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Abstract

primers, generating 179 contigs.

3a.

Background: The quasispecies nature of HCV may have important implications for viral persistence, pathogenicity
and resistance to antiviral agents. The variability of one of the viral proteins, NS5A, is believed to be related to the
response to IFN therapy, the standard treatment for infection. In this study we analyzed the quasispecies
composition of NS5A protein in patients infected with HCV genotype 3a, before IFN therapy.

Methods: Viral RNA was isolated from samples of 12 patients: four sustained virological responders (SVR), four non-
responders (NR), and four end-of-treatment responders (ETR). cONA was synthesized, the NS5A region was
amplified and the fragments obtained were cloned. Fifteen clones from each patient were sequenced with eight

Results: Higher values for substitution (either synonymous or non-synonymous) and for distance were found in
the SVR group. However, the NR group showed relatively more non-synonymous mutations than the other groups,
owing to the higher values of dN/dS in complete NS5A and most specific regions. Overall, NS5A protein is
undergoing purifying selection, since all dN/dS ratios values are below 0.5.

Conclusions: Our study provides an overview of the genetic variability of complete NS5A protein in HCV genotype

Background
The hepatitis C virus (HCV) is among the most success-
ful of all persistent human viruses [1]. It is estimated
that the global prevalence of HCV infection is 2.2%, cor-
responding to about 130 million HCV-positive persons
worldwide [2]. The HCV genome consists of a single-
strand positive-sense RNA of approximately 9.6 Kb that
contains an open reading frame coding for a polyprotein
precursor of approximately 3000 residues. This precur-
sor is cleaved by viral and host proteinases into the viral
proteins: the structural protein core, E1, E2 and p7, and
the nonstructural proteins NS2, NS3, NS4A, NS4B,
NS5A and NS5B [3].

To date, six main HCV genotypes have been identi-
fied, which differ by about 30% in their nucleotide and
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amino acid sequences [4]. Genotypes 1, 2 and 3 and
their subtypes have a global distribution; genotype 4 is
found in Africa, genotype 5 in South Africa, and geno-
type 6 mainly in Asia [5]. In Brazil, Campiotto et al.
(2005) reported the presence of genotypes 1, 2, 3, 4 and
5 [6].

The RNA-dependent RNA polymerase encoded by the
NS5B gene is error-prone and lacks proofreading. As a
result, base changes are introduced randomly into the
viral genome [7]. Therefore, HCV replication is asso-
ciated with a high mutation rate, giving rise to a mixed
and changing population of mutants known as quasispe-
cies [4,8]. The quasispecies nature of HCV may have
important implications for viral persistence, pathogeni-
city and resistance to antiviral agents [8-11]. This is
most problematic for the infected patient, because qua-
sispecies variation confers remarkable adaptive potential
on HCV and has been implicated in the evasion and
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control of the host response to infection and in differen-
tial sensitivity to IFN therapy. The hostile antiviral host
environment may drive the proliferation of HCV “eva-
sion variants” from a pre-existing quasispecies pool or
through viral genetic adaptation [11]. However, intra-
genotype analysis of this diversity in the viral genome
shows different degrees of variation; regions such as the
5’UTR and the core are highly conserved, the non-struc-
tural regions 2, 3, 5b and the 3’'UTR are relatively vari-
able, while the envelope regions E1 and E2 and the NS4
and the NS5A genes exhibit the highest sequence diver-
sity [12]. Sequence analysis of the HCV NS5A coding
region has similarly identified specific domains that
exhibit sequence variation associated with the outcome
of IFN therapy [13].

NS5A is the nonstructural HCV protein most fre-
quently reported to be implicated in interferon resis-
tance. It is a pleiotropic protein, involved both in viral
replication and in many interactions with cellular signal-
ing pathways, including the interferon anti-viral pathway
[12]. This study analyzed the NS5A quasispecies pattern
in patients infected with HCV genotype 3 before IFN
plus ribavirin therapy, with the aim of elucidating its
molecular constitution and relationship to treatment
response.

Results

Viral load

The viral load data show that all patients presented high
viral loads, as expected for pre-treatment samples, ran-
ging from log 5.76 to log 7.03. There was no correlation
between viral load and treatment response (Table 1).

