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Abstract: Emotion recognition has increased the potential of affective computing by getting an
instant feedback from users and thereby, have a better understanding of their behavior. Physiological
sensors have been used to recognize human emotions in response to audio and video content
that engages single (auditory) and multiple (two: auditory and vision) human senses, respectively.
In this study, human emotions were recognized using physiological signals observed in response
to tactile enhanced multimedia content that engages three (tactile, vision, and auditory) human
senses. The aim was to give users an enhanced real-world sensation while engaging with multimedia
content. To this end, four videos were selected and synchronized with an electric fan and a heater,
based on timestamps within the scenes, to generate tactile enhanced content with cold and hot air
effect respectively. Physiological signals, i.e., electroencephalography (EEG), photoplethysmography
(PPG), and galvanic skin response (GSR) were recorded using commercially available sensors, while
experiencing these tactile enhanced videos. The precision of the acquired physiological signals
(including EEG, PPG, and GSR) is enhanced using pre-processing with a Savitzky-Golay smoothing
filter. Frequency domain features (rational asymmetry, differential asymmetry, and correlation) from
EEG, time domain features (variance, entropy, kurtosis, and skewness) from GSR, heart rate and
heart rate variability from PPG data are extracted. The K nearest neighbor classifier is applied to
the extracted features to classify four (happy, relaxed, angry, and sad) emotions. Our experimental
results show that among individual modalities, PPG-based features gives the highest accuracy of
78.57% as compared to EEG- and GSR-based features. The fusion of EEG, GSR, and PPG features
further improved the classification accuracy to 79.76% (for four emotions) when interacting with
tactile enhanced multimedia.

Keywords: emotion recognition; wearable sensors; tactile enhanced multimedia; physiological signal
processing; classification

1. Introduction

Human senses are physiological responses and play a vital role in perception. Humans perceive
their surrounding environment using multiple senses, i.e., vision, auditory, gustatory, olfactory,
and tactile (touch). The sensing organs transmit information to the human brain, which helps in
perceiving the surrounding environment. Traditional multimedia engages only two human senses, i.e.,
auditory and vision. Whereas the human experience of viewing multimedia content can be enhanced
by engaging more than two human senses simultaneously. The multimedia content that can engage
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more than two human senses simultaneously is termed as multiple sensorial media (mulsemedia) [1,2].
There is a recent focus on mulsemedia with the aim towards providing an immersive real-world
environment during multimedia interactions. Mulsemedia could provide a new dimension towards
developing immersive systems in diverse fields such as education, medical, advertisement, and home
entertainment. Furthermore, recent advancements in wearable sensing technologies have provided
a broad spectrum to researchers for analyzing mulsemedia and its impact on human emotions and
behavior. A detailed survey of the devices that engage haptic, olfactory, and gustatory senses in
addition to vision and hearing for building a mulsemedia environment was presented in [3]. Similarly,
a framework was proposed for the delivery of multi-sensory effects to a heterogeneous system [4].

The recognition and adaptation to the affective state of a user have increased the potential of
affective computing. Affective state of an individual conveys the emotional intent and is considered as
a primary mean of communication. In everyday life, emotions play an essential role in understanding
human behavior and non-verbal communication. Emotions are physiological responses evoked in
reaction to external stimuli and could be used for evaluating the type of stimulus. Affective computing
has augmented the development of models and systems that can process human activity, and in turn
simulate it with smart recognition and interpretation [5]. Emotions have been characterized into six
basic types including anger, surprise, fear, happiness, and sadness [6] whereas Russell’s Circumplex
model categorizes emotions in a two-dimensional space based on the valence and arousal scores [7].
A person’s emotional state may change depending on their subjective experience [8]. An emotional
state can be evaluated by varying environmental conditions and this evaluation can benefit from self
reports as well as the data collected by various sensing devices [9,10]. Integrating these (sources of
information) can help us in better understanding an individual’s behavior or emotional state.

Whenever a person engages with certain emotional stimuli, their feelings are communicated
through physiological cues like brain activity, heart rate, facial expressions, body gestures, or change
in vocals. These cues are used in associating the emotional state of an individual with an external
stimulus. Emotion recognition using speech [11–13], facial expressions [14–16] and their fusion [17,18]
has been explored. These conventional methods for emotion recognition have limitations such
as privacy and camera positioning [19]. Emotion recognition from physiological cues like brain
activity, skin conductance, and heart rate has shown promising results and is relatively new in
this line of research. Human emotions are generated from the limbic system, which directs our
attention and effects brain patterns [20,21]. Recently, the interest in brain activity evaluation using
electroencephalography (EEG) has increased due to the availability of low-cost wearable headsets and
their easy usage. Emotional markers are present in EEG signals, which cannot be easily deceived by a
user’s voluntary actions [22,23]. Emotion recognition using EEG focuses on identifying the emotional
state of the mind. The changes in skin conductance are also observed during differential emotional
states [24,25]. A variation in heart rate has been reported as a discriminating cue for human emotion
recognition [26,27].

