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Abstract: Poplar is one of the most important tree species in the north temperate zone, but poplar
plantations are quite water intensive. We report here that CaMV 35S promoter-driven overexpression
of the PdERECTA gene, which is a member of the LRR-RLKs family from Populus nigra × (Populus
deltoides × Populus nigra), improves water use efficiency and enhances drought tolerance in triploid
white poplar. PdERECTA localizes to the plasma membrane. Overexpression plants showed lower
stomatal density and larger stomatal size. The abaxial stomatal density was 24–34% lower and the
stomatal size was 12–14% larger in overexpression lines. Reduced stomatal density led to a sharp
restriction of transpiration, which was about 18–35% lower than the control line, and instantaneous
water use efficiency was around 14–63% higher in overexpression lines under different conditions.
These phenotypic changes led to increased drought tolerance. PdERECTA overexpression plants not
only survived longer after stopping watering but also performed better when supplied with limited
water, as they had better physical and photosynthesis conditions, faster growth rate, and higher
biomass accumulation. Taken together, our data suggest that PdERECTA can alter the development
pattern of stomata to reduce stomatal density, which then restricts water consumption, conferring
enhanced drought tolerance to poplar. This makes PdERECTA trees promising candidates for
establishing more water use efficient plantations.
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1. Introduction

Drought stress is one of the most destructive agriculture calamities, as it penalizes the
growth and distribution of plants, leading to economic loss and ecological damage [1,2].
One of the effective strategies to enhance drought tolerance is limiting water loss through
transpiration [3,4]. Stomatal density, hormones, nutrition, blue light, humidity, or CO2
concentrations can affect plant water consumption, mainly by directly impacting stomatal
conductance and transpiration rate [5–13], or mitigating the impairment of the plant cells
brought by water depletion [14]. In recent decades, many reports demonstrated that
manipulating critical genes can be a practical way to regulate water consumption [15–19].

Stomata are microscopic pores encompassed by a pair of guard cells, through which
most terrestrial plants uptake CO2 for photosynthesis and discharge water vapor and
O2 [20]. Under short-term drought stress, plants can restrict water loss via simply regulat-
ing stomatal apertures temporarily by hormones, such as abscisic acid (ABA) and brassinos-
teroids [21–23], while when exposed to long-term drought stress, plants reduce the stomatal
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density or shrink the leaf area permanently to restrict water consumption [3,17,24,25]. Ma-
ture leaves are sensors of the changing conditions of the environment, as they can generate
signals and transport to developing leaves to regulate the formation of stomata in young
leaves [26,27]. The formation of mature stomata in Arabidopsis undergoes several interme-
diary steps, which is known as the stomatal lineage, from the meristemoid cell (MMC)
to the stomatal lineage ground cell (SLGC), the round guard mother cell (GMC), and at
last the guard cells (GCs) [20,28]. Three bHLH-type transcription factors, SPEECHLESS
(SPCH), MUTE, and FAMA, are fateful for these transformations [28–30].

Receptor-like kinases (RLKs) are one of the largest families containing versatile N-
terminal extracellular domains and C-terminal intracellular kinases, which participate in
receiving and conducting a wide range of signals or stimuli [31]. LRR-RLKs (leucine-rich
repeats receptor-like kinases) are the largest group of RLKs composed of three distinct
domains: a leucine-rich repeat (LRR) extracellular domain to perceive signals, a trans-
membrane region to anchor the protein within the membrane, and a cytoplasmic ser-
ine/threonine (Ser/Thr) protein kinase domain to transduce the signal downstream [32,33].
LRR-RLKs control a wide range of physiological responses in plants, not only in growth
and development but also in responding to abiotic and biotic stresses [32,34,35]. As part
of the LRR-RLKs family, ERECTA encodes a leucine-rich repeat receptor kinase [36]. To-
gether with its two homologous genes, ER-like 1 (ERL1) and ERL2, ERECTA plays a crucial
role in the process of the stomata development signaling pathway. ERECTA is predomi-
nantly expressed in the shoot apical and organ primordia [37,38], and has a great impact
on plant morphogenesis [39–42] by regulating phytohormones [38,43–46]. Besides, the
ERECTA family is one of the master factors regulating epidermal stomatal formation.
Arabidopsis erecta mutants showed a phenotype of increased stomatal density and higher
water consumption [47]. However, whether MMCs can develop into guard cells or not
depends on the signaling peptide ERECTA captured. Three peptides from the Epidermal
Patterning Factor-Like (EPFL) family, EPF1, EPF2, and EPF9 (STOMAGEN) as ligands, are
involved in cell fate determination in the ERECTA-dependent pathway. EPF1 and EPF2 are
secreted by stomatal lineage cells. After being captured by the LRR domain of ERECTA,
the intracellular kinase catalytic domain of the receptor-ligand complexes activates the
MPK cascade downstream by phosphorylation, which leads to the phosphorylation of
SPCH and perhaps MUTE to regulate their transcription and activity. Consequently, this
switches off the process of the stomatal lineage [20,48–50]. EPF9, oppositely, is produced by
internal mesophyll cells and agonistically binds to ERECTA to block its kinase activity and
triggers the formation of stomata [50–54]. This competition maintains a balance between
CO2 assimilation and water consumption, which is essential for plants to survive in a fickle
natural environment.