Sequencing

This study generated 15 contig sequences of the full
NS5A region from 11 patients; 14 sequences from
patient RF80 could be sequenced, totaling 179 contigs.

Table 1 Viral load.
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Quasispecies analysis

Quasispecies analysis revealed that the HCV NS5A
region was highly variable, as only three patients showed
two identical nucleotide sequences (Figure 1A). The
amino acid data showed more identical sequences owing
to synonymous substitution, as can be seen when the
nucleotide and amino acid patterns of patient RF15 are
compared. All nucleotide sequences from this patient
were different; however, the amino acid sequences
showed one of the highest degrees of conservation
(Figure 1B).

Substitutions

Nucleotide substitution analysis showed that the sus-
tained virological response (SVR) group had the highest
means of nucleotide and amino acid substitutions,
except for the amino acid sequences of regions NLS and
V3, where the end-of-treatment response (ETR) group
showed the highest values (Table 2). However, none of
the differences between groups were statistically
significant.

To identify the mutation sites in the sequences used
in this study, they were represented graphically accord-
ing to the reference sequence NZL1 (GeneBank
D17763) (Figure 2). This representation indicates that
no specific mutation could be associated with any kind
of treatment response. Figure 2 also shows that some of
the nucleotide mutations resulted in stop codons. Of the
nine stop codons found in the 179 sequences generated
in this study, the site was the same in two or more
clones in seven cases. The same stop codon sites were
found in NS5A amino acids 4 (RF31 and RF145), 166
(RF60 - 2 clones and RF145) and 447 (RF07 and
RF109). Also, the sites where the translation stop codon
was observed showed no other mutation, except for one
clone from patient RF145, which showed a mutation in
aa 447.

Patient Therapy response Viral load (Ul/ml) Log Mean SEM*
RF 015 Sustained virological responder 693411 584 5578634 +/- 2.062.880
RF 018 Sustained virological responder 10.717.120 7,03

RF 059 Sustained virological responder 6.070.135 6,78

RF 080 Sustained virological responder 4.833.870 6,68

RF 007 Non responder 569.141 5,76 2.348.652 +/- 703.684
RF 060 Non responder 3.168.112 6,50

RF 075 Non responder 3.735.050 6,57

RF 145 Non responder 1.922.304 6,28

RF 020 End of treatment responder 4.205.798 6,62 2422973 +/- 688.016
RF 031 End of treatment responder 919.193 5,96

RF 109 End of treatment responder 2.600.972 6,42

RF 119 End of treatment responder 1.965.928 6,29

*SEM: standard error of the mean
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Nucleotide Amino acid

*
"

RFI5 RFI8 RF59 RF80 RFO7 RF60 RF75 RFI45 RF20 RF31 RF109 RF119 RFI5 RFI8 RF39 RF80 RFO7 RF60 RF75 RFI145 RF20 RF31 RF109 RFi19
A. \_/ v \\_/ B. \_/ \_/
SVR NR ETR SVR NR ETR

Figure 1 Different nucleotide and amino acid sequences. Graphic representation of the different nucleotide (A) and amino acid (B)
sequences found in the samples from each patient. The response groups are denoted: SVR - sustained virological responder, NR - non-
responder, ETR — end-of-treatment responder.

Table 2 Number of mutations, genetic distance, dN, dS and dN/dS.

Regions and types of nt aa Genetic Genetic  dS ws dS bs dN dN bs dN/dS ws  dN/dS bs
treatment response  mutations mutations distance distance ws
ws bs

NS5A

SVR 29.85 7.03 0.022 0.064 0.0739 0.2519* 0.0075 0.0182* 0.0876 0.0672*
NR 1341 465 0.01 0.053 0.0272 0.2075* 0.0054 0.0155* 0.1365 0.0761*
ETR 2621 577 0.0193 0.056 0.0506 0.2128* 0.0061 0.0164* 0.0759 0.0734*
CRS

SVR 1.65 044 0.0203 0.055 01451 03114*® 00192 0.0412* 0.1382% @ 0.1181*
NR 0.75 0.20 0.0093 0.044 00769  02303*© 00239 0.0203* 02917* ¢ 0.0796*
ETR 1.25 0.26 0.0155 0.037 0119 0.1797* > *< 00233 0.0223* 0.1596 0.1010*