The quality of experience (QoE) of mulsemedia content has been subjectively analyzed where
different genders and age groups have shown a varying level of perception [28]. Similarly,
synchronization errors in audio-visual content and external devices have been analyzed and discussed
to enhance the experience level of viewers [29]. Mulsemedia has been explored in a 360-degree video
environment, where a higher quality of perception and enjoyment was achieved [30]. The QoE of
mulsemedia has been objectively analyzed using heart rate and electrodermal activity (EDA) [31].
A correlation was found between these objective metrics with the arousal and subjective ratings
of QoE [32]. Eye gaze data and heart rate have been analyzed for evaluating the enjoyment and
perception of viewers while experiencing mulsemedia content [33,34]. Cross-modal correspondences
were also identified when mapped with multi-sensory effects. Eye gaze and heart rate have a significant
influence on QoE of viewers while experiencing cross-modal sensory effects. Human emotions were
recognized in response to tactile enhanced multimedia (TEM) using brain signals [35]. EEG data were
acquired and four emotions (i.e., sad, relaxed, angry, and happy) were classified using time domain
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features. A significant change in human emotions was observed by engaging an additional tactile
sense. An increase in emotion recognition accuracy was achieved by extracting frequency domain
features [36].

Hence, the human response to mulsemedia content can be evaluated using various physiological
signals. While TEM clips (for stimuli) and EEG data were used for recognizing emotions [35,36],
there is no multimodal physiological signals based emotion recognition framework that has used TEM
as stimulus. Towards this, we generate four TEM clips and curate a multimodal dataset based on EEG,
galvanic skin response (GSR), and photoplethysmography (PPG) signals in response to TEM clips.
Emotion annotation is achieved using self-assessment manikin (SAM) questionnaire. Four human
emotions (sad, relaxed, happy, and angry) are recognized using each modality (individually) and
fusion of these modalities. Our results show that the fusion strategy achieves better performance for
emotion recognition. Our major contributions in this work are two-fold i.e.,

1. We present a method, utilizing multi-modal physiological signals including EEG, GSR, and PPG
(acquired using wearable sensors), for emotion recognition in response to TEM.

2. Our results show that utilizing a multimodal fusion strategy for emotion recognition in response
to TEM outperforms using data individually from EEG, GSR, and PPG.

The rest of the paper is structured as follows. Section 2 presents the review of latest emotion
recognition methods using physiological signals. Section 3 deals with the proposed methodology
used for emotion recognition using physiological signals. Emotion recognition results using multiple
modalities are presented in Section 4, which is followed by conclusions in Section 5.

2. Related Work

In literature, various stimuli have been used to evoke human emotions that engage either a single
human sense [37–41] or two human senses [42–50]. These evoked emotions are then recognized using
features extracted from data acquired using different physiological sensors. Audio music was used as
stimuli that engaged a single (i.e., auditory) human sense [37]. EEG based features were extracted to
classify human emotions in response to music stimuli and the impact of different genres on different
age groups was analyzed. Different nightscape images were used as stimuli, engaging the sense of
vision [38]. EEG signals were recorded to analyze brain patterns for evaluating the images in terms of
fear. An asymmetry index method was introduced for EEG based emotion recognition in response to
images [51]. Different odors were used to recognize emotions using content that engaged the sense
of olfaction [39]. EEG signals were used to analyze different brain regions to discriminate pleasant
and unpleasant odors. Brain signals were recorded, while engaging the sense of tactile by caressing of
textile fabric on the forearm [40]. EEG signals were then used to classify a pleasant and unpleasant
state. A practical GSR and PPG based emotion recognition framework was proposed where Geneva
affective picture database (GAPED) was used as stimulus [41].

The use of physiological signals is found to be more effective for emotion recognition when
compared with speech and gestures [52]. Moreover, multimodal data analysis has a significant
impact on emotion detection performance [53–57]. Emotions were recognized by using music as a
stimulus [58]. Different physiological signals i.e., EMG, electrocardiogram (ECG), GSR, and respiration
changes were acquired to classify different emotional states in the valence-arousal plane. Different
time and frequency domain features were extracted and the effectiveness of features was proven by
classification accuracies. A music recommendation system was designed by analyzing physiological
signals i.e., GSR and PPG [59]. Emotions were linked with the physiological responses in real-time
to feed into the recommendation engine. Images were presented, engaging only one human sense,
to evoke emotions [60]. Facial expressions and different physiological signals such as GSR, ECG,
and temperature data were acquired while presenting the stimulus. A fusion strategy was employed
to improve the emotion recognition performance. Different images were presented to detect emotions
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using EEG and peripheral signals [61]. Emotion detection performance was analyzed by using EEG
and peripheral signals individually as well as together.

