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Introduction

The 15th Annual Meeting of the Association for Cancer Immu-
notherapy (CIMT) took place May 10–11, 2017, Mainz, Ger-
many during which scientists and CIMT members from all
over the world not only celebrated CIMT`s 15th Anniversary
but also had the chance to present and discuss the past and cur-
rent status, and the future of cancer immunotherapy. This
annual symposium report highlights and summarizes the ses-
sions held in various fields of this promising cancer therapy.

Keynote

Harnessing the immune system to attack tumor cells has been a
holy grail of cancer therapy. The great efforts put into understand-
ing how the activity of T lymphocytes is controlled have begun to
pay off, checkpoint inhibitors not only marked the beginning of a
new era of cancer immunotherapy termed immune-oncology, but
became the forerunners in revolutionizing cancer therapy. In his
keynote address, Alexander Eggermont (Gustave Roussy Cancer
Campus Grand Paris, Villejuif, France) revisited the checkpoint
blockade success story by focusing on key observations, positive as
well as negative, made from the plethora of clinical trials pushed
forward for the evaluation of CTLA-4 and PD-1/PD-L1 blockade.
He deduced the success of checkpoint blockade from the realiza-
tion that treatment outcome always depends on the presence and
the quality of the immune response, even in therapies long thought
to act independently of the immune system, such as chemotherapy
and targeted therapies. Indeed, the efficacy of chemotherapeutic
agents strongly depends on their ability to induce immunogenic
cell death.1-3 Complete responders to BRAF inhibitors display a
gene signature profile before treatment enriched for CD8 effector T
cells, cytolytic T cells, NK cells and antigen presenting cells,4

strongly indicating that BRAF inhibitors feed into the immune sys-
tem and that a “hot” tumor may be a prerequisite for clinical bene-
fit. Eggermont further presented an overview on how chemo-,
radio- and targeted therapies are able to support immune action in
different ways, and emphasized that the choice of combination

partner with immunotherapy should be made dependent on that
partner’s ability to promote immunogenic cell death.

The most apparent and essential difference in the mecha-
nism of CTLA-4 and PD-1/PD-L1 blockade is their site of
action. While CTLA-4 acts mostly central in the lymph nodes
and actively prevents activation to counter autoimmunity, PD-
1/PD-L1 hinders function of activated T cells in the periphery
and the tumor. Despite its stunning effects in responding
patients, including those with minimal residual disease, serious
adverse effects are associated with the response to CTLA-4
blockade.5 Efficacy increases with dose, and so does the fre-
quency of treatment- as well as immune-related toxicities of
grade 3–5 (especially those of gastrointestinal, endocrine,
hepatic and neurologic origin), leading to discontinuation and
even death in several patients. These new toxicities in oncology
can be controlled, but early identification and intervention is
extremely critical.

PD-1/PD-L1 blockade, on the other hand, seems to lack the
shortcomings of CTLA-4 blockade but to retain the benefits,
providing higher efficacy (overall survival in responding mela-
noma patients of 45 % after 3 years) and much lower toxicity.
In addition, PD-1 blockade has shown clinical efficacy in many
cancer entities apart from melanoma, such as squamous and
non-squamous non-small cell lung cancer (NSCLC), head and
neck squamous cell carcinoma (SCCHN), renal cell carcinoma
(RCC), bladder, gastric, esophageal and liver cancer, mesotheli-
oma, Merkel cell carcinoma (MCC) and Hodgkin’s lymphoma
(FDA-approved or under approval).

