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Abstract: Unlike traditional small molecule drugs, fullerene is an all-carbon nanomolecule with a
spherical cage structure. Fullerene exhibits high levels of antiviral activity, inhibiting virus replication
in vitro and in vivo. In this review, we systematically summarize the latest research regarding the
different types of fullerenes investigated in antiviral studies. We discuss the unique structural
advantage of fullerenes, present diverse modification strategies based on the addition of various
functional groups, assess the effect of structural differences on antiviral activity, and describe the
possible antiviral mechanism. Finally, we discuss the prospective development of fullerenes as
antiviral drugs.
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1. Introduction

Fullerenes are all-carbon molecules discovered in 1985 [1]. They are spherical or
ellipsoidal in shape, with a hollow cage structure. Three discoverers of fullerene C60
won the Nobel Prize in chemistry in 1996. Fullerene C60, the representative fullerene, is
~0.7 nm in diameter. In the past 30 years, with the continuous development of fullerene
preparation technology [2–5], fullerenes have presented unprecedented opportunities in
the fields of biomedicine, catalysis, superconduction, and photovoltaics. Nanomolecules
have important applications in cancer treatment, diagnosis, imaging, drug delivery, catal-
ysis, and biosensing [6–15]. Fullerene molecules not only have defined nanostructures,
but also unique electronic characteristics, photophysical properties, and excellent bio-
compatibility. Fullerene molecules have properties that differ from those of traditional
small molecule drugs, which make fullerenes nanodrug candidates [16], especially for
diagnosis and treatment. For example, fullerenes and their derivatives can be used as
antioxidants against inflammatory diseases, due to their rich conjugated double bonds,
which scavenge free radicals [17,18]. Fullerene C60 activates tumor immunity by polar-
izing tumor-associated macrophages and combines with immune checkpoint inhibitors
(PD-L1 monoclonal antibody) to achieve efficient tumor immunotherapy [19]. Fullerene
C70 derivatives, as photosensitizers, produce singlet oxygen, which can effectively kill
tumor cells [20]. Endohedral metal fullerenes serve as new nuclear magnetic resonance
contrast agents [21,22] for treating liver steatosis [23] and tumors [24–30]. Additionally,
some fullerene derivatives stabilize immune effector cells and prevent/inhibit the release
of proinflammatory mediators. Therefore, they are potential drugs for a variety of diseases,
such as asthma [31], arthritis [32], and multiple sclerosis [33]. Moreover, carboxylic acid
derivatives of fullerenes can cut DNA under visible light irradiation, with the potential
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for use as photosensitive biochemical probes [34]. Fullerene C60 carboxylic acid deriva-
tives also exhibit neuroprotective activity [35] and strongly inhibit tumor growth in a
zebrafish xenograft model [36]. Because nanoparticles have been approved as drugs and
drug carriers, fullerenes have great potential as drugs or gene delivery carriers [37,38].

Currently, more than 90% of infectious diseases in humans are caused by viruses. The
most well-known include the influenza virus, human immunodeficiency virus (HIV), and
Ebola virus, which have caused serious damage [39–43]. Although several anti-HIV and
anti-Ebola drugs, such as saquinavir, ritonavir, T20, lopinavir, ribavirin, tenofovir, and
remdesivir, have been developed, their efficacy is not satisfactory. Severe acute respiratory
syndrome (SARS), which broke out in China in 2003, is a respiratory infection caused
by a coronavirus. So far, there is no specific medicine for SARS. The novel coronavirus,
SARS-CoV-2, now circulating worldwide, is more infectious than SARS or HIV. For patients
infected with SARS-CoV-2, there are no specific antiviral drugs.

Fullerenes and their derivatives exert significant inhibitory effects against HIV [39],
herpes simplex virus (HSV) [40], influenza virus [44], Ebola virus [45], cytomegalovirus
(CMV) [46], and other viruses in vitro and in vivo (Figure 1). Fullerenes and their deriva-
tives, as a class of new, broad-spectrum antiviral drugs, have attracted increasing attention
as a potential treatment for SARS-CoV-2.
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enes needs to be modified with appropriate hydrophilic functional groups. The modified 
structure and properties of the carbon cage may facilitate new applications in different 
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ing regioselective functional group derivatization strategies. Therefore, fullerenes serve 
as ideal scaffolds for different bioactive drugs. Studies on the synthesis and antiviral ac-
tivity of fullerenes and their derivatives have facilitated a deeper understanding of the 
relationship between fullerene structure and bioactivity. 

In the past, hundreds of fullerene derivatives have been synthesized and used to in-
hibit viruses in vitro. Most of these derivatives are water soluble. These fullerene deriva-
tives can be classified as the following six types: (1) amino acid, peptide, and primary 
amine derivatives; (2) piperazine and pyrrolidine derivatives; (3) carboxyl derivatives; (4) 
hydroxyl derivatives; (5) glycofullerene derivatives; and (6) fullerene complexes. Numer-
ous antiviral studies have been conducted to evaluate fullerene C60 and its derivatives; 
this review assesses the latest research on the ability of fullerene C60 and its derivatives to 
inhibit virus replication. 

Figure 1. Possible interaction between fullerene molecules and coronavirus, in which fullerene
molecules inhibit virus replication.

Because fullerenes are insoluble in water and polar media, their use in biomedicine is
extremely complicated [47]. To increase biocompatibility, the cage structure of fullerenes
needs to be modified with appropriate hydrophilic functional groups. The modified
structure and properties of the carbon cage may facilitate new applications in different
biological systems. Because the fullerene carbon cage has multiple modifiable reaction
sites, many fullerene derivatives with well-defined structures have been synthesized using
regioselective functional group derivatization strategies. Therefore, fullerenes serve as ideal
scaffolds for different bioactive drugs. Studies on the synthesis and antiviral activity of
fullerenes and their derivatives have facilitated a deeper understanding of the relationship
between fullerene structure and bioactivity.