Different datasets are created for emotion detection using physiological signals in response
to various types of stimuli. For instance, dataset for emotion analysis using physiological signals
(DEAP) was created to recognize human emotions [42]. Different video clips were displayed to
subjects and EEG, GSR, electromyogram (EMG), electrooculogram (EoG), and blood volume pressure
(BVP) data were recorded. It was shown that fusing multiple modalities significantly improves
emotion recognition performance. Similarly, EEG, EMG, GSR, and temperature data were acquired by
presenting video clips as a stimulus [62]. Significant improvement in emotion recognition performance
was reported by applying modality fusion strategies. A dataset comprising of EEG, ECG, EoG,
and magnetoencephalogram (MEG) signals was created for emotion recognition [63]. Emotions were
elicited while presenting musical videos and brain signals were also acquired using MEG sensors
and compared with EEG sensors. Another physiological dataset comprising of EEG, ECG, and GSR
signals was created to study the effect of personality and emotions by presenting video clips as a
stimulus [64]. The relationship between emotions and personality was analyzed using the physiological
cues. A physiological dataset was created to study the effect of mood and personality by presenting
emotional videos [65]. EEG, GSR, and ECG data were acquired to investigate affective levels using
valence and arousal scores. A new multimodal physiological emotion database (MPED) was made
public to recognize human emotions using physiological signals including EEG, GSR, respiration,
and ECG [66]. The emotions in MPED were categorized based on discrete emotion model. Emotions
were recognized by extracting features from ECG and GSR signals [67]. The dataset was acquired by
exposing individuals to emotional videos. A pre-processing and feature extraction mechanism was
proposed to improve emotion detection accuracy. Emotion detection was performed for ageing people
by analyzing ECG, EMG, EDA, and skin temperature data [68]. These physiological responses were
analyzed to monitor and detect emotional states in elderly people. These datasets have been created to
recognize emotions by analyzing the classifier performance using individual modality or fusion of
multiple modalities. Moreover, these studies have presented a stimulus that engages either one human
sense (audio music) or two human senses (videos).

The impact of different modalities, i.e., EEG, eye blink, and their fusion on emotion recognition
was also investigated [43]. Self-induced emotion patterns were investigated using EEG in response
to video clips presented as stimulus [69]. An ensemble classification approach was used to classify
emotional states using ECG signals [70]. Emotion monitoring was proposed for healthcare using a low
cost wearable EEG headset [71]. Moreover, effect of culture on emotion recognition was investigated
using EEG signals by presenting video clips in two different languages [72]. A feature extraction
method was proposed to improve emotion recognition accuracy using EEG signals [73]. A quadratic
time-frequency feature extraction scheme was proposed to recognize emotions using EEG signals [74].
Physiological signals (EEG and ECG) were used to investigate driver’s emotional states [75]. Emotion
recognition was analyzed in response to different movie clips using blood oxygen saturation, GSR,
and heart rate variability to evaluate these clips in terms of prompted emotions [44]. The EEG data
from DEAP dataset were used and wavelet-based features were extracted from selected channels to
recognize emotions [45]. Different frequency bands of brain signals were analyzed to identify more
sensitive brain lobes for the emotion recognition task [46]. Physiological and inertial sensors were
also used to recognize emotions in response to video clips [47]. EDA, PPG, GSR, accelerometer, skin
temperature, blood volume pulse, and heart rate data were collected to recognize different emotional
states of an individual. Feature- and decision-level fusion was applied to facial and EEG-based features
for multimodal video induced emotion recognition framework [48].

The efficiency of GSR and PPG data from DEAP dataset was examined for emotion categorization.
The fusion of GSR and PPG features was also studied to recognize emotions [76]. A machine-learning
framework for boredom classification using fusion of EEG and GSR data was proposed in response to
videos [77]. A correlation between EEG and GSR data and boredom state was also revealed. Negative
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emotions were classified using multimodal physiological signals (including ECG, skin temperature,
and EDA) in response to videos [78]. ReliefF-based channel selection method was applied to EEG
data from DEAP dataset to classify four human emotions [79]. The channel reduction technique
was validated by comparing the accuracy and F-score of the system using support vector machine
classifier. A commercially available wearable smart bracelet was used to acquire heart rate data while
watching traditional video clips to recognize three emotions (neutral, happy, and sad) [80]. Four human
emotions, i.e., anger, sadness, joy, and pleasure in response to videos were recognized by extracting four
types of features from ECG signals [70]. Ensemble learning methods were employed to improve the
classification accuracy of the system for real-world machine learning problems. EEG and GSR signals
were also used to classify boredom states in response to video clips [77]. A gradient boosting decision
tree (GBDT) based classification scheme was proposed to improve emotion recognition accuracy using
physiological signals (ECG, EMG, GSR, and PPG) in response to videos [53]. Fusion of features from
EEG and GSR data was used to improve emotion recognition accuracy in response to video clips [81].

Most of the abovementioned emotion recognition methods extract time-, frequency-,
and wavelet-domain features from physiological signals. There are some recent studies that have
used deep learning techniques for emotion recognition [81–85]. A convolutional neural network
(CNN) model was employed to improve emotion recognition performance using physiological signals
(including EDA, ECG, and skin temperature) while engaging individuals with video stimulus [86].
A CNN-based model was proposed using DEAP dataset for detecting emotions in response to
videos [87]. A capsule network model was proposed using EEG data for emotion recognition [88].
A CNN based model was also proposed to improve accuracy by recognizing emotions using heart
rate variability and respiration changes [85]. A deep belief network was proposed for EEG-based
emotion recognition, which selected critical frequency bands and channels [82]. Spatial temporal
recurrent neural network was proposed for emotion recognition task and showed promising results
on EEG and facial expression dataset [83]. EEG and GSR data from DEAP were used to improve the
emotion classification accuracy [81]. Spectrogram calculated from EEG signals was given as input to
the CNN to extract EEG features, which was then fused with GSR based features. Another CNN-based
approach was proposed to recognize emotions in response to videos and results were tested in a
subject-dependent and subject-independent manner [84]. Six basic emotions were classified using
various CNN models in response to videos as stimuli [85]. Although, high classification accuracy
was achieved for selective CNN models, training these deep CNN models remains a challenge.
A comprehensive review of emotion recognition and sentiment analysis using multimodal data was
presented in some recent works [10,22,89].