Still, increasing the efficacy and durability of responding
patients is only one objective of immune-oncology - more
importantly, the fraction of responding patients needs to
increase. How to predict responders is one of the key questions
in checkpoint blockade therapy. The “cancer immunogram” as
proposed by Blank et al.6 offers a framework for describing the
different interactions between cancer and the immune system
in individual cases, and intends to focus biomarker research
and to help guide treatment choice. PD-L1 expression is sug-
gested to be of major prognostic value. In melanoma, PD-L1
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expression in pretreatment tumors can be correlated with
response rate, progression-free survival and overall survival;
however, patients with PD-L1 negative tumors can also achieve
durable responses with PD-1 blockade.7 In other cancers, such
as RCC, bladder cancer and MCC, PD-L1 expression does not
seem to play a role at all. In a third group comprising NSCLC,
SCCHN and especially Hodgkin lymphoma, the expression
level of PD-L1 correlates with objective response rates and
overall survival (KEYNOTE-010,8 CheckMate-1419,10), empha-
sizing the importance of stratification according to PD-L1
expression in clinical trial designs for these cancer types. Other
parameters of the cancer immunogram, inhibitory tumor
metabolism (e.g. LDH, glucose utilization), soluble inhibitors
(e.g., IL-6, CRP), and immune cell infiltration (e.g., CD8 T cells,
T regulatory T cells, eosinophils) provide hints, but are not at
all sufficient for prediction of response. According to Egger-
mont, tumor sensitivity to immune effectors (e.g., MHC
expression, IFNg sensitivity) may be misleading as a prognostic
parameter as immunotherapy may select for escape variants.
Tumor foreignness, or mutational load, on the other hand, is
predictive for the response to checkpoint blockade in mela-
noma and NSCLC patients.11,12 DNA-mismatch repair-defi-
cient colorectal cancer (CRC) patients are more likely to
respond,13 and complete or partial responses were observed in
bladder cancer patients with higher mutational load combined
with higher CD8 T cell infiltration and effector gene expres-
sion.14 On sequential CTLA-4 and PD-1 blockade, T cell clon-
ality was found to predict response to PD-1 but not CTLA-4
blockade, and high copy number loss was associated with poor
response independent of mutational load, suggesting copy
number loss as a putative resistance mechanism.15 Other inves-
tigators found that acquired resistance to PD-1 blockade was
associated with mutations in interferon receptor signaling and
antigen presentation.16 Eggermont closed the biomarker sec-
tion by stating that all parameters discusssed in the immuno-
gram may serve as predictive biomarkers, but that prospective
trials are needed for their validation. He predicted that compre-
hensive immunoscoring and profiling may have an important
role in this field.

Is the combination of CTLA-4 and PD-1/PD-L1 blockade of
any benefit? The CheckMate069 trial (phase II, randomized)
for unresectable stage III or IV melanoma demonstrated a
median change from baseline tumor burden of ¡70% in the
ipilimumab/nivolumab combination arm compared with C5%
with ipilimumab alone at 2 y of follow-up. A current update to
Checkmate067 (phase III, randomized) for unresectable or
metastatic melanoma produced different interim results
depending on end point parameter: response rates and progres-
sion-free survival were highest for the combination, followed by
nivolumab alone and ipilimumab alone. Overall survival, how-
ever, was similar with the combination and nivolumab alone.
When retrospectively stratifying according to PD-L1 expres-
sion, overall response rates were highest with the combination
when PD-L1 expression was negative (< 1 % PD-L1 expres-
sion), but were similar to nivolumab alone when PD-L1 was
expressed (� 1 % PD-L1 expression). Regarding safety, nivolu-
mab alone was much less toxic than ipilimumab alone or the
combination.17 Consequently, stratification according to PD-
L1 expression may obviate the need for CTLA-4 and minimize

the occurrence of severe adverse events in melanoma therapy.
Preliminary results from the ongoing CheckMate012 NSCLC
trial demonstrated efficacy across all tumor PD-L1 expression
levels for the combination and nivolumab alone, with higher
objective response rates with the combination. Interestingly,
objective response rates increased with PD-L1 expression espe-
cially in the combination arm where up to 90 % were reached
when PD-L1 was expressed at more than 50%.18

Looking ahead, Eggermont postulated that combination of
immunotherapy with other drugs (immuno-combos) will dom-
inate the scene for years to come. Combination of pembrolizu-
mab with IDO inhibitor indiximod, for example, provided
durable and ongoing responses in a phase II melanoma trial
similar to the combination of ipilimumab and nivolumab,
albeit with much lower toxicities (KEYNOTE-00619). Combi-
nation with agonistic antibodies, e.g., 4–1BB (urelumab), is also
under clinical investigation. Breaking tolerance is the primary
prerequisite, and PD-1/PD-L1 blockade will be the primary
backbone while CTLA-4 may remain key to raise the tail.

