ang-(1–7) mod-
ulates the activity of ERK 1/2 via MasR. ERK 1/2
pathway induces production of IL-10, as an anti-
inflammatory cytokine. Ang II, TLR2, TLR4,
TLR9, and AP-1 transcription factor induce TGF-
β expression. TGF-β has a role in the differ-
entiation of T helper 17 cells from naive CD4+
T-cells.
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of physiological effects of Ang- (1–7) is present in different tissues such
as heart, brain and kidney by its action on MasR [57].

Ang-(1–7) also attenuates Ang II induced intercellular adhesion
molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and
MCP1 expression by MasR activation leading to inhibition of the
p38MAPK and NF-κB pathways [58].

ERK 1/2 pathway modulates production of IL-10 [59] that induces
differentiation of T-helper toward Th2-type. Th-2 regulates immune
responses by producing anti-inflammatory cytokines like IL-4, IL-5, IL-9
and IL-13 [60]. Additionally, IL-10 is an anti-inflammatory cytokine
that may be involved in the prevention of tissue damage [61,62]. Ang-
(1–7) modulates the activity of ERK 1/2 (Fig. 2) [63–65].

Therefore, Ang-(1–7) has an anti-inflammatory function via mod-
ulation of NF-κB, MAPK and ERK 1/2 pathways. Hence, it may be
proposed that SARS-CoV-2 associated suppression of ACE2, which
would be accompanied with reduction of all Mas receptor-mediated
functions, leads to accentuation of the cytokines release and frank in-
flammatory responses. Because Ang-(1–7) exerts a critical role in
counteracting the pro-inflammatory effect of RAAS, protecting from
endothelial cell activation and resulting lung damage from in-
flammatory mediators in the cytokine storm, the administration of Ang-
(1–7) or one of its similar agents to patients with COVID-19 pneumo-
nitis has been suggested [35,66].

4. ACE2 /DABK/ bradykinin B1 receptor axis

The kinin-kallikrein system includes kininogen, kallikrein enzyme,
bradykinin (BK-1–9 or BK), and [des-Arg9]-BK or DABK [67,68]. The
active products of this system interact with two distinct G-protein
coupled receptors, the bradykinin B1 receptor (BKB1R) and bradykinin
B2 receptor (BKB2R); the main ligand of BKB1R is DABK and the ligand
of BKB2R is BK [69,70]. BKB1R could hardly be detected in peripheral
tissues in normal states; however, it is expressed on the cell types in-
volved in inflammation. Therefore, it is an inducible pro-inflammatory
receptor [71]. The expression of BKB1R, as a specific receptor of bra-
dykinin pathway, is highly sensitive to inflammatory mediators such as
lipopolysaccharide (LPS) and interleukins [70,72–74]. It is also up-
regulated by cytokines such as IL-1B and TNFα [75–77]. IL-2, IFNɣ,
epidermal growth factor (EGF), and oncostatin increase the rate of
BKB1R receptor mediated response [77–80]. It should be mentioned
that IL-1B and TNFα-induced BKB1R expression is related to NF-κB
activity [81]. Sodhi et al.[82] showed that activation of BKB1R en-
hances the neutrophil attraction to tissue by release of chemokine C-X-C
motif chemokine 5 (CXCL5). Activity of this receptor leads to expres-
sion of FGF-2 [83], and to increased levels of IL-1B [84] and MCP1
(Fig. 3) [85].

DABK is a known pulmonary inflammatory factor [86–89]. It is
interesting that ACE2 also cleaves terminal residue of DABK [90,91].
This reaction results in deactivation of DABK. Therefore, it could be
postulated that COVID-19-induced reduction of ACE2 activity would be
accompanied with increased activity of DABK and the resulting ac-
centuation of the aforementioned inflammatory cascade, leading to
increased cytokine release. Hence, targeting the ACE2 /DABK/ Brady-
kinin B1 Receptor axis has been suggested by some authors [92,93]. to
prevent or control ARDS in patients with severe COVID-19. Although
several BKB1 antagonists have passed phase II clinical trials, none have
been approved yet for clinical use [71].