Recently, emotion recognition techniques have been explored in response to content engaging
three human senses (mulsemedia) [35,36,90,91]. Olfaction enhanced multimedia engaging sense of
vision, olfaction, and auditory was generated [90]. Brain activity was statistically analyzed and it was
reported that by engaging olfactory sense with traditional multimedia significantly activates different
brain regions. Features from these brain regions were utilized to recognize pleasantness states and
it was identified that the olfaction enhanced content recognizes human emotions more accurately as
compared to traditional multimedia. A vibro-tactile enhanced multimedia was used as stimulus that
engaged the sense of vision, auditory, and tactile [91]. Heart rate and eye-tracking data were used to
analyze the effect of vibro-tactile enhanced multimedia on user’s perception. Two TEM clips were used
as stimuli and EEG signals were used to recognize four human emotions [35,36]. A summary of recent
works on emotion recognition using physiological signals is presented in Table 1. It should be noted
that these methods are delineated based on stimuli (including images and videos). While for videos,
a significant emotion classification accuracy (>90%) has been reported in multiple instances, but for
TEM the performance has been significantly lower. In this work, not only the number of TEM clips is
increased but also multimodal strategy for emotion recognition in response to TEM is proposed.
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Table 1. A summary of the recent literature on emotion recognition using various stimuli and
physiological sensors.

Reference Stimuli Senses Engaged Sensors Used Emotions Classified Accuracy

[37] Music Auditory EEG Happy, sad, love, anger 78.11%

[58] Music Auditory EMG, ECG, GSR, respiration Low/High valence-arousal 70%

[60] Images Vision GSR, ECG, temperature Love, joy, surprise, fear 88.33%

[38] Images Vision EEG Fear –

[61] Images Vision EEG, peripheral signals Positively excited, negatively 67%
excited, calm

[41] Images Vision GSR, PPG Low/High valence-arousal 86.7%

[51] Images Vision EEG Low/ High valence-arousal 62.58%

[71] Images Vision EEG Low/High valence-arousal 53.72%

[39] Odors Olfaction EEG Pleasant, unpleasant 99.99%

[40] Textile Fabrics Tactile EEG Pleasant, unpleasant 70.6%

[42] Videos Vision, Auditory EEG, GSR, EMG, EoG, BVP Low/High valence-arousal 65%

[63] Videos Vision, Auditory EEG, ECG, EoG, MEG Low/High valence-arousal 85%

[64] Videos Vision, Auditory EEG, ECG, GSR Low/High valence-arousal 68%

[66] Videos Vision, Auditory EEG, ECG, GSR, respiration Joy, funny, anger, fear, 83%
disgust, neutrality

[43] Videos Vision, Auditory EEG, Eye Pleasant, unpleasant, neutral, 76.4%
Tracking calm, medium, activated

[85] Videos Vision, Auditory HRV, respiration Happiness, fear, surprise, 94%
anger, sadness, disgust

[77] Videos Vision, Auditory EEG, GSR Boredom 79.98%

[78] Videos Vision, Auditory ECG, skin temperature, EDA Negative emotion 92.5%

[53] Videos Vision, Auditory ECG, EMG, GSR, PPG Pleasure, fear, sadness, anger 93.42%

[86] Videos Vision, Auditory ECG, skin temperature, EDA Happiness, surprise, anger, 89%
disgust, sadness, fear

[70] Videos Vision, Auditory ECG Joy, sadness, pleasure, anger, 80%
fear, neutral

[72] Videos Vision, Auditory EEG Amusement, sadness, anger, 60%
fear, surprise, disgust

[92] Videos Vision, Auditory EEG Low, medium, high fear 89.96%

[73] Videos Vision, Auditory EEG Positive, neutral, negative 68%

[74] Videos Vision, Auditory EEG Low/High valence-arousal 86.2%

[81] Videos Vision, Auditory EEG, GSR Low/High valence-arousal 73.4%

[69] Videos Vision, Auditory EEG Joy, neutrality, sadness, 54.52%
disgust, anger, fear

[35] Tactile enhanced Vision, Auditory, EEG Happy, angry, sad, relaxed 63.41%
multimedia Tactile

3. Proposed Methodology

Our proposed methodology to classify human emotions using EEG, GSR, and PPG in response
to TEM is shown in Figure 1. There are five phases including content generation, data acquisition,
pre-processing, feature extraction and modality level fusion, and classification. Each of these phases is
discussed in detail in the following subsections.
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Figure 1. Our proposed methodology for emotion recognition using EEG, GSR, and PPG in response
to TEM.

3.1. TEM Content Generation

TEM was generated for simultaneously engaging three (vision, tactile, and auditory) human
senses. Four different video clips were selected, which were then synchronized with a heater and an
electric fan. The first clip was selected from the movie ’Tangled’, where a character faces opposing
effect of air while running on snow. For TEM clip 1 generation, the timestamp (to start the airflow)
was identified and synchronized with an electric fan. The second clip was selected from an online
source (youtube.com), where a character is seated behind an airplane with the opposing effect of air.
The timestamp was identified and synchronized with a fan to generate TEM clip 2. The third clip was
selected from the movie ‘The Lord of the Rings’, where a character faces the effect of heat generated by
a volcano. The timestamp was identified on the basis of unfurling of hair, and synchronization was
performed with an electric heater to generate TEM clip 3. The fourth clip was selected from an online
source, where a character ignites fire in a cold environment surrounded by snow. The timestamp for
this event was identified and synchronized with an electric heater to generate TEM clip 4. Since tactile
sensation, in the selected videos, were felt on the face and hands of the character, therefore fan and
heater were placed on the right and left side of the viewer respectively. For cold air effect, a DC fan of
8 inches wing size operated at 10V in full swing was used. For hot air effect, electric fan heater was
operated at 240 V and 1000 W.