Clinical translation, cancer vaccination

Christian Ottensmeier (University of Southampton) opened the
first session by revisiting the clinical breakthrough in the treat-
ment of lung cancer by immunotherapy, underlining the suc-
cess of checkpoint blockade.20 However, predictive biomarkers
are still limited. He highlighted the tumor-infiltrating lympho-
cyte (TIL) transcriptome as a container of key diagnostic infor-
mation, since gene expression profiles reveal patients who are
likely to respond to checkpoint blockade with late or even no
relapse. Ottensmeier and his group set out to break down the
whole immune transcriptome information by defining core
transcriptional profiles of CD8 TILs in NSCLC, human papillo-
mavirus (HPV)-positive and HPV-negative HNSCC. Core sig-
natures are conserved across these different tumor types, while
lymphocyte infiltration determines the expression of immuno-
therapy response genes. This indicates that different treatments
are not restricted to certain types of cancer but need to match
the individual patient. Furthermore, Ottensmeier found that
CD8 TILs in highly infiltrated NSCLC gain a tissue-resident
memory (TRM) signature, characterized by expression of
CD103. These TILs are PD-1-positive and capable of prolifera-
tion and cytotoxicity, suggesting that they are responsible for a
therapeutic response. Consistently, expression of CD103 serves
as a better predictor of survival than CD8 expression in lung
cancer. Ottensmeier closed his talk by pondering whether phe-
notype of TILs may be more important than degree of tumor
infiltration, and whether TRM may be actively driven by
immunotherapy.

Vaccination with autologous DCs can induce strong de novo
immune responses with clinical benefit for melanoma patients
and has proven to be safe and feasible.21 According to Carl Fig-
dor (Radboud University), limiting issues such as labor-inten-
sive cell culture and product variations can be overcome by
synthetic solutions. Figdor and colleagues develop synthetic
DCs (sDCs) that mimic the features of natural DCs. Hence,
sDCs need to accommodate modules that enable migration to
the lymph nodes, presentation of antigens and provide neces-
sary costimuli. He stated that a large interaction area between
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T cells and sDCs as well as molecular movement are essential to
form an immunological synapse. Figdor’s approach is therefore
based on polymers that form flexible, filamentous sDCs, which
exhibit remarkable T cell activation capacity after tuning
length, stiffness and anti-CD3 antibody density.22 Loading of
anti-CD3 and anti-CD28 antibodies on the same polymer
resulted in superior T cell activation relative to the antibodies
coupled to different polymers or soluble antibodies.23 This find-
ing is particularly interesting as it suggests that the T cell recep-
tor (TCR) complex and CD28 need to be in close proximity for
optimal T cell priming. A deeper look into formation of the
immunological synapse, optimization of coupling methods and
orientation of molecules, and addition of advanced T cell mod-
ulating moieties warrants further understanding.