Forests help to maintain biodiversity, protect land and water resources, relieve climate
change, and provide food and raw materials for human beings [55]. As one of the most
valuable commercial tree species in many countries, the Populus species, which is widely
planted in northern China, is the foremost fast-growing tree in the temperate region
and of great value in afforestation, ecology, and landscape architecture. Along with its
rapid growth rate, however, poplar plantation is quite water intensive, which makes it
vulnerable to water deficiency and limits its cultivated area. As the world’s most populous
country, China is confronting the shortage and maldistribution of freshwater, which makes
it onerous to farm and afforest in almost half of the terrain of China, not to mention the
growing populations, the development of industrialization and urbanization, and the
deteriorating global climate, which is variable and unpredictable [56–62]. Under these
conditions, it is urgent that trees’ water use is reduced whilst maintaining growth. In
recent decades, a massive number of reports have proved that tree genetic engineering
is an efficient way to improve the growth rate, wood quality, and stress tolerance in
poplar [55,63–65]. Accompanied by conventional silviculture, it may be an efficient and
prospective technic to meet the explosive demand for lumbers and release deforestation.
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Previously, we cloned the homologous gene of Arabidopsis ERECTA from a high water
use efficiency (WUE) poplar genotype NE-19, Populus nigra × (P. deltoides × P. nigra), and
the PdERECTA overexpression Arabidopsis plants showed a phenotype of a larger leaf area,
higher inflorescence, stronger photosynthesis capacity, increased biomass accumulation,
reduced stomatal density, and improved water use efficiency [66]. However, the perfor-
mance of PdERECTA in responding to drought stress remains largely unknown. Besides,
in contrast to a large number of reports on herbaceous plants concerning the ERECTA
gene, only a limited number of studies have investigated the functions of ERECTA on
woody plants. For these reasons, PdERECTA was introduced into a triploid white poplar,
P. tomentosa ‘YiXianCiZhu B385’ [67], under the drive of CaMV35S via Agrobacterium tume-
faciens-mediated transformation in this study. The purpose was to examine the functions
of PdERECTA in poplar and assess the feasibility of tree breeding by genetic modification
using PdERECTA.

2. Results
2.1. Expression Pattern of PdERECTA and Subcellular Localization

In Arabidopsis, ERECTA was expressed in shoot apical and organ primordia and
hypocotyl [37,68]. In poplar, PdERECTA was reported to have high expression in young
top stems and young leaves but not in roots [66]. However, the precise tissue expression
pattern of PdERECTA in poplar remains unknown. In our research, we first analyzed the cis-
elements of the PdERECTA promoter using the PlantCARE database (http://bioinformatics.
psb.ugent.be/webtools/plantcare/html/, last accessed on 30 June 2021). A series of cis-
acting elements involved in plant development were identified, including CAT-box (related
to the meristem expression), HD-zip 1 (related to palisade mesophyll cell differentia-
tion), and TGA element (related to auxin response) (Supplementary Materials Figure S1).
Besides, there were 18 light-responsive elements presented in the promoter region, indi-
cating that PdERECTA played a special role in plant development and photomorphism
(Supplementary Materials Figure S1). Besides, there were several stress-related elements,
such as ARE (responding to anaerobic) and LTR (responding to low temperature). The
MeJA response element CGTCA-motif and TGACG-motif, salicylic acid response ele-
ment TCA-element, and abscisic acid response element ABRE were also labeled in the
promoter region.

To further analyze the expression pattern of PdERECTA in different tissues, the trans-
genic poplar seedlings containing pPdER::GUS were used for histochemical staining. No-
ticeably, PdERECTA is mainly expressed in buds, young organs, and leaf veins, and is highly
accumulated in the petiole (Supplementary Materials Figure S2c). Besides, the activity was
also detected in the roots, though not all of them (Supplementary Materials Figure S2b).

The result of the subcellular localization assay showed that the GFP signal of PdERECTA-
GFP fusion protein and FM4-64 was simultaneously detected at the periphery of epidermis
cells (Figure 1), disclosing that PdERECTA localized to the plasma membrane.

http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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Figure 1. Subcellular localization of PdERECTA-GFP in transiently expressed tobacco leaves. FM4-64 was used to mark 
the plasma membrane. GFP without fusion with PdERECTA was also transiently expressed in tobacco under the drive of 
CaMV35S and used as a control. Bar = 20 µm. 