5. C3a-C3aR/C5a-C5aR axis

The complement system is an ancient system that contributes to
innate immune response. This system includes many proteins and
cleavage products that plays a key functional role in defense against
microorganisms including viruses. The viral inactivation by the com-
plement cascade involves virus uptake and clearance by phagocytic
cells, coating virions resulting in prevention of attachment with their

receptors, virus lysis by pore formation, and destruction of its mem-
brane by membrane attack complex formation (C5b-9) [94].

Following viral-induced complement cascade activation, in-
flammatory processes are promoted. Complement factor 5a (C5a) is the
strongest inflammatory peptide in the complement cascade that induces
release of pro-inflammatory cytokines [95–98]. ]. C5a can also induce
secretion of TNF-α [99,100]. Terminal products of the complement
cascade can induce the production of cytokines such as TNF-α and IL-1
[98,101–104]. Terminal complement component C5b-9 induces release
of IL-6 via activation of redox-sensitive transcription factor NF-κB and
Activator Protein-1 (AP-1) [105] and Monocyte Chemoattractant pro-
tein-1 (MCP1) from vascular smooth muscle cells [106]. Also, the in-
creased production of C3a leads to production of pro-inflammatory
cytokines such as IL-1, IL-6 and TNF-α [107].

The involvement of the complement system in the pathogenesis of
syncytial virus infection, MERS-CoV and SARS-CoV has been examined
in several studies [108–110]. The hyperactivation of complement
components including C5a in sera and C5b-9 in lungs was observed in
MERS-CoV-infected hDPP4-transgenic mice. The lung and spleen-in-
duced pathological damages and inflammatory responses were alle-
viated through blockade of the C5a–C5aR axis in those transgenic mice
[110].

Gralinski et al. [109] showed that mice models deficient in C3(C3-/-
) loads in the lung had milder SARS-CoV induced pathologic features
such as better respiratory function, lower weight loss, reduced patho-
logic findings in respiratory system, and lower circulatory and tissue
cytokines and chemokines, despite equal lung viral loads compared to
the controls. These results showed that although the complement
system had no role in virus replication, activation of complement
system in the lungs of SARS-CoV infected mice might lead to immune
mediated damages in the lungs [109].

The complement cascade can be activated by the lectin pathway
(Fig. 4). By priming the immune system and enhancing clearances of
viruses and virus-infected cells [111] ], the lectin pathway may also be
involved in COVID-19 pathogenesis. Recently, Gao et al. [108] reported
in a very interesting study the involvement of complement cascade
aberrant activation in the pathogenesis of SARS/MERS-CoV or SARS-
CoV-2 via viral nucleocapsid (N) protein-mediated MASP-2 auto-acti-
vation and binding to mannose-binding lectin (MLB). MASP-2 is the
main serine protease in the lectin pathway that induces downstream
complement cascade via the MLB pathway resulting in accelerated in-
flammatory responses and lung damages. In another arm of the afore-
mentioned study, the contribution of SARS-CoV-2 N protein in activa-
tion of the complement cascade was investigated in lungs of patients
who expired with COVID-19. Not only were deposition of the comple-
ment components including C3, C3a and C5b-9 observed in lung au-
topsies, but elevated circulatory levels of C5a were also reported in
severe cases of COVID-19 [108].

Magro et al. [112] reported a pauci-inflammatory changes and lack
of viral cytopathic effects accompanied with heavy deposition of C5b-9,
C4d and MBL-MASP2 in lung septal vasculatures of 5 patients with
COVID-19-induced respiratory failure, indicative of unrestrained acti-
vation of the alternative and lectin cascades in these patients.

Given the above animal and clinical studies, it is tempting to target
the components of complement in severe COVID-19. A promising
clinical response including increased lung oxygenation and alleviation
of systemic inflammation was reported in two patients with COVID-19
who received an anti-C5a antibody [108].

C5a, as the most potent complement derived mediator of in-
flammation in response to infections, increases production of IL-6,
TNFα and IL-1 from Toll-Like Receptor (TLR-2, TLR-4, TLR-9) stimu-
lated macrophages [113,114]. However, the C5a-C5R axis inhibition by
the available pharmaceutical agents would be partial, and the activity
of residual terminal complement components might remain. Therefore,
targeting the upstream activators of the complement cascade such as
C3a-C3aR axis may be more effective in restraining the uncontrolled
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complement pathway activation in severe COVID-19 [115]. Very re-
cently, the compstatin-based complement C3 inhibitor AMY-101 was
administered to a patient with ARDS due to COVID-19, in which very
good clinical responses with a high level of safety were reported [116].