The session continued with advancements in the field of
cancer vaccination when Ugur Sahin (BioNTech) presented the
latest progress in the development of individualized RNA vac-
cines. Initially, he stressed the value of mutanome targeting to
deal with tumor heterogeneity and individual immune profiles.
Summarizing preclinical findings, he showed that mutations
identified by next-generation sequencing are frequently immu-
nogenic and that a high frequency of epitopes is MHC II-
restricted.24,25 The therapeutic efficacy of MHC II-restricted
neoantigens is based on alteration of the immune profile in the
tumor microenvironment and on CD40L-mediated CD4 T cell
help, which induces CD8 T cell responses against unrelated
antigens by antigen spreading.25 After explaining standardized
processes for the preparation of high-quality personalized drug
products, Sahin reported on the outcome of the IVAC MUTA-
NOME trial. Thirteen patients with advanced melanoma
received personalized RNA vaccination, which elicited robust
CD4 and CD8 T-cell responses against neoantigens in all
patients. The vaccine showed an excellent safety profile along
with a reduced metastatic recurrence rate after treatment. One
patient, however, showed progression after temporary disease
control. This was associated with deletion of both B2M alleles,
which resulted in immune escape through loss of MHC I
expression, indicative for high selective pressure instigated by
the therapy. Sahin announced that the next clinical trial would
utilize liposomal RNA vaccines for systemic targeting of DCs,
which has shown superior activity over intranodal application
of naked RNA.26 Finally, as a consequence of preclinical and
clinical observations, Sahin stated that a combination therapy
of RNA vaccination with PD-1/PD-L1 blockade would be
developed in a collaborative study with Genentech, with clinical
evaluation starting by the end of 2017.

Adoptive T-cell therapy, innate immunity,
cancer epigenetics

Johanna Olweus (University of Oslo, Norway) first summarized
recent advances in adoptive cell therapy. Tumor infiltrating
lymphocyte (TIL) therapy relies on isolation, expansion and
reinfusion of autologous TILs, which led to 40 % objective
responses in treated (24 % in all enrolled) patients in several
clinical trials between 1994 and 2016.27 Autologous T cells can
also be genetically modified, as is the case for chimeric-antigen
receptor (CAR) therapy. Especially in acute lymphoblastic leu-
kemia, these cells are highly effective with complete response

rates between 70 and 90 %.28-30 Another modality for engineer-
ing T cells is to target the cancer mutanome, the sum of all
mutations in a tumor, which could potentially be immunogenic
(neoantigens). However, only 1–3 % of neoantigens were so far
identified to be recognized by patient TILs.31-33 To broaden T-
cell reactivities against neoantigens independently of patient
immunity, Olweus’ and Ton Schumacher’s groups screened
healthy donors for responses against the mutanome of 3 mela-
noma patients. In this way, several T-cell receptors were found
that specifically recognized tumor mutations that were ignored
by the respective patient tumor-infiltrating T cells.34 Further,
neo-antigens showed more stable MHC-I binding than non-
immunogenic peptides, a fact that may be used to better predict
responder peptides for T cell recognition. In another approach
to identify novel T cell epitopes, Olweus and colleagues devel-
oped a sensitive and cost-effective MAP-array to detect autoan-
tibodies, which might reflect T-cell reactivities, as T and B cells
cooperate in immunity. These findings might help improve
TCR construct design and specific cancer targeting to finally
increase the number of eligible patients for therapy with engi-
neered T cells.

Eric Vivier (Centre d’Immunologie de Marseille-Luminy,
France) introduced a class of innate immune cells of which
most were only recently discovered and classified as innate
lymphoid cells (ILCs). The ILCs can be subdivided into subsets
analogously to adaptive T cells: the helper-like ILCs, ILC1, 2
and 3, which express T-bet, GATA-3 and RORgt, respectively35

as well as the EOMES-positive killer ILCs discovered already in
1975 as Natural Killer (NK) cells.36,37 Vivier then continued to
highlight therapeutic concepts for targeting especially the NK
subset. He reported intermediate results of a small phase I clini-
cal trial using autologous NK cell adoptive transfer for the
treatment of mostly refractory AML patients (NCT01853358).
There was no control arm, but 2-year survival rates were 78 %
and adverse graft-versus-host disease was lower than in other
donor-lymphocyte infusion studies. Further, an antibody
blocking the function of the inhibitory receptor KIR on NK
cells was successful in treating mouse model tumors expressing
class I, which are otherwise resistant to NK cell attack.38-40 Liri-
lumab is currently tested in several clinical studies, with an
objective response rate of 24 % in a phase I/II study in combi-
nation with nivolumab in patients with SCCHN
(NCT01714739), which would mean a doubling of the response
rate compared with nivolumab monotherapy (Checkmate
14141). Treatments targeting other ILC subsets have not been
developed yet, but ILCs express immune checkpoints that
might potentially be targeted.42