2.2. PdERECTA-Modified Stomatal Density and Size in Poplar 
To evaluate the functions of PdERECTA in poplar, we generated transgenic poplar 

plants overexpressing PdERECTA. Fourteen individuals (Ln1–Ln14) were confirmed by 
genome PCR analysis using PdERECTA and CaMV35S promoter-specific primers. The re-
sult of PCR showed expected bands (around 740 bp) in all these OxPdER lines and the 
positive control but not in the negative control and VT (Supplementary Materials Figure 
S3b). The qRT-PCR results further confirmed that PdERECTA was overexpressed success-
fully in all the OxPdER lines except VT. The relative expression levels of PdERECTA in 
these overexpression lines were around 2.5–20-fold of the VT line. Among all the OxPdER 
lines, Ln5 and Ln12 displayed the highest expression levels, with 21- and 17-fold that of 
the VT line, separately (Supplementary Materials Figure S3c). Ln5, Ln9, Ln10, and Ln12 
were further propagated for physiological experiments. 

Overexpressing PdERECTA in poplar dramatically reduced the stomatal density on 
the abaxial leaf surface. As shown in Figure 2, the stomatal number per unit area in the 
leaves of the OxPdER lines was 24–34% lower than that of VT. Meanwhile, the stomatal 
size was alternated in OxPdER lines (Figure 3). The stomata of OxPdER lines were en-
larged compared with the VT line, being 11–18% longer than that of the VT line, and 12–
14% wider than that of the VT line (Figure 3e). 

Figure 1. Subcellular localization of PdERECTA-GFP in transiently expressed tobacco leaves. FM4-64 was used to mark
the plasma membrane. GFP without fusion with PdERECTA was also transiently expressed in tobacco under the drive of
CaMV35S and used as a control. Bar = 20 µm.

2.2. PdERECTA-Modified Stomatal Density and Size in Poplar

To evaluate the functions of PdERECTA in poplar, we generated transgenic poplar
plants overexpressing PdERECTA. Fourteen individuals (Ln1–Ln14) were confirmed by
genome PCR analysis using PdERECTA and CaMV35S promoter-specific primers. The
result of PCR showed expected bands (around 740 bp) in all these OxPdER lines and the pos-
itive control but not in the negative control and VT (Supplementary Materials Figure S3b).
The qRT-PCR results further confirmed that PdERECTA was overexpressed successfully
in all the OxPdER lines except VT. The relative expression levels of PdERECTA in these
overexpression lines were around 2.5–20-fold of the VT line. Among all the OxPdER lines,
Ln5 and Ln12 displayed the highest expression levels, with 21- and 17-fold that of the VT
line, separately (Supplementary Materials Figure S3c). Ln5, Ln9, Ln10, and Ln12 were
further propagated for physiological experiments.

Overexpressing PdERECTA in poplar dramatically reduced the stomatal density on
the abaxial leaf surface. As shown in Figure 2, the stomatal number per unit area in the
leaves of the OxPdER lines was 24–34% lower than that of VT. Meanwhile, the stomatal size
was alternated in OxPdER lines (Figure 3). The stomata of OxPdER lines were enlarged
compared with the VT line, being 11–18% longer than that of the VT line, and 12–14%
wider than that of the VT line (Figure 3e).
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Figure 2. Leaf stomatal density in poplar. Scanning electron micrograph of the leaf of the VT control (a), Ln 9 (b), Ln 10 
(c), and Ln 12 (d). The flank of the vein, middle of the leaf, and edge of the leaf were scanned and counted separately. Bar 
= 100 µm. (e) The stomatal density of leaf in VT and OxPdER. Data are mean value ± SE (n = 15). Duncan’s multiple range 
test (DMRT) was carried out to determine the significance among different lines. Means followed by different letters indi-
cate significant differences at the p < 0.05 level. 

Figure 2. Leaf stomatal density in poplar. Scanning electron micrograph of the leaf of the VT control (a), Ln 9 (b), Ln 10
(c), and Ln 12 (d). The flank of the vein, middle of the leaf, and edge of the leaf were scanned and counted separately.
Bar = 100 µm. (e) The stomatal density of leaf in VT and OxPdER. Data are mean value ± SE (n = 15). Duncan’s multiple
range test (DMRT) was carried out to determine the significance among different lines. Means followed by different letters
indicate significant differences at the p < 0.05 level.
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Figure 3. Stomatal size of the leaf in poplar. Scanning electron micrograph of the leaf of the VT control (a), OxPdER Ln 9 
(b), Ln 10 (c), and Ln 12 (d). Bar = 10 µm. (e) The stomatal size of VT and OxPdER lines. Data are mean value ± SE (n = 15). 
DMRT was carried out to determine the significance among different lines. Means followed by different letters indicate 
significant differences at the p < 0.05 level. 