Five users initially evaluated the synchronization of each clip with fan and heater using the
user feedback on a five-point Likert scale. The best synchronization point was identified according
to the ratings from these users. The timestamp details of each TEM clip and the total duration of
the hot air or cold air effect are shown in Table 2. The audio-visual content was synchronized with
electrical fan and heater using timestamp information associated with the help of our own designed
TEM player. Moreover, the user experience was evaluated while watching traditional multimedia and
TEM. For this purpose, 30 users watched all four multimedia clips and their TEM versions in a random

youtube.com
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order. The question asked was: ‘Does the tactile effect enhance the sensation of reality while watching the
clip?’. Users rated the experience feedback on a five-point Likert scale from “Strongly Agree” at one
end to “Strongly Disagree” at the other end. Mean opinion scores (MOS) with 95% confidence interval
of four clips and their tactile enhanced version is shown in Figure 2. A MOS of 3.1, 3.3, 2.9, and 3.0
against traditional multimedia clip 1, 2, 3, and 4 and 4.0, 3.8, 3.5, and 3.6 against TEM clips 1, 2, 3,
and 4 was observed. This suggests that users had a better experience with TEM when compared with
the traditional multimedia content. A t-test was also applied to the experience scores of traditional
multimedia clips and its TEM versions to identify the significant difference between the two groups.
A p-value of 0.0001, 0.0453, 0.0063, and 0.0009 was obtained for clip 1, 2, 3, and 4 respectively, which
shows a significant difference in the perceived experience.

Table 2. Synchronization timestamp and tactile effect duration of TEM clips used in this study.

TEM Sensorial Clip Synchronization Duration of
Clip Effect Duration Timestamp Sensorial Effect

Clip 1 Cold air 58 s 00:19–00:59 40 s
Clip 2 Cold air 35 s 00:03–00:30 27 s
Clip 3 Hot air 21 s 00:12–00:28 16 s
Clip 4 Hot air 55 s 00:30–00:55 25 s

Figure 2. Confidence interval plot of MOS with 95% confidence in response to traditional multimedia
and TEM clips.

3.2. Data Acquisition

3.2.1. Participants

In this study, a total of 21 participants (10 females and 11 males, average age = 21.1 years)
participated voluntarily. It is to be noted here that these participants were different from those who
recorded the scaling scores for synchronization and MOS for experiencing the TEM clips. There was
no reported history of disability, mental, or physical illness for any of the participants involved.
The experimental study was designed according to the Helsinki declaration and approved by the
Board of Advanced Studies Research and Technological Development, University of Engineering and
Technology, Taxila, Pakistan.

3.2.2. Apparatus

The data acquisition setup for experiencing TEM content along with the apparatus is shown
in Figure 3. A commercially available EEG headband (Muse) was used for recording EEG signals,
whereas a Shimmer GSR and PPG module was used for recording GSR and PPG signals. The Muse
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headband has two temporal (TP9 and TP10) and two frontal (AF7 and AF8) electrodes, which are
designed to be placed according to the international 10–20 electrode positioning system. The GSR
electrodes were placed on the hand finger, and PPG electrode was placed on the ear lobe. EEG, GSR,
and PPG data were acquired at a sampling rate of 256 Hz.

Figure 3. Experimental setup and apparatus used for data recording while watching TEM clips.

3.2.3. Experimental Procedure

Each participant was initially briefed about the scope of the experiment. This was followed by
signing of a written consent form and demographic details were recorded. The procedural diagram for
data acquisition is shown in Figure 4. At the start of the experiment, wearable sensors were set up on
an individual’s forehead, fingers, and ear lobe for EEG, GSR, and PPG data recording, respectively.
Each TEM clip was then displayed to the participant on a 55 inch LED display. Each participant was
provided with a comfortable chair to experience TEM clips in normal room temperature and lighting
conditions. The viewer had to rate the clip on a 9-point SAM scale. SAM is a graphical (non-verbal) tool
to measure the user’s affective reaction in response to a variety of stimuli in terms of valence, arousal,
and dominance [93]. The valence dimension is represented graphically from smiling (happy) figure to
frowning (unhappy) figure. Similarly, the arousal dimension is represented graphically from excited
(wide-eyed) figure to relaxed (sleepy) figure. In this study, valence and arousal scores were recorded
on a paper at the end of each clip (represented as red block in the sequence diagram). The valence
value shows the pleasant-unpleasant state, whereas arousal represents the calm-excited state of an
individual. In this study, Russell’s Circumplex model [7] was used to label emotions into four groups
based on their valence arousal scores. Happy, angry, sad, and relaxed emotions were categorized based
on high-valence high-arousal, low-valence high-arousal, low-valence low-arousal, and high-valence
low-arousal groups, respectively.