In the past, hundreds of fullerene derivatives have been synthesized and used to
inhibit viruses in vitro. Most of these derivatives are water soluble. These fullerene deriva-
tives can be classified as the following six types: (1) amino acid, peptide, and primary
amine derivatives; (2) piperazine and pyrrolidine derivatives; (3) carboxyl derivatives;
(4) hydroxyl derivatives; (5) glycofullerene derivatives; and (6) fullerene complexes. Nu-
merous antiviral studies have been conducted to evaluate fullerene C60 and its derivatives;
this review assesses the latest research on the ability of fullerene C60 and its derivatives to
inhibit virus replication.
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2. Synthesis and Antiviral Properties of Amino Acid, Peptide, and Primary Amine
Fullerene Derivatives

HIV-1-specific protease (HIVP) is an effective target for antiviral therapy. Its active site
can be roughly described as an open-ended cylindrical cavity composed almost entirely
of hydrophobic amino acids [48]. Since spherical C60 derivatives are hydrophobic and
have a similar radius as the cylindrical cavity, strong hydrophobic interactions may occur
between the active site surface and C60 derivatives. Therefore, C60 derivatives are potential
inhibitors of HIVP.

In 1993, Friedman et al. [39] reported a landmark study based on model building and
experimental evidence. Theoretical calculations revealed that the hydrophobic cavity of
HIVP accommodates C60 molecules; the spherical C60 molecules fit perfectly within the
active site, facilitating strong interactions between HIVP and fullerene. However, because
C60 spheres are insoluble in polar solvents, it is critical to dissolve C60 in a medium suitable
for biological testing. By modifying fullerene with strong polar groups, Sijbesma et al. [49]
synthesized the water-soluble fullerene derivative bis (phenylenaminosuccinic acid)-C60
(1) (Figure 2). In vitro studies revealed that 1 inhibited acute and chronic HIV-1 infection
in human peripheral blood mononuclear (PBM) cells, with a half-effective concentration
(EC50) of 7.0 µM, while showing no cytotoxicity to uninfected PBM cells. This work is of
great significance because fullerene derivatives as virus inhibitors are unprecedented in the
field of antiviral research.
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Figure 2. The first example of a water-soluble fullerene derivative (1) used as a virus inhibitor.

According to the theoretical analysis, the main driving force behind the binding be-
tween HIVP and fullerene derivatives is the hydrophobic interaction between the non-polar
active site surface of the protease and the non-polar fullerene surface [50,51]. In order to
improve antiviral activity, Friedman et al. proposed the addition of appropriate functional
groups at specific positions on the fullerene derivatives [39] that would interact with the
protease, generate electrostatic and/or hydrogen bonds as well as van der Waals forces, and
subsequently increase the binding constant by several orders of magnitude. Therefore, com-
pound 2 with two amino groups (Figure 3) was designed as an ideal “second generation”
fullerene derivative. In addition to forming van der Waals forces with the non-polar HIVP
surface, the cationic sites on the fullerene surface can form salt bridges with the catalytic
aspartates on the floor of the active site, thus improving the binding strength. Although
compound 2 was an ideal model of a fullerene derivative, the pure isomer was difficult
to obtain, owing to a lack of regioselectivity. Subsequently, Prato and co-workers [52]
proposed the design, simulation, and synthesis of the C60 diamine derivative 3, which was
similar to 2. In the PM3-minimized structure of 3, the N–N distance between the two amino
groups is 0.51 nm, while that in 2 is 0.55 nm, suggesting that the spatial arrangement of the
two amino groups in 3 is very similar to that in 2.
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In order to determine the binding energy between 3 and HIVP, Prato and co-workers [52]
conducted a simulation using the Discover (Biosym/MSI) program with a cvff force field.
Figure 4a depicts 3 binding to the cavity region of HIVP to form a complex. Compared
with unmodified fullerene C60, the complex formed by the binding of 3 to HIVP exhibited
significant improvements. When fullerene was protonated with a monoamino group, the
relative binding energy was approximately −134 kJ/mol, and when it was protonated with
a diamino group, the relative binding energy was approximately −105 kJ/mol. The greater
binding energy of compound 3, with a single amino group, is due to the hydrogen bond
interactions between the neutral –NH2 and –COOH groups of neutral aspartic acid, rather
than the hydrogen bond interactions between the –NH3

+ group and –COOH. Figure 4b
illustrates the active site of the complex, highlighting the hydrogen bonds between the HIVP
cavity and 3. The interatomic distance between the N atom in each amine/ammonium
molecule and the O atom in the carboxyl/carboxylic acid is about 0.28 nm. This strong
interaction suggests the contribution of Coulombic attraction.
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In the same time period, many research groups synthesized various fullerene deriva-
tives with different functional groups and demonstrated effective virus inhibition by
introducing appropriate carboxylic acid and amino acid groups at specific positions on
fullerenes. Among them, the fullerene dendritic amino acid derivative 4, prepared by
Brettreich and Hirsch [53] (Figure 5), is highly water soluble and has an EC50 of 0.22 µM
in human lymphocytes acutely infected with HIV-1 [54]. This compound also shows no
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toxicity up to 100 µM in PBM, Vero, and CEM cells. The fullerene amino acid derivative 5
(Figure 5), synthesized by Mashino et al. [40], strongly inhibits HIV reverse transcriptase
(HIV-RT), with an EC50 of 0.029 µM. Additionally, Toniolo et al. [55] synthesized fullerene
peptide derivatives, which also exhibit anti-HIVP activity.
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In 2012, Troshin and coworkers [43] reported that multi-functional C60 amine and
amino acid derivatives could be readily prepared from hexachlorofullerene C60Cl6 (6). The
synthesized fullerene derivative contains at least five hydrophilic functional groups (such
as amino or carboxyl groups). As shown in Figure 6, a fullerene amino acid ester (8) can be
obtained via the reaction of C60Cl6 with an amino acid ester (7). The amino acid ester groups
in compound 8 can be hydrolyzed to obtain fullerene amino acid derivatives under acidic
conditions. In order to further increase the water solubility of fullerene amino acid deriva-
tives, fullerene amino acid potassium salts are formed by adding potassium carbonate.