Manel Esteller (University of Barcelona, Spain) highlighted
the lacking interaction between the fields of immunotherapy
and cancer epigenetics. Epigenetic drugs inhibit DNA methyl-
transferases and histone-related enzymes such as histone deace-
tylases and acetylases, sirtuins or histone methylases, and thus
alter expression of a variety of genes.43 However, whether they
activate the immune system within tumors is currently
unknown. These drugs eventually work, in part, because cancer
cells show epigenetic alterations that silence tumor suppressor
genes by DNA methylation of so-called CpG islands in regula-
tory regions.44 Epigenetic alterations not only occur between
cancer and normal cells, but also among patients, tumors are
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rather heterogeneous. Around 10 % of some 500,000 analyzed
CpG sites were differentially methylated in different parts of
colorectal cancer such as the central bulk and the invasive
front.45 Epigenetic profiling can also be used for cancers of
unknown primary, cancers of very poor prognosis where
metastases can be detected but the original site remains
obscure. In a retrospective study, Esteller’s team developed
algorithms to identify the original tissue of lesions of unknown
primary based on DNA methylation profiles.46 Finally, Esteller
closed the circle by introducing a project where epigenetics and
tumor immunotherapy converge: a multicentric study that
envisions to uncover epigenetic determinants of effective treat-
ment with immune checkpoint inhibitors with the aim to better
predict therapeutic response in human tumors.

Antibodies, helper T-cell physiology

€Ozlem T€ureci (Cluster for Individualized ImmunoIntervention,
Germany) opened the session by outlining the development of
IMAB362, an investigational first-in-class antibody drug spe-
cific for the tight junction protein Claudin 18.2 (CLDN18.2).
For many years monoclonal antibody (mAb) development in
solid cancers focused on blocking growth factor pathways.
Immune checkpoint inhibition became a second meanwhile
clinically validated and successful concept. With IMAB362, a
third paradigm is pursued, namely to select mAb targets based
on cancer cell specificity rather than critical biological function
and use mAbs for high precision recruitment of the patient`s
anti-tumoral immune-effector mechanisms. CLDN18.2 is not
expressed in normal cells except for gastric mucosa, where it is
compartmentalized within the tight junction architecture and
not accessible to IMAB362.47 However, a variety of cancer indi-
cations (e.g., gastric, esophageal, pancreatic, biliary, lung)
express CLDN18.2.48 IMAB362 exerts tumor-cell killing via
antibody-dependent cell mediated cytotoxicity (ADCC) and
complement dependent cytotoxicity (CDC) and by activating
these mechanisms modulates the tumor microenvironment.
IMAB362 is being clinically developed for 1st line treatment of
patients with CLDN18.2-positive advanced gastroesophageal
cancer. Data from a recent randomized phase II, open-label
study was presented that assessed the safety and antitumor
activity of IMAB362 in combination with standard of care che-
motherapy, which includes immunogenic cell death
inducers.49-51 Addition of IMAB362 to chemotherapy highly
significantly improved both overall and progression-free sur-
vival compared with chemotherapy alone and was generally
well tolerated with largely manageable adverse events. In the
subgroup of highly CLDN18.2-positive patients near-doubling
of the median overall survival was observed. Most importantly,
IMAB362 not only moved the median but raised the tail of the
overall survival curve. Future directions include confirmatory
clinical trials and further dissection of immunomodulatory
effects of IMAB362 associated with promoting an inflamma-
tory tumor microenvironment.