Figure 4. Experimental procedure followed for physiological data acquisition in response to TEM clips.

3.3. Pre-Processing

The recorded data were pre-processed to remove noise generated by muscular movements or
external interference. The time-series signals (including EEG, GSR, and PPG) were filtered using the
Savitzky-Golay (SG) filter [94], which was used for smoothing the data without distorting the signal
tendency. Moreover, an on-board driven right leg (DRL) feedback circuit on Muse EEG headband
canceled the noise present in the EEG signal. The DRL circuits are often used in physiological
signal amplifiers to minimize common-mode interference. An on-board signal processing module
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characterized the data in different frequency (alpha, beta, delta, theta, and gamma) bands. Muscular
and eye movement artifacts were also minimized by asking the participants to avoid unnecessary
movements during data recording.

3.4. Feature Extraction and Modality Level Fusion

After pre-processing, features were extracted from the recorded physiological sensors data to
recognize human emotions. Frequency-domain features including rational asymmetry (RASMb),
differential asymmetry (DASMb), and correlation (Cb) were extracted from each band of the EEG
signal. Asymmetry features and correlation were calculated from symmetric electrode pairs from
right and left hemispheres (i.e., (AF7, AF8) and (TP9, TP10)) of the brain. These features are related
to the valence of an emotional stimulus [95,96]. Four time-domain features were extracted from the
recorded GSR data including entropy (E), variance (V), kurtosis (K), and skewness (S). Heart rate (HR)
and heart rate variability (HRV) were calculated as features from the recorded PPG data. HR was
calculated using the number of R-peaks within the signal whereas, HRV was calculated as the average
time interval between successive R-peaks.

The extracted EEG, GSR, and PPG features are summarized in Table 3. In total 30, 4, and 2 features
were extracted from EEG, GSR, and PPG signals respectively. Hence a total of 36 values were obtained
resulting in a feature matrix of size 84 × 36, where 84 accounts for each of the 21 participants viewing
4 TEM clips. In multimodal emotion recognition frameworks, information from multiple modalities
can be fused either using modality level fusion (MLF) or decision level fusion (DLF) [43]. In DLF,
multiple classifiers are used on each modality features and their decisions are fused. In MLF, features
from different modalities are fused prior to classification. In this study, MLF is selected as fusion
technique because single classifier is used as compared to DLF that utilizes multiple classifiers. As in
MLF, classification was performed after fusing features from all modalities. Therefore, all possible
combinations of features were tested from different modalities (including EEG, GSR, and PPG).

Table 3. Description of extracted features in this study for emotion recognition.

Sensor Feature Description

RASMb =
PRb
PLb

, where PRb and PLb represent power on right

and left hemisphere respectively, and b
represents EEG band.

EEG DASMb = PRb − PLb .

Cb =
Σ(PRb−PRb )(PLb−PLb )√

Σ(PRb−PRb )
2Σ(PLb−PLb )

2
, where PRb and PLb are the

mean of PRb and PLb respectively.

V = E[(X − µ)2], where X is the row vector consisting of
GSR data and µ is the mean value.

E = −∑(p(X)logp(X)), where p(X) is the probability.
GSR K = m4

V , where m4 is fourth moment of the GSR data.
S = m3

m
3
2
3

, where m3 is third moment of the GSR data.

PPG HR = Number of beats in a minute.
HRV = Time interval between heart beats.

3.5. Classification

The classification of four emotions in response to TEM content was performed using the k-nearest
neighbor (KNN) algorithm. It has been widely used for emotion recognition in response to different
types of stimuli using physiological signals [97]. KNN was chosen because of its inherent simplicity in
implementation and robustness to noisy data. Since we are dealing with physiological signals acquired
using commercial grade devices, the level of noise could be high, and a robust classifier benefits
the classification task. In KNN, the input data are classified on the basis of votes of its neighbors.
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The training phase in KNN involves a vector in a multidimensional space along with class labels.
In the classification phase, a label is assigned to an unlabeled vector and classified on the basis of
nearest sample from the training data. We used cross-validation and split the data into test and train
samples such that there was no overlap among these sample points.

4. Experimental Results and Discussion

4.1. Data Labeling

Emotions were represented in a 2-dimensional space using valence and arousal scores.
The emotion from each quadrant was labeled based on the arousal and valence score recorded in
response to each clip. SAM scores for all participants against each TEM clip are shown in Figure 5.
Positive arousal and valence scores were labeled as a happy state, whereas negative arousal and valence
were tagged as a relaxed state. Similarly, positive valence but negative arousal was labeled as angry
emotion whereas, negative valence but positive arousal was labeled as a sad state. The total number of
instances labeled as happy, angry, sad, and relaxed emotions were 40, 13, 22, and 9 respectively.

Figure 5. Recorded SAM scores in response to four TEM clips.

4.2. Performance Evaluation

Herein, we present the classification performance of our proposed scheme to classify four emotions
(happy, relaxed, angry, and sad) in response to TEM content. A 10-fold cross-validation scheme was
applied to train the classifier. Classifier’s performance against each modality was compared in
terms of accuracy, squared error rates (root mean squared error (RMSE), root relative squared error
(RRSE)), absolute error rates (mean absolute error (MAE), relative absolute error (RAE)), and kappa
statistics. The kappa parameter (range: −1 < k < 1) indicates the agreement of testing data with the
training data.