Nanomaterials 2022, 12, 2547 5 of 22 
 

human lymphocytes acutely infected with HIV-1 [54]. This compound also shows no tox-
icity up to 100 µM in PBM, Vero, and CEM cells. The fullerene amino acid derivative 5 
(Figure 5), synthesized by Mashino et al. [40], strongly inhibits HIV reverse transcriptase 
(HIV-RT), with an EC50 of 0.029 µM. Additionally, Toniolo et al. [55] synthesized fullerene 
peptide derivatives, which also exhibit anti-HIVP activity. 

 
Figure 5. Fullerene amino acid derivatives (4) and (5) as potential inhibitors of HIV-1 cell replication. 

In 2012, Troshin and coworkers [43] reported that multi-functional C60 amine and 
amino acid derivatives could be readily prepared from hexachlorofullerene C60Cl6 (6). The 
synthesized fullerene derivative contains at least five hydrophilic functional groups (such 
as amino or carboxyl groups). As shown in Figure 6, a fullerene amino acid ester (8) can 
be obtained via the reaction of C60Cl6 with an amino acid ester (7). The amino acid ester 
groups in compound 8 can be hydrolyzed to obtain fullerene amino acid derivatives un-
der acidic conditions. In order to further increase the water solubility of fullerene amino 
acid derivatives, fullerene amino acid potassium salts are formed by adding potassium 
carbonate. 

 
Figure 6. Synthesis route of fullerene amino ester derivative (8). 

In vitro cell experiments [43] showed that the carboxylic acid potassium salt 8 has 
low cytotoxicity to HSV-sensitive Vero cells (CC50 > 1.3 mM) and human CMV-sensitive 
human embryonic lung fibroblasts (CC50 > 0.5 mM). Meanwhile, compound 8 showed 
pronounced antiviral activity, with an EC50 of 0.26 µM for HSV and 37.6 µM for CMV. 
Combining CC50 and EC50 values, the selectivity indices of compound 8 for HSV and CMV 
are >5000 and 14, respectively, indicating that compound 8 has potential as a new antiviral 
drug against HSV and CMV. 

Figure 6. Synthesis route of fullerene amino ester derivative (8).

In vitro cell experiments [43] showed that the carboxylic acid potassium salt 8 has low
cytotoxicity to HSV-sensitive Vero cells (CC50 > 1.3 mM) and human CMV-sensitive human
embryonic lung fibroblasts (CC50 > 0.5 mM). Meanwhile, compound 8 showed pronounced
antiviral activity, with an EC50 of 0.26 µM for HSV and 37.6 µM for CMV. Combining CC50
and EC50 values, the selectivity indices of compound 8 for HSV and CMV are >5000 and
14, respectively, indicating that compound 8 has potential as a new antiviral drug against
HSV and CMV.

3. Synthesis and Antiviral Studies of Fullerene Piperazine and
Pyrrolidine Derivatives

As shown in Figure 7, the reaction of C60Cl6 with N-methylpiperazine (9) can efficiently
generate a fullerene-piperazine derivative (10) in the absence of any base [43]. By adding
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six times the amount of compound 9 to a C60Cl6 toluene solution, 10 is precipitated
immediately, with more than a 95% yield. In vivo cell experiments have indicated that 10
exhibits high acute toxicity when administered via intraperitoneal injection in mice, while 8
shows very low acute toxicity, suggesting the latter is safe for biomedical applications. This
example also revealed that the toxicity of the water-soluble fullerene derivatives depends
largely on the organic functional groups attached to the fullerene carbon cage.
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Figure 7. Synthesis route for fullerene penta-N-methyl piperazine salt (10).

According to the literature [51], a regioisomer mixture of C60 pyrrolidine derivatives
exhibits good anti-HIV-1 activity. The pyrrolidine derivative has a low EC50 and exhibits
little toxicity to Vero and PBM cells. However, a relationship between the structure and
activity of the reported isomer mixture of fullerene pyrrolidine derivatives has not been
established. In order to better understand which structural characteristics can be modified
to improve anti-HIV activity, Prato and coworkers [56] synthesized a series of new, pure
fullerene pyrrolidine derivatives through the Prato reaction (Figure 8).

Nanomaterials 2022, 12, 2547 7 of 22 
 

 
Figure 8. Structure diagram of fullerene pyrrolidine derivatives (11–23). 

The Bis-adduct fullerene pyrrolidine derivative has eight regioisomers. The yields of 
the eight isomers differ; cis-Bis-adducts are produced at extremely low yields and trans- 
and equatorial-adducts are produced at relatively high yields. Hence, Prato and coworkers 
were able to separate trans- and equatorial-isomers (12–15 and 16–19, respectively) and 
study their structure and activity. Additionally, a Mono-adduct (11) and other Bis-adducts 
(20–21, 22–23) were synthesized (Figure 8). 

The anti-HIV activity and cytotoxicity of all fullerene pyrrolidine derivatives (11–23) 
was tested in lymphocyte (CEM) cultures infected with HIV-1 or HIV-2. As shown in Ta-
ble 1, mono-functionalized derivative 11 and Bis-adduct derivatives 12–15, 20, 21 and 23 
showed low anti-HIV-1 activity, while the corresponding quaternary ammonium pyrrol-
idine derivatives 16–19 showed high anti-HIV-1 activity at low concentrations (EC50: 0.40–
2.60 µM). These results suggest that the inhibitory effect on HIV-1 might be related to 
electrostatic interactions. 

Table 1. Anti-HIV activity and cytostatic toxicity of compounds (11–23) in CEM cell cultures. 

Compound 
EC50 (µM) 

CC50 (µM) 
HIV-1 HIV-2 

11  >4 >4 44.3 
12 (trans-2) >4 >4 7.2 
13 (trans-3) >4 >4 7.63 
14 (trans-4) >4 >4 7.4 

15 (equatorial) >4 >4 9.6 
16 (trans-2) 0.40 ± 0.0 >4 4.79 
17 (trans-3) 0.96 ± 0.39 >4 3.02 
18 (trans-4) 2.60 ± 0.88 >4 13.2 

19 (equatorial) 1.60 ± 0.0 >4 6.59 
20 (trans-2) >4 >4 - 

21 (equatorial) >4 >4 - 
22 (trans-2) 2.01 ± 0.0 >4 - 

23 (equatorial) >4 >4 - 

Figure 8. Structure diagram of fullerene pyrrolidine derivatives (11–23).