2.3. Overexpressing PdERECTA in Poplar Improved Instantaneous Water Use Efficiency 
Modification of the stomatal density and size directly impacts the gas exchange in 

leaves. As expected, the results of the instantaneous gas exchange assay showed signifi-
cant differences between the OxPdER lines and the VT line. The photosynthesis–light and 
photosynthesis–CO2 curves indicated that the photosynthesis rate of the OxPdER plants 
was a little lower than that of the VT plants, which was about 10–14% under excess light 
and 3–19% under different CO2 concentrations (Figure 4a,d). However, the stomatal con-
ductance of OxPdER plants was much lower than that of the VT line under both condi-
tions (Figure 4b,e). Coming along with the reduction of stomatal conductance, the tran-
spiration rate of OxPdER plants was much lower than that of VT, up to 32% and 35% when 
exposed to saturating light and CO2, separately (Figure 4c,f). Synthetically, the OxPdER 
plants had a higher WUE value compared with VT plants, which was around 27–38% 
higher when supplied with over 400 µmol m−2 s−1 PAR levels and around 14–63% higher 
when supplied with CO2 concentrations of over 400 µmol/mol (Figure 4g,h). Besides, the 
VPD value showed no significant difference under both conditions (Figure 4i,j), indicating 
that the reduction of transpiration was slightly affected by VPD. 

Figure 3. Stomatal size of the leaf in poplar. Scanning electron micrograph of the leaf of the VT control (a), OxPdER Ln 9 (b),
Ln 10 (c), and Ln 12 (d). Bar = 10 µm. (e) The stomatal size of VT and OxPdER lines. Data are mean value ± SE (n = 15).
DMRT was carried out to determine the significance among different lines. Means followed by different letters indicate
significant differences at the p < 0.05 level.

2.3. Overexpressing PdERECTA in Poplar Improved Instantaneous Water Use Efficiency

Modification of the stomatal density and size directly impacts the gas exchange in
leaves. As expected, the results of the instantaneous gas exchange assay showed significant
differences between the OxPdER lines and the VT line. The photosynthesis–light and
photosynthesis–CO2 curves indicated that the photosynthesis rate of the OxPdER plants
was a little lower than that of the VT plants, which was about 10–14% under excess light
and 3–19% under different CO2 concentrations (Figure 4a,d). However, the stomatal con-
ductance of OxPdER plants was much lower than that of the VT line under both conditions
(Figure 4b,e). Coming along with the reduction of stomatal conductance, the transpiration
rate of OxPdER plants was much lower than that of VT, up to 32% and 35% when exposed
to saturating light and CO2, separately (Figure 4c,f). Synthetically, the OxPdER plants
had a higher WUE value compared with VT plants, which was around 27–38% higher
when supplied with over 400 µmol m−2 s−1 PAR levels and around 14–63% higher when
supplied with CO2 concentrations of over 400 µmol/mol (Figure 4g,h). Besides, the VPD
value showed no significant difference under both conditions (Figure 4i,j), indicating that
the reduction of transpiration was slightly affected by VPD.
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curve. (c) Transpiration-light curve. (d) Net CO2 assimilation-CO2 curve. (e) Stomatal conductance-CO2 curve. (f) Transpi-
ration-CO2 curve. (g) Instantaneous WUE-light curve. (h) Instantaneous WUE-CO2 curve. (i) VPD-light curve. (j) VPD-
CO2 curve. Data are mean value ± SE (n = 3). DMRT was carried out to determine the significance among different lines. 
Means followed by different letters indicate significant differences at the p < 0.05 level. 

2.4. PdERECTA Conferred Enhanced Short-Term Drought Tolerance to Poplar 
As PdERECTA can reduce plant transpiration, we wondered whether it could im-

prove tolerance of water deficiency in transgenic plants. The detached leaves of OxPdER 
plants showed a slower water loss rate than those of VT under natural dehydration (Fig-
ure 5b). To further observe the different abilities of the VT and OxPdER lines to endure 
drought stress, two-month-old plants were treated by withholding irrigation. On the 

Figure 4. Light response and CO2 response curves of VT and OxPdER Ln 9 and Ln 12. These assays were taken in the
same greenhouse in controlled environmental conditions. (a) Net CO2 assimilation-light curve. (b) Stomatal conductance-
light curve. (c) Transpiration-light curve. (d) Net CO2 assimilation-CO2 curve. (e) Stomatal conductance-CO2 curve.
(f) Transpiration-CO2 curve. (g) Instantaneous WUE-light curve. (h) Instantaneous WUE-CO2 curve. (i) VPD-light curve.
(j) VPD-CO2 curve. Data are mean value ± SE (n = 3). DMRT was carried out to determine the significance among different
lines. Means followed by different letters indicate significant differences at the p < 0.05 level.
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2.4. PdERECTA Conferred Enhanced Short-Term Drought Tolerance to Poplar

As PdERECTA can reduce plant transpiration, we wondered whether it could improve
tolerance of water deficiency in transgenic plants. The detached leaves of OxPdER plants
showed a slower water loss rate than those of VT under natural dehydration (Figure 5b).
To further observe the different abilities of the VT and OxPdER lines to endure drought
stress, two-month-old plants were treated by withholding irrigation. On the fourth day, the
leaves of the VT line began wilting, while the leaves of the OxPdER lines remained turgid
(Figure 5a). On the sixth day, the plantlets of the VT line withered and the OxPdER lines
began wilting. After being re-watered, the OxPdER lines returned to normal immediately
while the VT line started leaf abscission. During this experiment, the plantlets of the control
group grew normally, and no significance was observed between the VT line and OxPdER
lines (Figure 5a).
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Plants’ physiological changes directly reflects the influence of drought stress. The re-
sults showed that the RWC of OxPdER lines was significantly higher than that of VT after 
5 days of treatment. The RWC of the VT line significantly dropped, from 81% to 68%, 
while the overexpression lines remained normal (about 77–80%) (Figure 5c). The REL of 
all the lines of the control groups was not significant, while the REL of the VT line in-
creased significantly after drought treatment (from 15% to 74%), which was much higher 
than that of the OxPdER lines (around 20–27%) (Figure 5d). Proline and soluble sugar are 
important components for osmoregulation in plants. Under normal conditions, the pro-
line content of the VT and overexpression lines was not significantly different, while after 