The overall clinical benefits of targeting the C3a-C3aR/C5a-C5aR
axis in order to control maladaptive immune-inflammatory con-
sequences of the complement pathways in severe COVID-19 remains to
be clarified in the near future.

6. Covid-19 cytokine storm is a complex network

The Covid-19 cytokine storm, like the other cytokine storms in in-
fectious and non-infectious conditions, may be considered as a complex
network. The complex network of the cytokine response was described
by Tisoncik et al. [7] as “a series of overlapping networks, each with a
degree of redundancy and with alternative pathways”.

Our aforementioned pathogenesis of the so-called COVID-19 cyto-
kine storm through the four described distinct axes clarified that this
cytokine storm complex network has many components which might
cross-talk with each other in multiple known and unknown interfaces.
These interactions in a network state imply the complex nature of the
COVID-19 cytokine storm. The dynamic equilibrium of the network

components could be disturbed at multiple sites to emerge an untoward
behavior. In COVID-19 cytokine storm, this perturbation is initiated via
attachment of the SARS-CoV-2 spike protein to its receptor, ACE2,
followed by the ACE/Ang II/AT1R axis activation leading to hyper-
activation of NF-κB by IL-6 STATs axis [34]. In the normal dynamic
equilibrium state, the ACE/Ang II/AT1R axis activation is counter-
balanced by ACE2/MasR axis and production of Ang-(1–7) that reduces
the expression of p38 MAPK and NF-κB and inflammatory factors such
as IL-6, TNFα and IL-8 [49–51]. However, SARS-CoV-2 associated
down-regulation of ACE2 suppresses these immunomodulatory effects,
leading to accentuation of the cytokine release response.

We currently know that DABK is a pulmonary inflammatory factor
whose deactivation by ACE2 is deranged by COVID-19-induced reduc-
tion of ACE2 activity. This derangement is followed by ACE2 /DABK/
Bradykinin B1 Receptor axis activation that creates a pro-inflammatory
synergistic effect for SARS-CoV-2 associated ACE/Ang II/AT1R axis
activation. The resulting effect would be a more inflammatory state,
neutrophil recruitment and enhancement of pathological pulmonary
changes that are observed in ARDS of severe COVID-19.

We have already discussed the involvement of the complement
system in the pathogenesis of SARS-CoV-2 via its nucleocapsid (N)
protein-mediated MASP-2 auto-activation and binding to MLB in the

Fig. 3. ACE2/Bradykinin B1R/DABK axis. Down-regulation of ACE2 by SARS-CoV-2 leads to increased activity of [des-Arg9]-BK (DABK) with resulting increased
inflammatory cytokine responses. Safotibant is a promising drug to antagonize BKB1R.
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lectin arm of C3a-C3aR/C5a-C5aR axis [108]. However, the increased
production of Ang II and activation of AT1R may be accompanied with
pro-inflammatory response via activation of the complement cascade
including C5a, C5b-9 [23]. This implies a cross-talk between ACE/An-
giotensin II/AT1R axis and the complement system.

Similar to other complex networks, elements from the complex

network of the COVID-19 cytokine storm may experience much cross-
talk with elements from known and unknown pathways and networks.
For example, Ang II as an element from ACE/Ang II/AT1R induces TGF-
β expression [22,117]. TGF-β has a role in the differentiation of T
helper 17 cells from naive CD4+ T-cells. Th-17 cells generate IL-17,
GM-CSF, IL-21 and IL-22. IL-17 itself promotes the production of a vast

Fig. 4. The complement system activation and its inhibitors. The complement system is activated through classical, lectin and alternative pathways. The nucleocapsid
protein of SARS-CoV-2 results in aberrant production of C3 through MASP-2 mediated activation of mannose-binding lectin (MBL).
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amount of pro-inflammatory cytokines and chemokines [8,118]. IL-17
was among the cytokines that were significantly correlated with the
lung injury Murray score and disease severity in COVID-19 [119]. An
increment of the highly pro-inflammatory CCR6+ Th17 in CD4 T cells
was reported in COVID-19 associated with ARDS [9]. Therefore, tar-
geting IL-17 and T helper 17 responses in the cytokine storm of COVID-
19 have been suggested [8,118].