Nanomaterials 2022, 12, 2547 7 of 21

The Bis-adduct fullerene pyrrolidine derivative has eight regioisomers. The yields of
the eight isomers differ; cis-Bis-adducts are produced at extremely low yields and trans- and
equatorial-adducts are produced at relatively high yields. Hence, Prato and coworkers were
able to separate trans- and equatorial-isomers (12–15 and 16–19, respectively) and study
their structure and activity. Additionally, a Mono-adduct (11) and other Bis-adducts (20–21,
22–23) were synthesized (Figure 8).

The anti-HIV activity and cytotoxicity of all fullerene pyrrolidine derivatives (11–23)
was tested in lymphocyte (CEM) cultures infected with HIV-1 or HIV-2. As shown
in Table 1, mono-functionalized derivative 11 and Bis-adduct derivatives 12–15, 20, 21
and 23 showed low anti-HIV-1 activity, while the corresponding quaternary ammonium
pyrrolidine derivatives 16–19 showed high anti-HIV-1 activity at low concentrations
(EC50: 0.40–2.60 µM). These results suggest that the inhibitory effect on HIV-1 might be
related to electrostatic interactions.

Table 1. Anti-HIV activity and cytostatic toxicity of compounds (11–23) in CEM cell cultures.

Compound
EC50 (µM)

CC50 (µM)
HIV-1 HIV-2

11 >4 >4 44.3
12 (trans-2) >4 >4 7.2
13 (trans-3) >4 >4 7.63
14 (trans-4) >4 >4 7.4

15 (equatorial) >4 >4 9.6
16 (trans-2) 0.40 ± 0.0 >4 4.79
17 (trans-3) 0.96 ± 0.39 >4 3.02
18 (trans-4) 2.60 ± 0.88 >4 13.2

19 (equatorial) 1.60 ± 0.0 >4 6.59
20 (trans-2) >4 >4 -

21 (equatorial) >4 >4 -
22 (trans-2) 2.01 ± 0.0 >4 -

23 (equatorial) >4 >4 -

The biological activity of pyrrolidine derivatives of fullerene varies among the re-
gioisomers. As shown in Table 1, the anti-HIV-1 activity of the trans-2 isomer (16) was
2.4~6.5 times that of the corresponding trans-3 (17), trans-4 (18), and equatorial (19) iso-
mers. The trans-2-tetraacetic acid derivative (22) showed high anti-HIV-1 activity at low
concentrations, while the equatorial isomer (23) showed low activity. The introduction of
malonate resulted in the loss of anti-HIV-1 activity of pyrrolidine derivatives 20–21. Most
synthetic fullerene pyrrolidine derivatives exhibit pronounced toxicity in human CEM
cells (CC50: 3.02~13.2 µM), but monofunctional derivative 11 exhibit relatively low toxicity
(CC50: 44 µM). This toxicity most likely results from the strong amphiphilic properties
of these pyrrolidine derivatives, which can cause the rupture of the cell membrane and
subsequent cell death.

To define the structure-activity relationship, Prato and co-workers [57] prepared Bis-
adduct fullerene pyrrolidine derivatives (24–28) through a [3+2] dipolar cycloaddition
reaction between azomethine ylides and C60 (Figure 9) and subsequently studied their anti-
HIV-1 and anti-HIV-2 activity and cytotoxicity in CEM culture. As shown in Table 2, the
anti-HIV-1 activity of the trans-isomers (24–26) is about 2–10 times that of the corresponding
cis-3 isomer (28), while the equatorial-isomer (27) exhibits no antiviral activity against HIV-1.
Among the trans-isomers, trans-2 (24) and trans-3 (25) demonstrate higher levels of anti-HIV-
1 (EC50 = 0.21 and 0.35 µM, respectively) and anti-HIV-2 activity (EC50 = 0.21–1.0 µM). The
anti-HIV-1 activity of the trans-4 isomer (26) is significantly lower than that of compounds
24 and 25 (EC50 = 1.08 µM), and the anti-HIV-2 activity is also lower (EC50 = 2.5 µM),
which is consistent with the experimental results for fullerene pyrrolidine derivatives
11–23. Fullerene pyrrolidine derivatives 24–28 also exhibit toxicity in human CEM cells
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(CC50 = 2.9–28.7 µM). The CC50/EC50 ratio of the trans-3 isomer (25) is 26, higher than that
of the reference compound 16 (CC50/EC50 = 12).
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Table 2. Anti-HIV activity and cytostatic activity of compounds (24–28) in CEM cell cultures.

Compound
EC50 (µM)

CC50 (µM)
HIV-1 HIV-2

24 0.21 (±0.07) 0.2 to 1.0 2.93 (±1.20)
25 0.35 (±0.07) 0.70 (±0.42) 9.04 (±0.18)
26 1.08 (±0.57) 2.50 (±1.90) 12.5 (±7.54)
27 >25 >25 >125
28 2.50 (±0.71) >10 28.7 (±1.27)

As mentioned, Mashino et al. (2005) reported that fullerene amino acid-type deriva-
tives exhibited HIV-RT inhibitory activity, while cationic fullerene derivatives such as
the pyrrolidinium-type derivatives showed weaker HIV-RT inhibitory activity [40]. The
carboxyl groups on the pyrrolidine-type fullerene derivatives were considered crucial to
HIV-RT inhibitory activity [40,58]. However, ten years later, Mashino et al. found that
fullerene pyrrolidine-pyridine and pyrrolidine-pyridinium salt derivatives without any
carboxyl groups [42], such as 29–40, which are functionalized with pyridine or pyridinium
groups (Figure 10), exhibit strong HIV-RT inhibition. This is useful information for the
future design of fullerene derivatives as HIV-RT inhibitors. In addition to HIV-RT inhibition,
recently, Kobayashi et al. [59] found that compound 34 can inhibit HIV-PR, and HCV NS5B
polymerase (HCV NS5B) with IC50 values in the micromolar range. Compound 41, the
exo-substituent on the most potent derivative (34), exhibits no HIV-RT inhibitory activity in
cell culture, indicating that HIV-RT inhibition is dependent on the fullerene skeleton. The
conventional trypan blue dye exclusion test (Table 3) was used to evaluate the cytotoxicity
of all fullerene pyrrolidine-pyridine and pyrrolidine-pyridinium salt derivatives (29–40) to
HL60 cells. The CC50 of all derivatives except 35 (CC50 = 39.4 µM) was greater than 50 µM,
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which suggests that the new fullerene-pyrrolidine-pyridine or pyridinium salt derivatives
effectively inhibit HIV-RT activity without damaging living cells.
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Table 3. HIV-RT inhibitory activity and cytotoxicity of fullerene pyrrolidine derivatives (29–41).