PKR-bd

SVR 521 1.23 0.0263 0.062 0.1308 0.2955*% 0.0156 0.0171* 0.1028 0.0376* °
NR 2.08 0.85 0.0105 0.055 0.042 0.2857* 0.0156 0.0147* 04569 0.0390* ©
ETR 355 0.73 00178 0.048 0.092 0.2482* 0.0089 0.0098* 01343 00336* P * ¢

ISDR

SVR 3.04 0.60 0.0253 0.061 0.1696 0.3096* 0.0269 0.0219* 0.151 0.0472*
NR 117 040 0.0098 0.051 0.0537 0.2766* 0.022 0.0174* 04457 0.0521*
ETR 201 0.13 0.0168 0.051 0.1335 0.2814* 0.0109 0.0111* 0.1485 0.0390*
NLS

SVR 0.58 0.10 0.0213 0.099 0.2658 0.4935* 00617  0.0598* ¢ 04523 0.1143*
NR 0.20 0.03 0.0075 0.068 0.1399 0.2529* 0.0541  0.0555* ° 0.3864 0.2166*
ETR 047 0.16 0.0173 0.063 0.2367 0.2102* 0.0557 0.0607 0.2663 0.2705*
V3

SVR 1.69 0.76 0.0258 0.081 0.1088 0.2344* 0.0406  0.0622* ° 03415 0.1940* °
NR 091 0.55 0.0138 0.063 0.0594 0.1246* 00313 00664* > *< 04752  04130% > * ¢
ETR 137 083 0.0208 0.066 0.0868 0.1817* 00342  0.0488* 04022 0.1996* ©

Values for number of mutations and for genetic distance, rates of synonymous substitution per synonymous site (dS), non-synonymous substitution per non-
synonymous site (dN) and dN/dS ratio obtained by ws and bs analysis for each response group regarding the complete NS5A and the regions studied.

* Significant difference among all groups; p < 0.05

* 3Significant difference between SVR and NR; p < 0.05
* b significant difference between SVR and ETR; p < 0.05
* < Significant difference between NR and ETR; p < 0.05
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Figure 2 Mutation sites. Graphic representation of the mutation sites found in each patient, according to the reference sequence for genotype
3, NZL1 (GeneBank D17763). SVR patients are represented in blue, NR patients in pink, and ETR patients in green.
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Substitution rates

For the within-sample (ws) data, the mean rate of
synonymous substitution per synonymous site (dS) was
higher in the SVR group (Table 2). The rate of non-
synonymous substitution per non-synonymous site (dN)
was also higher in the SVR group, except for regions
CRS and PKR-Bd. These data showed no statistically
significant differences.

Between-sample (bs) analysis also showed a higher dS
mean in the SVR group. SVR had the highest mean dN
values, except for regions NLS and V3. All the bs data
showed statistical significance, except for the dS means
in CRS between SVR and ETR and between NR and
ETR.

In the ws analysis, the dN/dS ratio was higher in the
NR group, except for the NLS region, where SVR had
the highest ratio. In this analysis, only the difference
between SVR and NR in the CRS region was statistically
significant.

The bs data showed higher dN/dS ratios in NR for
most of NS5A; regions CRS and NLS showed higher
values in SVR and ETR, respectively. Statistical signifi-
cance was observed in all regions, except for PKR-Bd
between SVR and NR and for region V3 between SVR
and ETR.

Genetic distances

The mean genetic distances for the complete NS5A
region and the other regions studied were higher in the
SVR group in either ws or bs analysis (Table 2). No sta-
tistically significant difference was found for genetic
distance.

Phylogenetic analysis

Phylogenetic analysis was carried out using the 179
1356-bp sequences generated in this study, the reference
sequence for genotype 3, NZL1 (GenBank accession
number D17763), the six full-length NS5A sequences
from genotype 3a, with country information, available in
GenBank (Accession numbers: AY956467; DQ430819;
DQ430820; DQ437509; X76918; GQ300882.1), and 20
Brazilian NS5A sequences of 1308 bp (Accession num-
bers: EF207999.1 to EF208018.1). The resulting phyloge-
netic tree is presented in Figure 3. All sequences from
clones from the same patient are grouped in a mono-
phyletic branch, with high bootstrap values (95-100%).
There was no clustering in a monophyletic branch of
the sequences from patients in the same treatment
response group.