From a unifying point of view, systems medicine approaches are
required to understand the interactions among the different elements of
the complex network of the COVID-19 cytokine storm. Undoubtedly,
the clarification of hierarchy of the components of this complex net-
work across different organizational levels will expand our arma-
mentarium of treatments to tackle COVID-19.

7. Targeting cytokine storm

Therapeutic plasma exchange is a well-known therapeutic option
that can be considered in the treatment of autoimmune diseases. The
beneficial effect of this modality works through elimination of auto-
antibodies, complement components, immune complexes and cyto-
kines. Therefore, this option may be valuable in the treatment of severe
COVID-19 [120]. However, application of this therapeutic modality is a
general approach to confront the cytokine storm. Hence, other ap-
proaches may be considered in the treatment of the COVID-19 driven
cytokine storm in order to protect lungs from injury (Table 1).

According to the aforementioned axes which may be involved in the
cytokine storm of severe cases of COVID-19, some potential targets
could be considered as therapeutic options.

The first one is recombinant human ACE2. There are some trials
regarding the efficacy and safety of this agent in clinicopathological
settings related to ACE2 decrement such as congestive heart failure
(CHF) [121], ARDS [122,123], and lung injury due to viral illness such
as respiratory syncytial virus (RSV) [124]. The reported findings about
safety and efficacy were promising. Very recently, Monteil et al.[125]
reported that human recombinant soluble ACE2 (hrsACE2) can prevent
entry of SARS-C0V-2 to the human blood vessel organoid and human
kidney organoid; this finding may suggest a highly compelling ther-
apeutic intervention to protect lung injury in COVID-19.

We suggested ACE2/Bradykinin/DABK may be involved in the in-
flammatory response of SARS CoV-2; therefore, blockade of this axis by
inhibiting BKB1R may ameliorate a part of the cytokine storm which
occurs in COVID-19 infection. LF22-0542 (Safotibant) is a BKB1R an-
tagonist with promising anti-inflammatory results [126,127]. Several
clinical trials have been conducted to evaluate the effect of this drug in
multiple medical settings; they have had promising results (Fig. 3) [71].

Regarding the pivotal role of the complement system in the cytokine
storm and activation of Th-17, every effort should be made to suppress
the activation of this elegant cascade. C5a, as a potent component of

this system, is a good target for alleviation of pro-inflammatory re-
sponses to severe COVID-19. Eculizumab is a monoclonal antibody with
high affinity to C5 near its cleavage site [128]. This agent prevents the
formation of C5a and C5b-9. It has been reported that this monoclonal
antibody has beneficial effects in the treatment of diseases where their
pathogenesis are based on complement activation [129]. In a pre-
liminary study conducted by Gao et al. [108], two patients with severe
COVID-19 received anti-C5a antibodies. Although the final effect of this
type of therapeutic modality remains to be published, the two patients
showed dramatic clinical responses [108].

C3 blockade is another component of the complement system that
can be targeted. Compstatin is a cyclic inhibitor of C3 cleavage [129]
that may be considered in severe COVID-19. Complement Receptor1
(CR1) is a cofactor to inactivate C3b and C4b and inhibits the activation
of C3 through all active pathways. The recombinant form of soluble
CR1 is developed, which can block complement activation in serum
samples from patients with C3-glomerulonephritis (Fig. 4) [130].

In conclusion, accumulating evidence suggests that SARS-CoV-2
driven ACE2 down-regulation leads to an array of complex and inter-
twined molecular interactions via at least four axes consisting of dys-
regulation of the ACE/angiotensin II/AT1R axis, attenuation of ACE2/
MasR axis, increased activation of ACE2/bradykinin B1R/DABK axis,
and activation of the complement cascades, resulting in the observed
cytokine storm in severe COVID-19.

The elucidation of molecular events of the aforementioned axes
which might be involved in the pathogenesis of ARDS and lung injury in
fulminant infections with SARS-Co-V-2 will promise novel therapeutic
options for prevention or attenuation of the inflammatory cytokine
release response that are observed nowadays in patients with severe
COVID-19.
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