Compound R1 R2 R3 IC50 * CC50 *

29 2-(N-Methylpyridinium) –
CH2COOC2H5

–C2H5 0.30 >50

30 2-(N-Methylpyridinium) –H –C2H5 0.33 >50
31 2-Pyridine –CH2COOH –H 0.20 >50
32 2-Pyridine –H –H 0.46 >50

33 3-(N-Methylpyridinium) –
CH2COOC2H5

–C2H5 0.25 >50

34 3-(N-Methylpyridinium) –H –C2H5 0.094 >50
35 3-Pyridine –CH2COOH –H 0.41 39.4
36 3-Pyridine –H –H 0.080 >50

37 4-(N-Methylpyridinium) –
CH2COOC2H5

–C2H5 0.74 >50

38 4-(N-Methylpyridinium) –H –C2H5 0.37 >50
39 4-Pyridine –CH2COOH –H 1.60 >50
40 4-Pyridine –H –H 0.80 >50
41 - - - >500 >50

Nevirapine - - - 3.52 -
* These values (~µM) are based on the average of three test results for each test compound.

In 2016, Echegoyen and co-workers [41] reported a novel cationic N,N-dimethyl C70
fullerene-pyrrolidine iodized salt derivative (42–44), with fullerene C70 as the starting
material (Figure 11), that inhibits more than 99% of HIV-1 infectivity at a low micromolar
concentration. These three compounds have an EC50 of 0.41, 0.33, and 0.54 µM, respectively.
An analysis of the life cycle of HIV-1 suggested that these compounds inhibit viral matura-
tion by influencing the processing of Gag and GAG-POL. Significantly, fullerene derivatives
42–44 do not inhibit protease activity in vitro, and strongly interact with immature HIV
capsid proteins in a pull-down assay. Moreover, these compounds may block infection by
viruses carrying either a mutant protease that is resistant to multiple protease inhibitors, or
the mutant Gag protein, which is resistant to the mature inhibitor bevirimat. Fullerenes
42–44 do not inhibit HIV-1 proteases at doses that strongly inhibit HIV-1 infection in vitro,
suggesting that this mechanism is independent of the HIV-1 protease. This finding dif-
fered from previous reports that fullerene derivatives affect HIV-1 protease activity in vitro.
Echegoyen et al. [60] then proposed that fullerene derivatives 42–44 act through a novel
anti-HIV-1 mechanism, rather than interacting with other capsid proteins as previously
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reported. Unraveling the details of this mechanism will facilitate the discovery of novel
anti-HIV-1 inhibitors.
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Figure 11. Chemical structures of the cationic N,N-dimethyl [70]Fullerene pyrrolidine iodide
derivatives (42–44).

Additionally, Tollas et al. [44] reported that fullerene pyrrolidine derivatives function-
alized with hydrophilic sugar groups. While these derivatives have no inhibitory effect on
influenza virus hemagglutinin, they exhibit a good inhibitory effect on neuraminidase.

4. Synthesis and Antiviral Studies of Fullerene Carboxyl Derivatives

As mentioned, hydrophilic functional groups such as amino or amino acid groups can
be directly or indirectly attached to the skeleton of fullerenes to increase water solubility.
These water-soluble fullerene derivatives have exhibited high levels of antiviral activity.
Instead of amino or amino acid groups, a single carboxylic acid group can be used to modify
fullerenes to increase their water solubility and improve their antiviral activity. In 1996,
Schuster et al. [51] synthesized 11 new water-soluble fullerene derivatives, among which
fullerene carboxylic acid derivatives 45 and 46 (Figure 12) exhibit antiviral activity against
HIV-1 at low micromolar concentrations, with an IC50 of 2.2 and 6.3 µM, respectively.
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In 2007, Troshin and coworkers [61] proposed an effective method for the synthesis
of water-soluble fullerene carboxylic acid derivatives. With C60Cl6 as the starting point,
C60(Ar)5Cl, with ester groups linked to aryl groups, was obtained via the simple and
efficient Friedel–Crafts arylation of C60Cl6 (6) with methyl esters of phenylacetate at 100 ◦C.
The fullerene carboxylic acid derivative (48) was prepared in almost a quantitative yield
by removing the methyl group from the methyl ester under acidic conditions, as shown
in Figure 13. Compound 48, with five carboxyl groups, is insoluble in water but soluble
in DMSO. In order to improve the water solubility, potassium carbonate was added to
neutralize the carboxylic acid group of 48 and form the corresponding ionic potassium salts,
with a water solubility of up to 50–100 mg/mL at pH < 7.5. A virus-induced cytopathicity
assay revealed that the fullerene carboxylic acid potassium derivative has pronounced
anti-HIV-1 activity, with an IC50 of 1.20 ± 0.44 µM and a low cytotoxicity (>52 µM).
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Usually, only five chlorine atoms in 6 are replaced; the sixth chlorine atom cannot be
substituted due to steric hindrance. Recently, Troshin and coworkers [62] found that the
sixth chlorine atom can be substituted by an alkyl group through a reverse Arbuzov reaction
between trialkyl phosphite (P(OR)3) and the fullerene derivative C60(Ar)5Cl (Figure 14).
More significantly, the introduction of different R groups through the reverse Arbuzov
reaction affects the antiviral activity of the carboxyl fullerene derivatives, establishing a
fundamental correlation between the structure of carboxyl fullerene derivatives and their
antiviral activity. Experiments on the inhibition of the influenza H3N2 virus showed that
compounds 49 and 50 (R = Et and Me, respectively) were quite active, while the fullerene
derivative 48 (R = Cl) was completely inactive. Specifically, 49 and 50 effectively inhibited
influenza virus H3N2 at nanomolar concentrations, with an EC50 of 500 nM and 100 nM,
respectively; both compounds were more active against H3N2 than the commercial drugs
zanamivir (EC50 = 3.0 µM) and amantadine (EC50 = 1.3 µM). However, there were no
significant differences in the HIV-1 inhibitory activity of the fullerene derivative C60(Ar)5Cl
after the alkyl substitution of chlorine atoms.
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Recently, Troshin and coworkers [63] synthesized the fullerene carboxylic acid deriva-
tive C70[p-C6H4(CH2)nCOOH]8 by Friedel–Crafts arylation of chlorofullerene C70Cl8 with
unprotected carboxylic acids. The obtained carboxylic acid fullerene C70 derivatives
showed significant antiviral effects against HIV and the influenza viruses H1N1 and
H3N2. The EC50 value of anti-HIV-1/NL4.3 (X4) is close to 1.0 µM, which indicates that this
derivative is more effective against the virus than the commercial drug tenofovir. Addition-
ally, Troshin and coworkers synthesized a variety of carboxylic acid fullerene derivatives,
such as the carboxylic acid thiofullerene derivative, 51 [64]; polycarboxylic acid fullerene
derivative, 52 [65]; and tetracarboxylic acid methanofullerene derivative, 53 (Figure 15) [66].
All these compounds exhibit inhibitory effects against HIV-1, HIV-2, influenza A (H3N2),
HSV, and CMV, with low toxicity.