Discussion

RNA viruses have high mutation rates owing to lack of
proofreading of the RNA polymerase. On the one hand,
these high mutation rates can be deleterious for the
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Figure 3 Phylogenetic tree. Unrooted phylogenetic tree
constructed with the 179 sequences of full NS5A generated in this
study, plus the reference sequence for genotype 3, NZL1 (GeneBank
D17763) - Red, the six full-length NS5A sequences from genotype
33, with country information, available in GenBank (Accession
numbers: AY956467; DQ430819; DQ430820; DQ437509; X76918;
(GQ300882.1) and 20 Brazilian NS5A sequences with 1308 bp
(Acession numbers: EF207999.1 to EF208018.1), by the distance
method with the Tamura-Nei++G model using the neighbor-
joining algorithm. Bootstrap was calculated with 1000 replications.
SVR - sustained virological responder - Blue, NR- non-responder -
Pink, ETR — end-of-treatment responder - Green.
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virus by creating non-viable strains; on the other, when
the viral population is considered, they can also create a
pool of potentially good mutations. The capacity of
HCV to circulate as a pool of different but closely
related strains, commonly called quasispecies, allows it
to evolve and adapt to new environments and to over-
come the challenges of infection [4,8,14-16]. The phylo-
genetic tree constructed in this work illustrates this
characteristic and shows, for each patient, very similar
but not identical strains with a monophyletic origin.

Our investigation of the genetic variability of the
NS5A region from HCV 3a demonstrated the high
variability of strains found in the same patient. The
highest values of substitutions, either synonymous or
non-synonymous, and the highest virus diversity, evalu-
ated by genetic distance, were found in patients with
sustained virological responses (SVR). Studies on geno-
type 1b have reported that the number of mutations in
a specific region of NS5A, ISDR, could predict an SVR
[17-21]. Since other studies refute these results, a meta-
analysis was performed with American, European and
Japanese sequences [22-30] that allowed a positive cor-
relation to be established between mutations in the
ISDR region and SVR. The same study also revealed a
geographic correlation; mutations in the Japanese
sequences had a higher probability of leading to SVR
than mutations in European sequences. The authors
suggested that geographic variation may be related to
host factors. This meta-analysis included sequences of
genotype 1, but no South American sequences were
considered. Since the European and Japanese strains
yielded different results, other populations may also pre-
sent a different pattern.

Although the SVR group showed higher mutation
values in the region NS5A by either bs or ws analysis in
our study, the dN/dS ratio was higher in the group of
non-responders (NR). Therefore, though SVR showed
more mutations, NR strains had relatively more non-
synonymous substitutions. Amino acid mutations are
most commonly deleterious because of the changes they
cause in the protein phenotype. However, some of these
substitutions are neutral when the mutation does not
affect protein function, and are maintained by genetic
drift. The higher rates of non-synonymous mutations
detected in NR patients may indicate an advantage in
evading both the immune system and the treatment,
since they may be able to modify epitopes so that they
are no longer recognized by the immune system.

For any given genome, the mutation rate determines
the ability of a virus to maintain essential information
while coping with environmental changes [16,31-39]. All
values obtained for comparisons between dN and dS
using the dN/dS ratio were below 0.5. These findings
indicate that the NS5A protein is undergoing purifying
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selection, which maintains protein function and there-
fore virus activity.

The occurrence of stop codons in the same site has
been described previously in the literature. In a similar
study, performed on patients infected with HCV geno-
type 1, two stop codons were found in the same site of
the CRS region in two different patients [40]. Also, stu-
dies with the Dengue Virus, another Flavivirus, have
found the same stop codons in 23% of samples studied.
These strains circulated in the population studied for 18
months. These studies suggest that defective genomes
can circulate with the assistance of non-defective strains
[41,42]. A recent study with Hepatitis C Virus demon-
strated that as the virus circulates in the blood, defective
genomes can be encapsidated as infectious particles by
trans complementation (acting on a viral RNA other
than the one from which it has been translated) of the
structural proteins. NS5A protein was also shown to be
the only non-structural protein that acts in trans in
HCV as well as other Flavivirus, so it could be acting as
a helper to defective genomes [43-45].