Figure 5. Overexpression PdERECTA in poplar exhibited enhanced drought tolerance in short-term drought stress.
(a) Morphological differences in short-term drought stress. Bar = 10 cm. (b) Water loss of leaves. (c) Leaf RWC.
(d) Relative electrolyte leakage. (e) Measurement of proline content. (f) Measurement of soluble sugar content.
(g) Measurement of MDA content. (h) Measurement of H2O2 content. (i) The maximal quantum yield of PS II (Fv/Fm).
Data are mean value ± SE (n = 3). DMRT was carried out to determine the significance among different lines. Means
followed by different letters indicate significant differences at the p < 0.05 level.
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Plants’ physiological changes directly reflects the influence of drought stress. The
results showed that the RWC of OxPdER lines was significantly higher than that of VT
after 5 days of treatment. The RWC of the VT line significantly dropped, from 81% to 68%,
while the overexpression lines remained normal (about 77–80%) (Figure 5c). The REL of all
the lines of the control groups was not significant, while the REL of the VT line increased
significantly after drought treatment (from 15% to 74%), which was much higher than that
of the OxPdER lines (around 20–27%) (Figure 5d). Proline and soluble sugar are important
components for osmoregulation in plants. Under normal conditions, the proline content
of the VT and overexpression lines was not significantly different, while after drought
treatment, the proline content of VT increased significantly, from 9 to 26 µg/g, which was
over two times higher than that of the OxPdER lines (10–12 µg/g) (Figure 5e). Similar to
proline, the soluble sugar content rose in all lines after drought treatment, but it was higher
in VT than that in the OxPdER lines (Figure 5f). Besides, the MDA content, an index of
cytomembrane oxidative damage, was much higher in the VT line than that of the OxPdER
lines after drought treatment, indicating serious cytomembrane damage in the VT line
(Figure 5g). The H2O2 content was a little bit lower in the OxPdER lines in the control
and treatment groups (Figure 5h). All these indices showed that VT suffered more severe
drought stress compared with the overexpression lines.

Water deficiency can impact the photosynthesis system. The maximum photochemical
efficiency of the PS II (Fv/Fm) in OxPdER lines was significantly higher than that of the VT
line after drought stress (Figure 5i). Y(II) (quantum yields of PS II) and ETR(II) (apparent
electron transport rates of PS II) were higher in the VT line than in the OxPdER lines at
the beginning of the exposure to actinic light under normal conditions, but the gap slowly
shrank as time went on (Figure 6a,b). Under water-deficient conditions, however, Y(II)
and ETR(II) dropped dramatically in the VT line, while that of the OxPdER lines was
slightly impacted by drought stress (Figure 6a,b). The Y(NPQ) (quantum yield of regulated
energy dissipation in PS II) and Y(NO) (quantum yield of non-regulated energy dissipation
in PS II) represent the regulated and nonregulated energy dissipation at PS II centers.
Y(NPQ) and Y(NO) were higher in the OxPdER lines at the beginning of the measurement
under normal conditions, after drought stress; however, Y(NO) was much higher in the
VT line than in the OxPdER lines, and Y(NPQ) of the VT line was lower than that of the
OxPdER lines, meaning that the VT line was suffering severe damage from excess light
(Figure 6c,d). Electron transport through PS I is an important index to detect where the
interruption of electron flow occurs. We further analyzed the PS I parameters obtained
from the P700 signals. Y(I) (quantum yields of PS I) of the VT line was higher under normal
conditions at the beginning of light induction, but there was no significant difference at the
end of this assay (Figure 6f). After drought treatment, Y(I) of VT remained at a low level
(Figure 6f). As a contrast, the OxPdER lines were only slightly impacted by drought stress
(Figure 6f). Y(ND) is the nonphotochemical PS I quantum yield of donor-side limited heat
dissipation, representing the limitation of electron flow from PSII toward PS I, and Y(NA)
is the nonphotochemical PS I quantum yield of acceptor-side limited heat dissipation,
representing the fraction of overall P700 that cannot be oxidized by a saturation pulse in a
given state due to a lack of oxidized PSI acceptors [69]. Under drought stress, the Y(ND) of
the VT line was higher at the beginning than that of the OxPdER lines and remained at a
high level (Figure 6h). Similar to Y(ND), Y(NA) of the VT lines remained at a relatively
high level during the assay, while it reduced gradually with the assay going on in the
OxPdER lines (Figure 6g). These results indicated that the photosynthesis process of the
VT line was interrupted after drought stress.
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2.5. PdERECTA Conferred Enhanced Drought Tolerance to Poplar under Long-Term Water Deficit