Modern antiviral drugs have extended patients’ lives and improved their quality
of life, but unsolved problems remain, such as toxicity, limited bioavailability, and drug
resistance (rapid cyclic changes in influenza strains reduce the effectiveness of commonly
used vaccines). Therefore, finding new antiviral drugs has become an urgent problem. The
research by Troshin and coworkers on carboxylic acid fullerene derivatives has provided
more possibilities for the development of new and effective antiviral drugs [61–66].
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5. Synthesis and Antiviral Studies of Fullerene Hydroxyl Derivatives

Fullerenol is a polyhydroxylated fullerene C60 derivative with suitable water solu-
bility and biocompatibility. In 2013, Eropkin et al. [67] synthesized a series of fullerenols
(Figure 16). Three different groups of fullerenols, C60(OH)12–14, C60(OH)18–24, and C60(OH)30–38,
can be prepared by changing the reaction conditions to control the number of hydroxyl
groups attached to the fullerene skeleton. Experimental studies revealed that fullerenols
containing 12~14 hydroxyl groups are insoluble in water and have no biological activity
when introduced into cell culture as suspensions. The other two groups of fullerenols show
broad spectrum antiviral activity in vitro against the human influenza viruses H1N1 and
H3N2, avian influenza virus A (H5N1), adenovirus, human HSV, and respiratory syncytial
virus. C60(OH)18–24 demonstrates better antiviral activity than C60(OH)30–38. Moreover, the
three water-soluble fullerenols exhibit no toxicity in vitro to human and animal cells.
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Compared with other fullerene derivatives, fullerenols are relatively easy to prepare,
requiring only one organic reaction step. So far, only one example of polyhydroxyfullerene
(C60(OH)8) with a well-defined structure has been reported, by Gan and co-workers [68].
However, the insufficient number of hydroxyl groups in C60(OH)8 limits its biological
applications. At present, even by purification via high performance liquid chromatogra-
phy, it is impossible to obtain pure regioisomer fullerenols from the mixture of polyhy-
droxyfullerenes. Therefore, the fullerenols used in current biological studies have been
a mixture of regioisomers, which restricts the potential of fullerenols as standard drug
candidate molecules.

6. Synthesis and Antiviral Studies of Glycofullerene Derivatives

Carbohydrate and protein interactions dominate many biological processes, including
inflammation, embryogenesis, tumor development and metastasis, and pathogen infec-
tion [69]. These interactions are characterized by high selectivity, metal ion dependence,
and compensation for low affinity through multivalent interactions [70]. Finding a suit-
able system to realize the polyvalent expression of sugars has been a subject of extensive
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research [71,72]. Due to the lack of information on the proper orientation of the ligands
required to obtain the strongest interactions, chemists have experimented with all possible
scaffolds. Calixarene [73], gold nanoparticles [74], polymers [75], liposomes [76], dendritic
macromolecules [77], and fullerenes [78] are most commonly used as scaffolds to con-
struct multivalent glycoconjugates. The advantages associated with fullerenes over other
nanostructures are their three-dimensional (3D) structure and the ability to functionalize
different positions of the C60 cage in a controlled way [79]. In this sense, fullerenes can be
thought of as a special class of spherical scaffolds ideal for building a multivalent spherical
ligand. Martin and coworkers [78] proposed that spherical carbohydrate derivatives of
fullerenes, with fullerenes used as scaffolds, could serve as an interesting sugar analog.
The rigid spherical scaffold allows distance to be maintained between the two ligands (the
diameter of fullerenes is 1 nm, plus the distance provided by the dendritic moiety), thus
increasing the chances of obtaining effective multivalent interactions. In addition, due
to the symmetry of the multivalent system, the 3D orientation of these ligands at 360◦

better mimics the surface of a pathogen, such as HIV; thus, the molecule is more likely to
encounter a receptor.