Of the two analytical approaches used in this study,
within-sample (ws) analysis is relevant when the focus of
the study is the patient profile, to study a population, in
this case a response group; the statistical power is very
low and no or few assumptions can be made. However,
between-sample (bs) data represent the response group
value better, since it is obtained using all 60 sequences
from each group. This approach is more accurate when
the aim is to identify a pattern from the response group.
The bs analyses normalize characteristics that are exclu-
sive to individual patients, by using a pool of strains
from the same response group. In most cases they
yielded statistical significance. Thus, even though the
population size of our study is relatively low (12
patients), statistical significance was obtained, support-
ing the data on the response group patterns discussed.

Conclusion

This is the first study on the quasispecies composition
of the complete NS5A region of HCV genotype 3a.
Although we found differences among the response
groups, other studies are necessary for a better under-
standing of the relationship between the variability of
this region and the response to treatment with inter-
feron and ribavirin, since most studies are performed
with genotype 1, and the genomic differences among
these genotypes are significant.

Methods

Population and samples

Plasma samples were collected from 12 HCV genotype
3-positive patients, seen at the Hemocenter of Sdo José
do Rio Preto, State of Sdo Paulo, Brazil. All samples
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were collected before treatment, and a 6-months follow-
up provided treatment response data. Four patients were
sustained virological responders (SVR), i.e the virus was
not detected after treatment or during the 6-months fol-
low-up; four were non-responders (NR), since they
showed no virological response; and four were end-of-
treatment responders (ETR), i.e. a virological response
was detected, but at the 6-months follow-up there was a
rebound. All patients were infected with HCV genotype
3a. Treatment consisted of INF-a and ribavirin adminis-
tration for 24 weeks. Patients with a history of alcohol-
ism or infection with another agent that could cause
liver damage were excluded. This study was approved
by the ethics committee of the Base Hospital of Sdo José
do Rio Preto, and all participants signed an informed
consent.

Viral load
The viral load was quantified by Cobas TagMan HCV
Test.

Extraction of HCV RNA and amplification of the NS5A
region

Viral RNA was extracted from blood serum samples
using a QIAamp Viral RNA Mini Kit (QIAgen), and
cDNA was synthesized using a High-Capacity cDNA
Archive Kit (Applied Biosystems) according to the man-
ufacturer’s instructions. The NS5A region was amplified
using a set of primers specific for genotype 3, designed
for this study. For the PCR reaction, two sets of forward
and reverse primers were designed. The forward primers
were H.NSS5AP-F (5 GAGCGGTACAGTGGATGAAC
3’ - nucleotide [nt] 6089 to 6108 in genotype 3 reference
sequence NZL1 - GenBank D17763G) and H.NSSAP-F2
(5 GGTACAGTGGATGAACAGG 3’ - nt 6093 to 6111
in NZL1). The reverse primers were H.NSSAP-R (5’
CCTCCTTTAATGCAGTCTTG 3’ - nt 7821 to 7840 in
NZL1) and H.NS5AP-R2 (5° ACGACGTTGAATAGAC-
TAGG 3’ nt 7734 to 7753 in NZL1). Two sets of for-
ward and reverse primers were also designed for the
nested-PCR reaction. The forward primers were H.
NSSAN-F (5 CGCATTGCTGAGTTCTCTAAC 3’ from
nt 6192 to 6212 in NZL1) and H.NS5AN-F2 (5
CTCTAACTGTCACAAGTCTGC 3’ nt 6206 to 6226 in
NZL1). The reverse primers were H.NSSAN-R (5" CAA-
CAAGGAGTTGCTGAGTG 3’ nt 7703 to 7722 in
NZL1) and H.NS5AN-R2 (5° CAGCACTACATGGTGT-
TATC 3’ nt 7659 to 7678 in NZL1). For the amplifica-
tion reaction, 1 U of a proofreading polymerase was
used (Elongase® Enzyme Mix; Invitrogen) along with
10 ul of buffer B [300 mM Tris-SOy, (pH 9.1 at 25°C),
90 mM (NH,),SO4 and 10 mM MgSOy,], 10 ul of ANTP,
30 pmol of sense and anti-sense primers, 10 pl of cDNA
for PCR reaction, and 5 pl of PCR product for the
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nested-PCR reaction, plus Milli-Q autoclaved water to a
final volume of 50 pl. The amplified products were ana-
lyzed on a 1% agarose gel.