Various parameters for evaluation of emotion classification performance in response to TEM
(for EEG, GSR, and PPG) are presented in Table 4. For MLF, various combinations of features from
different modalities were used. For individual physiological sensors, we observe that PPG achieved
the highest accuracy of 78.57% with a lower absolute and squared error rates as compared to EEG
(75.00%) and GSR (72.61%). A high value of kappa (k = 0.678) using PPG features also suggests a
high inter-rater agreement of testing and training data as compared to EEG and GSR based features.
GSR features have the lowest accuracy and kappa value, and higher error rates for emotion recognition.
We observe no significant improvement in performance for combinations where features from two
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modalities were fused. Whereas, fusing features from all three modalities improved the emotion
recognition accuracy up to 79.76%. In addition, lower value of absolute and squared error rates and a
higher value of kappa (k = 0.690) shows better performance of the emotion recognition system using
MLF (combining features for EEG, GSR and PPG).

Table 4. Classification performance for emotion recognition using EEG, GSR, PPG, and modality level
fusion in response to TEM content.

Modality Accuracy MAE RMSE RAE RRSE Kappa

EEG 75.00% 0.13 0.35 40.13 84.73 0.62
GSR 72.61% 0.14 0.35 42.68 86.15 0.59
PPG 78.57% 0.11 0.31 33.13 75.18 0.68

EEG+GSR 69.04% 0.13 0.28 39.30 69.54 0.57
EEG+PPG 72.61% 0.13 0.32 37.97 79.25 0.60
GSR+PPG 75.00% 0.12 0.30 35.83 72.93 0.63

EEG+GSR+PPG 79.76% 0.11 0.31 33.23 76.06 0.69

The number of correctly classified and misclassified instances is represented by the confusion
matrix (Table 5). Each class was evaluated in terms of sensitivity and specificity. Sensitivity is also
known as the true positive rate and measures the proportion of correctly classified instances. Specificity
measures the proportion of actual negatives. We observe that the happy emotion has the highest
sensitivity as compared to sad, angry, and relaxed emotions. Whereas, angry emotion has the highest
specificity as compared to other emotions using EEG. It was also observed that the happy state has
the highest sensitivity using PPG as compared to GSR and EEG based features. The happy and
angry emotions were correctly classified with the highest sensitivity using fusion as compared to
individual modalities. This resulted in the highest accuracy when the proposed emotion recognition
system (utilizing modality level fusion of EEG, GSR, and PPG signals) was used with TEM content.
The classifier performance was also evaluated in terms of precision, recall, and F-score, which are
shown in Figure 6. Here we can observe that the precision, recall, and F-score are higher using MLF
(EEG+GSR+PPG) as compared to EEG, GSR, and PPG based features. This is an indicator of better
performance using our proposed emotion recognition system with modality level fusion of features.

Figure 6. Precision, recall, and F-score in response to TEM using EEG, GSR, PPG, and MLF.
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Table 5. Confusion matrices for emotion recognition using (a) EEG, (b) GSR, (c) PPG, and (d) MLF
(EEG+GSR+PPG) in response to TEM content.

a b c d Classified as Sensitivity Specificity

6 1 2 0 a = Relaxed 66.7% 94.0%
0 15 6 1 b = Sad 68.2% 91.9%
4 2 33 1 c = Happy 82.5% 80.0%
1 2 1 9 d = Angry 69.2% 97.2%

(a) EEG

7 1 2 1 a = Relaxed 77.8% 94.7%
0 18 5 0 b = Sad 81.8% 91.9%
2 3 29 5 c = Happy 72.5% 77.3%
0 0 4 7 d = Angry 53.8% 94.4%

(b) GSR

7 0 4 0 a = Relaxed 77.8% 94.7%
0 17 1 4 b = Sad 77.3% 91.9%
2 2 35 2 c = Happy 87.5% 86.4%
0 3 0 7 d = Angry 53.8% 95.8%

(c) PPG

7 0 1 0 a = Relaxed 77.8% 98.7%
1 16 3 2 b = Sad 72.7% 90.3%
1 6 35 2 c = Happy 87.5% 79.5%
0 0 1 9 d = Angry 69.2% 98.6%

(d) EEG+GSR+PPG

4.3. Discussion

We presented an experimental study to recognize human emotions in response to TEM clips
using physiological signals i.e., EEG, GSR, and PPG. From our experimental results, we observed that
PPG based features (HR and HRV) could be used to classify human emotions (four) more precisely as
compared to EEG and GSR based features. Moreover, it is also observed that the accuracy of emotion
recognition in response to TEM clips increases by fusing the features from each of these modalities.
Our proposed emotion recognition scheme is compared with state-of-the-art techniques in terms of
modality used, the number of emotions, the number of videos, the number of users, and the accuracy
of the system as shown in Table 6.