Vincenzo Cerundolo (MRC Human Immunology Unit,
University of Oxford, UK) devoted his talk to amino acid
degrading enzymes and their role in tumor immune escape.
Already in 2013, Cerundolo’s group demonstrated that acute
myeloid leukemia (AML) blasts express and release the enzyme

arginase 2 (Arg2), leading to significantly increased Arg2 serum
levels in patients with AML during disease progression and
suppression of T cell proliferation.52 Furthermore, the study
demonstrated that Arg2 expressing AML blasts are capable of
polarizing neighboring monocytes toward an M2-like immuno-
suppressive phenotype and suppress the proliferation and dif-
ferentiation of human CD34C progenitors. In the course of his
talk, Cerundolo provided insights into his unpublished follow-
up studies and elaborated how, in contrast to T cells, AML
blasts manage to thrive and survive in an Arg2 nutritionally
stressed environment. Based on differential gene expression
analysis of THP-1 and T cells upon arginine deprivation, 4 tar-
get genes involved in the arginine metabolism have been identi-
fied. Subsequent studies provided a mechanistic rationale for
the role of the identified genes in arginine deprivation-medi-
ated cancer immune escape and potential pharmacological
intervention.

Olivier Lantz (Institute Curie, France) pointed out that main
research emphasis in cancer immunology has been put on
CD8C T cells, albeit sufficient evidence for a significant role of
CD4C T cells in antitumor responses in men,53,54 and
mouse.55,56 P�eguillet and colleagues demonstrated that differen-
tiated effector T cells are present in patients with cancer and
exhibit cytotoxic features. During neoadjuvant chemotherapy
of breast cancer, an increase of CD25¡CD127¡CD4C T cells
correlated with clinical responses.57 An increased frequency of
CD25¡CD127¡CD4C T cells has been confirmed in metastatic
uveal melanoma and chronic infection. Notably, this CD4C T
cell population did not secrete TH2-related cytokines IL-10 and
IL-17 but granzyme B, indicative of their cytotoxic function.
Taken together, these data sets strongly support a significant
contribution of CD4C T cells in tumor regression. Given the
correlative nature of human studies, animal models are essen-
tial for mechanistic studies. The reasons for why antitumor
CD4C T cellresponses have been largely overseen in preclinical
studies are multifaceted. However, this may be partially attrib-
utable to the lack of suitable tumor models. Obviously, most
tumor cells do no express MHC class II molecules and deple-
tion of CD8C T cells completely abolishes tumor regression in
many transplantable tumor models. By generating an
MCA101-based tumor cell line with inducible expression of the
MHC-II restricted model antigen DBY, Flament and colleagues
demonstrated that antigen release from tumor cells results in
efficient priming of tumor-specific, polyfunctional CD4C T
cells in the tumor draining lymph node capable of circulating
to the tumor and secrete IFN-g.58 Notably, this tumor model
will be very useful to gain a better understanding of how to effi-
ciently generate antitumor CD4C T cell responses for therapeu-
tic purposes.

HLA ligandome, clinical immunomonitoring

HLA molecules present small peptide ligands that potentially
evoke a T-cell response. These candidate T-cell epitopes can be
obtained via affinity chromatography or acidic elution, sepa-
rated by liquid chromatography and analyzed by mass spec-
trometry.59,60 Using HLA ligandomics, Stefan Stevanovi�c
(University of T€ubingen, Germany) showed that the HLA
ligand profiles are very similar among primary tumor and renal
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cell cancer (RCC) metastasis.61 Importantly, HLA class I in
RCC is broadly expressed and in many cases even significantly
overexpressed compared with normal kidney tissue,62 a finding
that was reproduced for ovarian cancer. Both factors, abundant
expression of MHC molecules as well as presentation of anti-
gens in primary tumor and metastasis are crucial factors for
successful cancer vaccination. Already in 2002, Stevanovi�c and
colleagues presented a concept where HLA ligands derived
from genes overexpressed or exclusively expressed in the tumor
were probed for the ability to be recognized by T cells.63 The
so-called Xpresident� platform was used to discover multiple
shared tumor antigens which gave rise to IMA901, a peptide-
based therapeutic vaccine for RCC. Despite a promising phase
II trial,64 a larger phase III trial of IMA901 in addition to the
standard first-line therapy with sunitinib did not meet its pri-
mary end point of overall survival benefit. A different approach
is now being pursued in glioblastoma patients vaccinated
against shared as wells as neo-antigens identified by a combina-
tion of ligandome analysis with exome and RNA sequencing
(GAPVAC, NCT02149225).