Based on an octahedral addition pattern, soluble hexakis-adduct glycofullerene deriva-
tives can act as spherical carbohydrates, thus serving as a potential multivalent spherical
ligand. In 2013, Martin and coworkers [79] designed and synthesized a class of hexakis-
adduct glycofullerene derivatives (54), containing 36 mannoses (Figure 17), and used them
to inhibit cell infection by pseudotyped Ebola virus particles. This was the first time that
glycofullerene derivatives were demonstrated to effectively inhibit cell infection. In the
pseudotyped Ebola infection model, the antiviral activity of 54 was in the low nanomolar
range, with an IC50 of 0.3 µM. The glycofullerene with 12 galactosyl had no inhibitory effect
on virus infection, indicating that the inhibitory effect is dependent on mannose. Interest-
ingly, only an increase in the valence of glycofullerene resulted in a loss of the antiviral
effect. This phenomenon is related to the spatial crowding of sugars at the surface of glyco-
fullerene. Martin et al. speculated that the high binding affinity occurs not only because of
the extensive spatial presentation of multivalent ligands, but also the frequent interactions
between the ligands and corresponding receptors. They demonstrated that a rational
design of compounds with the same valency but longer spacers can significantly increase
the antiviral activity, likely due to more efficient interactions with receptors. Therefore, the
selection of suitable scaffolds (such as spherical fullerenes) to achieve multivalence, as well
as the accessibility and flexibility of ligands, are key factors for improving antiviral activity.

The aforementioned studies have demonstrated that using multivalent glycofullerenes
to block lectin receptors on the cell surface is a promising method for inhibiting virus
entry into cells. However, creating large enough multivalent glycofullerenes to improve
the binding ability between ligands and virus receptors remains a challenge. In 2015,
Martin and coworkers [45] conducted an impressive study of water-soluble fullerenes.
They synthesized three water-soluble glycofullerene derivatives (56–58) with 12 fullerene
spheres modified with 120 sugars, starting from the hex-adduct fullerene derivative (55),
namely, the “super sphere” (Figure 18). In addition to the core fullerene sphere, the other
12 fullerenes in the super sphere contain 10 sugars each, totaling 120 sugars, and have
diameters up to 4 nm.

The mannose in compounds 56–58 is critical in blocking virus entry into cells. As ex-
pected, 57, with 120 galactosyl species, did not inhibit the infection process. Glycofullerene
derivatives 56 and 58, with 120 mannoses, exhibited high levels of antiviral activity in the
pM~nM range. As shown in Table 4, 56 can effectively block Ebola virus infection in the nM
range, with an IC50 of 20.4 nM. Compound 58 is almost 10 times more potent in the antiviral
infection process, with an IC50 of 667 pM. Fullerene 54, linked with 36 mannoses, produced
relative inhibitory effect (RIP) values of at least two orders of magnitude smaller than those
of 56 and 58. Compared to previously reported results, 56 and 58 are the most effective
compounds against Ebola virus infection in vitro. Compounds 56–58 showed no apprecia-
ble cell cytotoxicity at the concentrations used in the virus inhibition experiments. Owing
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to their biocompatibility and spherical structure, fullerenes have become ideal scaffolds
for studying multivalent interactions. However, further research is needed to determine
whether the obtained glycofullerene derivatives can be used for practical applications.

Nanomaterials 2022, 12, 2547 14 of 22 
 

that glycofullerene derivatives were demonstrated to effectively inhibit cell infection. In 
the pseudotyped Ebola infection model, the antiviral activity of 54 was in the low nano-
molar range, with an IC50 of 0.3 µM. The glycofullerene with 12 galactosyl had no inhibi-
tory effect on virus infection, indicating that the inhibitory effect is dependent on man-
nose. Interestingly, only an increase in the valence of glycofullerene resulted in a loss of 
the antiviral effect. This phenomenon is related to the spatial crowding of sugars at the 
surface of glycofullerene. Martin et al. speculated that the high binding affinity occurs not 
only because of the extensive spatial presentation of multivalent ligands, but also the fre-
quent interactions between the ligands and corresponding receptors. They demonstrated 
that a rational design of compounds with the same valency but longer spacers can signif-
icantly increase the antiviral activity, likely due to more efficient interactions with recep-
tors. Therefore, the selection of suitable scaffolds (such as spherical fullerenes) to achieve 
multivalence, as well as the accessibility and flexibility of ligands, are key factors for im-
proving antiviral activity. 

 
Figure 17. Structure diagram of glycofullerene (54). Adapted with permission from Ref. [78]. Copy-
right 2013 American Chemical Society. 

The aforementioned studies have demonstrated that using multivalent glycofuller-
enes to block lectin receptors on the cell surface is a promising method for inhibiting virus 
entry into cells. However, creating large enough multivalent glycofullerenes to improve 
the binding ability between ligands and virus receptors remains a challenge. In 2015, Mar-
tin and coworkers [45] conducted an impressive study of water-soluble fullerenes. They 

Figure 17. Structure diagram of glycofullerene (54). Adapted with permission from Ref. [78]. Copy-
right 2013 American Chemical Society.

Table 4. IC50 and RIP values of different glycofullerene derivatives.

Compound IC50/(nM) Mannoses (No.) RIP *

56 (120 mannoses) 0.667 120 1.58 × 104

58 (120 mannoses) 20.375 120 5.2 × 102

54 (36 mannoses) 300 36 1.17 × 102

* Relative inhibitory effect, calculated as (IC50)mono/IC50 * valency ((IC50)mono, IC50 of the monovalent com-
pound; IC50 * valency, IC50 of the multivalent compound multiplied by the number of ligands present in the
multivalent compound).
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In order to enhance multivalency and improve the biocompatibility of glycofullerene
derivatives, Martin and coworkers [80] (2019) synthesized tridecafullerene derivatives
containing up to 360 1,2-mannobiosides via the strain-promoted azide–alkyne cycloaddition
method. The obtained glycofullerene derivative showed pronounced antiviral activity
against Zika virus and dengue virus, with an IC50 of 67 and 35 pM, respectively.

Additionally, Martin and coworkers [81] synthesized a series of amphiphilic glyco-
dendrofullerene [60] monoadducts (59 and 60) through the “click chemistry” reaction. In
aqueous media, the glycodendrofullerenes can self-assemble into large, compact micelles
with a uniform size and spherical shape. Antiviral tests showed that these aggregates of 59
and 60 can effectively inhibit Ebola virus infection in the nM range, with an IC50 of 424 nM
and 196 nM, respectively. However, these compounds are inferior to 56 and 68.