Cloning and sequencing

Cloning was performed using a TOPO XL Cloning TM
Kit (Invitrogen). Fragments from 15 clones from each
patient were purified using a PureLink Mini-prep Plas-
mid Purification Kit (Invitrogen). The entire NS5A
region was sequenced using eight primers: the vector
primers MI13F and MI13R, and six inner primers, three
sense and three anti-sense, designed for this study. The
forward primers used in the sequencing reaction were:
H.NS5AI-FI (5 TGGCTGCGTATCATCTGGGA 3’ - nt
6283 to 6302 in NZL1), H.NS5AI-F2 (5 ACCTC-
GATGTTGAGAGACCC 3 - nt 6871 to 6890 in NZL1)
and H.NS5AI-F3 (5 TATCCTCCAGCCCTTCCTAT 3’ -
nt 7198 to 7217 in NZL1). The reverse primers used in
the sequencing reaction were: H.NS5AI-R1 (5° CACG-
GACACTTGAGCTCATC 3’ - nt 6679 to 6698 in
NZL1), HNS5AI-R2 (5 TTCTTGAAACACTCTGCAGC
3’ - nt 7168 to 7187 in NZL1) and H.NSS5AI-R3 (5
GTGGACCAAGAGTCGCAACT 3’ - nt 7573 to 7592
in NZL1). The sequencing reaction was performed with
Dyenamic ET Terminator (GE) and the products were
sequenced in an ABI Prism 377 sequencer (Applied Bio-
systems). The reaction mixture consisted of 1 ul of
Milli-Q autoclaved water, 1 pl of primer (5 pmol/pl),
2 pl of sequencing reagent mix, plus 2 ul of sample.
Occasionally, when a good quality sequence could not
be obtained, the sequencing reaction had to be doubled
and a “hot start” had to be performed for 10 min at 95°
C for better results. Cycling was carried out according
to the manufacturer’s instructions.

Sequence and phylogenetic analysis

The sequences obtained were subjected to BioMol -
Electropherogram quality analysis http://adenina.biomol.
unb.br/phph/[46], a phred phrap [47,48] analysis site,
for quality check and contig construction. The contigs
obtained for each clone were aligned, along with the
reference sequence NZL1 for genotype 3 (GenBank
accession number D17763), using Clustal X 1.81 soft-
ware [49]. All sequences were edited on Bio Edit 7.0.5.3
[50] to remove the vector fragments, leaving only the
complete sequence of the NS5A region.

Quasispecies analysis was carried out using LOCSPEQ
1.0 software [51], specially designed for our group for
this kind of analysis.

The number of mutations and the genetic distances
were calculated using MEGA 4.0 software [52]. The
rates of synonymous substitution per synonymous site
(dS) and non-synonymous substitution per non-synon-
ymous site (dN), as well as the dN/dS ratio, were
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obtained at SNAP - Synonymous Non-synonymous Ana-
lysis Program -http://www.hiv.lanl.gov([53,54].

Phylogenetic analysis was performed using PAUP* ver-
sion 4 software [55]. A neighbor-joining phylogenetic
tree was constructed with Tamura-Nei’s substitution
model including invariant sites (I) and Gamma distribu-
tion shape (G) parameter (TRN+I+G), determined by
hierarchical likelihood ratio test score criteria using
Modeltest 3.06 [56]. One thousand replicates were used
to test the reliability of the tree topology, and bootstrap
values >70 were considered significant [57].

Statistical analysis

Statistical analysis was performed by ANOVA. Compari-
sons between groups were made using Tukey’s method
for multiple comparisons. Values of P < 0.05 were con-
sidered significant. Standard error of the mean (SEM)
values were calculated in Minitab 15.

Types of analysis

In this work, we chose to analyze the results obtained by
two different approaches:

Within-sample analysis (ws)

This consisted of calculating the means of genetic dis-
tances, dS, dN and dN/dS ratios among the clones of
one patient, and then calculating the mean of the four
values obtained for each patient in the response group
to obtain the group value.

Between-sample analysis (bs)

This consisted of calculating the means of genetic dis-
tances, dS, dN and dN/dS ratios among all the clones of
the response group to obtain the group values.

Nucleotide sequence accession numbers

The nucleotide sequence data reported here have been
submitted to the GenBank nucleotide sequence database
with accession numbers from EU826174 to EU826352.
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