The interplay between tumor biology and the anti-tumor
immune response was also the topic of Patrick Hwu (MD
Anderson Cancer Center, TX, USA) who focuses on modulat-
ing signaling pathways for improving sensitivity or overcoming
resistance to cancer immunotherapy. One way in which tumors
are able to dampen T-cell responses is by hijacking the b-cate-
nin, BRAF/MAPK or PI3K pathways. An active b-catenin path-
way was shown to correlate with low infiltration of T cells,
explained by reduced expression of CD103C DC attracting che-
mokines and a subsequent failure of T-cell priming.65 A similar
phenotype was observed in melanomas harboring the BRAF
V600E mutation. Blocking excessive BRAF signaling resulted
in reduced VEGF expression, increasing T-cell infiltration.66,67

As for BRAF mutations, aberrant PI3K/AKT signaling in
PTEN-loss tumors (PTEN blocks PI3K signaling) results in
increased expression of VEGF and correlates with lower T-cell
infiltration and reduced efficacy of adoptive T-cell therapy.68

Blocking of PI3Kb in combination with PD-1 resulted in signif-
icantly reduced tumor growth in a PTEN loss tumor model.
Trying to identify novel markers of resistance to immunothera-
pies, Hwu and colleagues screened compound, shRNA and
ORF libraries for effects on the cytotoxic capacity of autologous
tumor-reactive T cells. One compound identified, the HSP90
inhibitor ganetespib, increased T-cell mediated killing via upre-
gulation of interferon signaling and showed synergistic efficacy
with an anti-CTLA-4 antibody in mice. ShRNA mediated
knock down of glycolysis-related genes increased T-cell killing
by reducing lactic acid, the end product of glycolysis. Overex-
pression of Mex3b in tumor cells reduced HLA-I expression
resulting in limited T-cell mediated cytotoxicity. Interestingly,
a meta-analysis of melanoma patients treated with an anti-PD-
1 antibody revealed higher expression of Mex3b among non-
responders.

Especially in vaccination trials, diligent clinical immunomo-
nitoring is key, stated Marij Welters (Leiden University Medical
Center, Netherlands), who is specialized in tracking the
“wanted” and “unwanted” immune responses in cancer
patients. Beneficial responses from CD4C and CD8C T cells
can be easily identified by IFNg ELISpot or by flow cytometry-

based intracellular cytokine staining. However, the experimen-
tal protocol as well as the definition of response criteria vary
strongly between investigators.69-71 Even more difficult is the
monitoring of undesirable regulatory T cells (Tregs) or mye-
loid-derived suppressor cells (MDSC). There are at least 3 dif-
ferent definitions of Tregs72 and 10 putative MDSC subsets,73

and different laboratories apply different gating protocols to
define these cell types. In pursuit of harmonizing immunomo-
nitoring, the CIMT immunoguiding program (CIP) managed
by Welters and 7 other colleagues was initiated. The CIP pub-
lished several protocols for immunomonitoring showing that
protocol harmonization resulted in significantly reduced inter-
laboratory variation.69-73 Applying the harmonized guidelines,
Welters et al. were able to scrutinize the anti-tumor mode of
action of gemcitabine in ovarian cancer showing a therapy-
induced decrease of the Treg to T cell ratio and a reduced sub-
population of MDSCs.74

Conclusion

This year`s annual meeting was a tribute to 15 y of success for
CIMT as well as cancer immunotherapy, providing an overview
on what this type of cancer therapy with great promise can
achieve for the successful treatment of cancer. Further preclini-
cal and clinical developments in this field will also be reflected
about during the third CRI-CIMT-EATI-AACR International
Cancer Immunotherapy Conference this coming fall (Septem-
ber 6–9, 2017 in Mainz, Germany).
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