The vibro-tactile content was generated by synchronizing 6 video clips with a haptic vest [91].
This content was intrusive in nature, since physical contact with the human body was required.
A haptic vest was used to generate a vibration (synchronized to the scene) producing vibro-tactile
effect. The perception and enjoyment of users in response to different vibration settings were
statistically analyzed by using a wrist worn heart rate sensor and eye gaze data. These sensors
were utilized to explore the cross-modal correspondences and quality of experience of users using
different vibration settings. The results were analyzed using subjective questionnaires, however the
impact of such enhanced content on human brain activity and emotions was not evaluated. Two clips
were synchronized (for cold and hot air effect) with a fan and a heater to generate TEM content [35].
This enhanced content was non-intrusive, since none of the components made any physical contact
with the human body. Air was used as a medium to carry the hot and cold air effects to the user.
EEG signals were recorded and time-domain features were extracted using Muse EEG headband.
Four emotions were classified with an accuracy of 63.41%. Furthermore, frequency-domain features
were used to improve the emotion recognition accuracy for the same TEM clips [36]. The importance
of different frequency-domain features was highlighted, since an emotion recognition accuracy of
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76.19% was achieved. Although an average accuracy of 94.02% was achieved for classifying six basic
emotions using video as stimuli [85]. It was identified that this performance was possible using a
certain variation of the CNN model, and training such parameter intensive models was a challenge.
Similarly, five emotional states were recognized using a fusion of PPG, EMG, and GSR signals using
video as stimulus [98]. A maximum accuracy of 89.53% was achieved using deep belief network
architecture, although it was time consuming to train the model. Both the studies that show higher
accuracy have used videos as stimuli, while we used tactile enhanced multimedia as stimuli that
engage three human emotions.

Table 6. Performance comparison of the proposed emotion recognition system in response to TEM
with state-of-the-art methods.

Method Modality Emotions No. of No. of Accuracy
TEM/Video Clips Users (F/M)

[91] Eye gaze, Heart Enjoyment, Perception 6 (TEM) 24 (9/15) -
rate wrist band

[35] EEG Happy, Angry, Sad, Relaxed 2 (TEM) 21 (10/11) 63.41%
[36] EEG Happy, Angry, Sad, Relaxed 2 (TEM) 21 (10/11) 76.19%
[85] RSP and HRV Happy, Angry, Sad, Fear, Surprise, Disgust 6 (video) 49 (19/30) 94.02%
[98] PPG, EMG, EDA Happy, Sad, Disgust, Relaxed, Neutral 40 (video) 32 (16/16) 89.53%

Proposed EEG, GSR, PPG Happy, Angry, Sad, Relaxed 4 (Video) 21 (10/11) 70.01%
Proposed EEG Happy, Angry, Sad, Relaxed 4 (TEM) 21 (10/11) 75.00%
Proposed EEG, GSR, PPG Happy, Angry, Sad, Relaxed 4 (TEM) 21 (10/11) 79.76%

Herein, the TEM content was extended by synchronizing four clips with a fan and a heater.
Furthermore, we used signals from three modalities for emotion recognition. This stands out from
other state-of-the-art studies where, to the best of our knowledge, only EEG signals have been used to
account for physiological responses to TEM content. An accuracy of 75.00% is achieved when only
EEG based features were used which is higher than [35] and lower (by 1.19%) than [36]. We argue
that this slight decrease in the accuracy is due to an increase in the number of clips. Our proposed
emotion recognition system employed a multimodal fusion strategy and achieved a higher accuracy
(79.76%) when compared with recently reported methods. Further, the benefit of using TEM content
was evident when the classification accuracy for same emotions was evaluated while using videos
(without tactile effect) as stimuli. It was observed that the accuracy improved by ≈ 10% when TEM
was used for similar video clips. Although improvement in emotion recognition accuracy is achieved
but there are certain aspects that need to be further explored in the future. In this study, electric fan
and heater were used to generate cold and hot air effects at fixed intensities. The impact of hot and
cold air on human response can be different if the intensities are changed. The aim is to generate
a sensation, where a user instantly feels a change in environment (temperature in our experiment),
which is synchronized to the video content. While our study shows that with TEM, the emotion
recognition accuracy increases, which could mean that the users were able to better feel the emotions
as the video content intended to deliver. The use of physiological sensors also ensures that the true
sensation of emotion is detected which is subjectively independent of users. Although, the number
of subjects involved needs to be increased in future to further strengthen the findings of this study.
Moreover, the number of clips should be increased including haptic effects to validate the performance
of the proposed emotion recognition technique. In general, we can conclude, that tactile enhanced
multimedia content can better invoke emotions in users and for affective computing the emotion
detection accuracy can be improved when users are presented with such content.

5. Conclusions

In this study, TEM clips were created which would simultaneously entice three human senses
including tactile, auditory, and vision. This could improve the emotional experience of a user, which
herein was demonstrated by recognizing emotions using physiological signals. Four traditional video
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clips were selected and synchronized with a heater and an electric fan to engage the tactile sense of the
observer in addition to vision and auditory senses. EEG, GSR, and PPG data were acquired in response
to these TEM clips. Frequency-domain features from EEG, time-domain features from GSR, and heart
rate and heart rate variability from PPG data were extracted. Emotion recognition performance was
evaluated to recognize four emotions using the KNN classifier based on features from each modality
and their fusion. Our experimental results show that the fusion strategy achieves the highest accuracy
of 79.76% with high sensitivity and specificity as compared to individual modalities. It should be noted
that there are some limitations presented in the discussion, which should be considered. In particular,
the number of participants will be increased in future to further validate the results. We also intend to
engage more emotions simultaneously and hence develop systems providing an improved emotional
experience when experiencing mulsemedia content.
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