Ebola virus has a filament-like structure and is similar to single-walled carbon nan-
otubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) in shape. SWCNTs
are usually 1.5 to 3.0 nm in diameter. They match Ebola virus in length, at 20 to 1000 nm.
On the other hand, HIV has a roughly spherical shape of about 120 nm in diameter and
is very similar in shape and size to spherical fullerenes and single-walled nanocones
(SWCNHs) [82]. Therefore, Martin and coworkers proposed that SWCNTs, MWCNTS, and
SWCNHs could be used as virus-mimicking nanocarbon platforms, and after chemical
modification, could interact with the receptors in a multivalent manner. To employ the
novel strategy for designing antiviral agents against HIV or Ebola virus (designing gly-
cofullerene and nanocarbon complexes that mimic the virus surface and interfere with
the infection of receptors on the corresponding cell surface), Martin et al. [83] (2018) used
the “click chemistry” reaction to covalently connect glycofullerene to SWCNTs, MWCNTs,
or SWCNHs. The multivalent hybrid glycoconjugate consisting of MWCNTs and glyco-
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fullerene (61) is shown in Figure 19. After chemical modification, the water solubility of the
MWCNTs was significantly improved. In tests of efficiency in blocking artificial Ebola virus
infection with three types of multivalent hybrid glycoconjugates, 61, based on MWCNTs
and fullerene functionalization, was the most effective inhibitor of viral infection, with an
IC50 of 0.37 µg/mL.
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C60 copolymers and two γ-CD-C60 copolymers [85]. However, the newly obtained α-CD-
C60 conjugates did not exhibit inhibitory activity against HCV. Subsequently, all nine CD-
C60 conjugates were assessed in terms of their activity against the influenza virus H1N1. 
No conjugates exhibited cytotoxicity at 100.0 µM. The two γ-Cd-C60 conjugates 
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Cyclodextrins (CDs) are a series of cyclic oligosaccharides containing 6–12 D-glucopyranose
units. They have a slightly conical, hollow, cylindrical three-dimensional ring structure and
have been widely studied because of their significant solubility in water. The CD molecules
containing 6, 7, and 8 glucose units are called α-, β- and γ-CD, respectively. In 2012, Zhang
and coworkers [84] prepared a water-soluble α-CD-C60 conjugate (62), in which C60 and
α-CD were linked by two flexible alkyl chains (Figure 20). Interestingly, this water-soluble
compound showed pronounced anti-HCV entry activity, with an IC50 of 0.17 µM.
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In 2018, Zhang and coworkers [85] continued to design and synthesize seven α-CD-C60
copolymers and two γ-CD-C60 copolymers [85]. However, the newly obtained α-CD-C60
conjugates did not exhibit inhibitory activity against HCV. Subsequently, all nine CD-C60
conjugates were assessed in terms of their activity against the influenza virus H1N1. No
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conjugates exhibited cytotoxicity at 100.0 µM. The two γ-Cd-C60 conjugates demonstrated
higher anti-H1N1 activity, with IC50 values of 87.7 µM and 75.0 µM, respectively. Because
they exhibit less aggregation in aqueous solutions, the two γ-Cd-C60 conjugates are the
most water soluble of the nine conjugates. This trait might be related to their higher
inhibitory efficiency against H1N1.

7. Synthesis and Antiviral Studies of Fullerene Complexes

As mentioned, to enhance the water solubility of pristine fullerenes, various hy-
drophilic functional groups (amino acids, sugars, or calixarene) can be directly or indirectly
used to modify fullerenes through covalent bonds. Alternatively, pristine fullerenes can be
dispersed in polyvinylpyrrolidone (PVP), Triton X-100, dioctadecyldimethylammonium
bromide, or lecithin to form complexes.

Sirotkin et al. [86] added an aqueous solution of the C60/PVP complex to a suspension
of H1N1 particles. As a result, the number of virus particles with a broken lipoprotein
envelope increased dramatically, possibly due to the fusion of the C60/PVP complex with
the influenza virus.

Yang and coworkers [87] prepared a fullerene [60] liposome complex (Figure 21)
and studied its anti-H1N1 activity in vivo. The fullerene liposome complex significantly
reduces the average lung virus yields and lung index; prolongs the mean time to death; and
decreases the mortality of mice infected with H1N1. In addition, the fullerene liposome
complex has good water solubility and low toxicity, and its anti-influenza activity in vivo
is much higher than that of rimantadine. Therefore, the fullerene [60] liposome complex is
a promising clinical candidate drug against influenza infection.
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8. Conclusions

This review summarized the latest antiviral research conducted on fullerenes and
their derivatives. Numerous water-soluble fullerene derivatives or fullerene complexes
have shown great antiviral potential, mainly because fullerenes have three advantages.
First, pristine fullerenes are hydrophobic, which is conducive to the formation of strong
hydrophobic interactions with the active site surfaces of viruses. Second, hydrophilic
groups with various functions (such as amino, carboxyl, amino acid, hydroxyl, pyrrolidine,
and sugar groups) can be used to selectively modify the unique spherical skeleton of
fullerenes via organic reactions. Third, fullerenes and their derivatives exhibit no or
low cytotoxicity at relatively high concentrations. Although fullerenes are promising
prospective antiviral drugs, antiviral research on fullerenes requires improvement. Most
fullerene derivatives exhibit good antiviral effects in vitro, but the antiviral mechanism
has not been thoroughly studied. Additionally, most of the studies on fullerenes have
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only focused on virus inhibition in vitro; there have been few antiviral studies in vivo, and
relevant clinical studies involving fullerenes have not been conducted.

Viruses constantly threaten human health. Fullerenes have become an important
molecular platform for the development of antiviral drugs. Research on fullerenes as
antiviral drugs urgently needs the joint efforts of scientists working in synthesis, molecular
design, biology, and medicine. Some fullerene derivatives display inhibitory activity against
multiple types of viruses. Therefore, fullerene derivatives have the potential to become
a class of broad-spectrum antiviral drugs effective against SARS-CoV-2, which remains a
global threat. We believe that this review will encourage more researchers to synthesize
fullerene derivatives and study their antiviral properties and applications.
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