To test if the OxPdER transgenic poplar plants showed altered long-term drought
tolerance, we further explored their performances under a long-term water deficit envi-
ronment. Similar plants of the VT line and OxPdER lines were exposed to 40-day drought
treatment. However, the VT line showed a weaker performance, especially at 20% soil
RWC (Figure 7a). There was no significant difference in the growth rate under normal and
middle water deficit conditions among all these lines; however, the VT line could barely
grow under severe drought stress conditions, while the OxPdER lines showed higher
growth rates than the VT line (Figure 7b–d). The results of the chlorophyll fluorescence
showed that the OxPdER lines had higher electron transport rates [ETR(II)] and yields of PS
II [(Y(II)] under drought stress, indicating that the OxPdER lines had higher photosynthetic
ability (Figure 8a,b). The Y(NO) of the VT line was higher than that of the OxPdER lines
under drought stress conditions, and Y(NPQ) was lower (Figure 8c,d), meaning that the
VT line was more sensitive to excess light. These results showed that the OxPdER lines
had enhanced photosynthesis ability under water deficit conditions.
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Next, we monitored the differences in total biomass accumulation and WUE among
OxPdER and VT lines. Data showed that the shoot biomass accumulation and root biomass
accumulation were higher in OxPdER lines under severe drought stress, which was up
to 39% and 25%, separately (Figure 9a,b). In total, the biomass of the OxPdER lines was
higher than that of the VT line when subjected to long-term drought stress (Figure 9c).
Synthetically, the OxPdER lines exhibited a higher long-term WUE than VT at all water
levels, which were around 17–33% higher at 70% soil RWC, 18–28% at 30%, and 20–28%
at 20% (Figure 9d). All these results confirmed that overexpressing PdERECTA in poplar
improved plant WUE and assisted plants to endure drought stress, especially severe
drought stress.
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3. Discussion

RLKs are proteins that act as upstream signaling components controlling massive
essential processes [70]. It has been known that the protein encoded by the Arabidopsis gene
ERECTA is one of the LRR-RLK proteins that regulates multiple signaling pathways [71].
Despite this, the in vivo role of the AtERECTA orthologs in woody plants is barely known.
We previously analyzed a homolog gene of Arabidopsis ERECTA gene, PdERECTA, from
Populus. The bioinformatics analysis of the amino acid sequence encoded by PdERECTA
showed that PdERECTA consists of an LRR extracellular domain, a transmembrane region,
and a cytoplasmic serine/threonine (Ser/Thr) protein kinase domain, a typical structure
of LRR-RLKs, and overexpressing PdERECTA can finely complement the ERECTA gene
nutant phenotype in Arabidopsis [66]. Due to the high conservation of ERECTA genes across
species [72], we hypothesized that PdERECTA might regulate drought tolerance in poplar.
In this study, we provided some evidence of its capacity in regulating stomatal abundance
in leaves and drought resistance.

It is well known that ERECTA signaling is associated with vegetative growth and
development and inflorescence [38,39,43,73], plant immunity [74–76], and other stimulation
of abiotic stress [77–79]. In this research, the element analysis of the promoter region
of PdERECTA showed that the PdERECTA promoter contains several stress-responsive
elements. The result of the GUS staining in poplar showed that the PdERECTA was mainly
expressed in stems and buds, which is consistent with a previous report [37], and the
high expression level in the petiole reflects the important function in shade avoidance in
responding to light fluctuation [68,77,80]. The ERECTA family is predicted to localize to the
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plasma membrane in Arabidopsis [36]. Similar to Arabidopsis, PdERECTA precisely localizes
to the cell plasma membrane, where it transduces signals from the environment [35].

Stomatal density in leaves is determined by the regulation of guard cell differentiation,
the asymmetric division of guard cell meristemoids, or epidermal cell expansion [81,82].
Stomatal density is affected by the number of stomata and the size of epidermis cells [83].
Overexpressing PdERECTA in poplar can alter established stomatal development and
patterning, manifested as reduced stomatal density and enlarged pavement cells and guard
cells, resembling the phenotypes observed before [18,84]. These phenomena might be proof
of the thesis that stomatal density is negatively correlated with stomatal size [25,85], which
is proven to be a mutual complement mechanism to maximize the assimilation of CO2.
New evidence has given a hint to explain these phenomena. As reported, AtEDT1/HDG11
can regulate the expression levels of ERECTA and thus modulate the cell cycle through
interaction with E2Fa, which can, at last, contribute to the increased cell size and decreased
stomatal density [86]. As ERECTA takes part in the synthesis and transportation of auxin
to control cell elongation [87] or repressing the sensitivity to cytokinin [88], and loss of
function of ERECTA leads to a low cell expansion rate in all zones of the leaf and all
successive leaves of a plant [89], the reduced stomatal density and enlarged cell size may
be a combination of enhancing cell expansion, restricting cell division, and preventing the
transformation from MMC to GCs.

Reduced stomatal density affects water and CO2 exchange [25]. Moreover, one study
reported that stomatal size has a key role in water movement from soil to leaves and
is negatively correlated with drought stress tolerance [90]. Thus, how to balance CO2
assimilation and water evaporation is an intricate task to improve WUE by manipulating
stomatal density. The influences of reduced stomatal density on gas exchange and photo-
synthesis were reflected in our study. This reduction led to a dramatic decrease of stomatal
conductance in OxPdER, which resulted in a distinct restriction of water evaporation. As a
consequence, the instantaneous WUE was much higher in PdERECTA overexpression lines.
The same phenomena were observed in Arabidopsis [17,91], Populus [92], and rice [19]. This
disproportion, mainly due to the diffusion rate of water vapor, is greater, about 1.6 times
that of CO2 [25].

Water deficit affects many metabolic processes, including photosynthesis, and dam-
ages basic organization structure and photosynthetic apparatus, which inhibits the assim-
ilation of carbon, leading to a decreased yield [93,94]. Manipulation of stomatal density
has been proven to be a potential tool to improve drought stress tolerance with little effect
on nutrient uptake [95]. In our study, the leaf dehydration shock test demonstrated that
the reduction of the stomatal abundance in the leaves of the OxPdER plants can efficiently
slow down dehydration. Under sudden drought stress, the OxPdER plants exhibited a
stronger water retention capacity. These phenomena showed that poplars with reduced
stomatal density might have some advantages growing in a water-deficient area. This
has been proven to be a powerful strategy to avoid dehydration when confronted with
drought stress. As positive regulators of ERECTA, the AtEDT1/HDG11 overexpressing
plants showed reduced stomatal density and enhanced drought and osmotic stress tol-
erance [96]. A similar phenotype was found while overexpressing AtEDT1/HDG11 in
rice [97]. Overexpressing a ligand of ERECTA, PdEPF1, in poplar showed substantially
reduced stomatal abundance and enhanced endurance to a short-term and long-term water
deficit [18]. One report further showed that perpetually overexpressing OsEPF1 in rice
only consumed 60% of the normal amount of water wild-type plants consumed between
weeks 4 and 5 post germination [19]. Consistent with the ERECTA-dependent pathway,
overexpression of a SchSDD1-like gene from wild tomato slowed down the water loss rate
of plants [15]. The AtTGL1 loss-of-function mutations showed reduced stomatal density,
lower transpiration, and improved drought tolerance [98]. One miRNA from P. ussuriensis,
Pu-miR172d, can cleave its target PuGYL1, upregulating the expression of PuSDD1, and this
alteration resulted in reduced stomatal density and enhanced drought stress endurance
in poplar [92]. Prolonged exposure to drought stress leads to the destruction of the pho-
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tosynthetic apparatus and inhibition of photosynthesis in plants [99,100]. The results of
the chlorophyll fluorescence showed that the photosynthesis system was broken down
and excess light energy cannot be dissipated via nonphotochemical quenching in the VT
line after short-term drought stress. This collapse of photosynthesis and the self-protecting
mechanism means a loss of the ability to deliver and fix or dismiss the light energy leaf
captured, and this excess energy becomes a menace to the cell structure [101]. A similar
phenotype was observed when plants were subjected to a long-term water deficit. As a
consequence, OxPdER lines had a higher growth rate and biomass accumulation, especially
under severe drought conditions. Taking all these results together, we conclude that poplar
plantlets with reduced stomatal abundance have better endurance during a water deficit.

Though a significant reduction of the transpiration rate and dramatically improved
WUE was confirmed in OxPdER lines, the decline of CO2 assimilation could not be ne-
glected. To ensure maximum leaf diffusive (stomatal) conductance of CO2 for photosyn-
thesis to counter the low atmospheric CO2 concentration in the process of involution, the
strategy plants have evolved is a higher density instead of a larger stomatal size [25,85].
Otherwise, increasing transpiration is beneficial to nutrient uptake when supplied with
plentiful water [95]. There is concern about whether a reduced number of stomata affects
plants’ photosynthesis ability. Although it is reported that decreased stomatal density has
no effect on photosynthesis for the complementation of enlarged stomata [102], and an
enlarged stomatal size was also observed in the PdERECTA overexpression line in our
study, a reduced number of stomata does impact the diffusion of CO2 into the leaf when
supplied with unsaturated CO2 concentrations. The same phenomenon was found in rice
with reduced stomatal density [19]. We normally associate this with the impact of stomatal
density reduction, but a slight difference in the assay of chlorophyll fluorescence between
the VT line and OxPdER lines was detected in our study. Under normal growth conditions,
the quantum yield and electron transport rates were all a little bit lower in the OxPdER
lines than that in the VT line, at least at the beginning of the photosynthesis process. It
seemed to be a little slower at responding to light after dark adaption in the OxPdER lines,
indicating a little altered photosynthesis ability. This alteration might partly be due to
the reduced CO2 assimilation, thus resulting in a lack of adequate zymolyte to fix light
energy, but further elucidation of the precise mechanisms underlying ERECTA affecting
the photosynthesis system should be a focus of future work.

Pathogens cause numerous diseases, especially for plants, most of which are growing
in soil. Plant diseases cause numerous economic losses each year around the world. Many
genes take part in plant immunity, including LRR-RLKs [35]. As reported, ERECTA is
a vital gene involved in the host defense against pathogens, both bacterial and fungus.
The Arabidopsis plants transformed with the ERECTA gene showed an increased toler-
ance to bacterial wilt [74]. The Arabidopsis erecta mutant alleles are more susceptible to
Plectosphaerella cucumerina [103]. Further research demonstrated that BAK1 can interact with
ERECTA and TMM, as the multiproteic receptorsome formed by the three genes modulates
Arabidopsis resistance to this pathogen [76]. One of the strategies might be regulating cell
wall construction. The cell walls of the erecta mutants showed reduced neutral sugars and
increased uronic acids [104]. The downstream gene of ERECTA, YODA MAP3K kinase,
is involved in the ERECTA-depended signaling pathway responding to pathogen [105]
and virus infection [106]. In our research, we noted that the VT line was more vulnerable
to fungus infection, especially when subjected to a water deficit (Figure 7a). Apart from
the roles ERECTA has in the plant immune response, this difference might partly be due
to the VT line suffering from severe drought stress, which made it more sensitive to fun-
gus in the worse physiological conditions, as there was little difference in the 70% soil
RWC group. However, the mechanism of ERECTA in the plant immune response requires
further examination.

Populus species are the most important fast-growing trees in the temperate region
used for timber and sand fixation. As half of the terrain of China lacks water, it is an
onerous, perpetual, but meaningful task to cultivate water-saving and stress-resisting tree
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species to improve land use efficiency. In this study, we demonstrated that PdERECTA
can regulate stomatal development and patterning in poplar, as the stomatal number
was decreased while the size of the stomata was enlarged in PdERECTA overexpression
plants. These modifications led to declined stomatal conduction and transpiration, and
dramatically improved WUE, without sacrificing the carbon uptake potential too much.
PdERECTA overexpression plantlets showed an improved ability to endure a short-term
and long-term water deficiency. These traits might enhance the survival rate of poplar
plantlets in a difficult site where fresh water is lacking. According to these results, we
conclude that PdERECTA is a promising candidate gene for poplar genetic modification to
breed water-saving and drought-tolerating tree species.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

The stem cuttings of a one-year-old poplar genotype NE19 were collected in April
and planted in soil in an outdoor nursery of Beijing Forestry University, Beijing, China
(40◦000′ N, 116◦200′ E; 49 m above sea level). Three-month-old plantlets were used for
RNA extraction.

Triploid white poplar ‘YiXianCiZhu B385’ was used for genetic transformation. Asep-
tic plants were cultured in a mericlone nursery, which supplied a 16/8 h (light/dark)
photoperiod and 28 ◦C room temperature. Sterilized leaves and stems were laid on solid
Differentiation Medium [Murashige and Skoog (MS) medium, 0.1 mg/L a-naphthalene
acetic acid (NAA), 0.02 mg/L thidiazuron (TDZ), 3% (w/v) sucrose, and 0.6% (w/v) agar]
for adventitious shoot generating. The medium was refreshed every two weeks until the
adventitious shoots were around 1 cm. Regenerated shoots were then cut and transferred
to a Root Inducing Medium (RIM) [half strength MS medium, 0.05 mg/L NAA, 3% (w/v)
sucrose, and 0.6% (w/v) agar]. All the mediums were adjusted to a pH value of 5.8 with
1 M NaOH. Rooting plantlets were cultured and propagated in RIM.

Two-month-old tissue-cultured plantlets were gently moved out and washed to re-
move solid medium and then planted into potting soil and covered with transparent plastic
films and then moved into a plant growth chamber. The growth conditions were 25 ◦C,
around 60% relative humidity, and a 14 h photoperiod. These plantlets were watered every
four days. For further assay, the grown-up plants were then transferred into a plastic
greenhouse and grown under natural light.

4.2. Reverse Transcription and qRT-PCR

Leaves samples were quickly frozen by liquid nitrogen after being excised from
plantlets and ground in liquid nitrogen. Total RNA of each sample was extracted using
RN33-PLAN Tpure Plant Total RNA Extracting Kits (Aidlabs Bio Inc., Beijing, China)
according to the manufacturer’s specification. The quantity and quality were determined
as described before [107], and the first-strand cDNA was synthesized from 2 µg RNA using
the Quant One Step RT-PCR kit (TianGen Bio Inc., Beijing, China). The reverse transcription
products were then diluted into around 100 ng/µL and used for quantitative real-time PCR
using SuperReal Pre Mix Kits provided by TianGen Bio Inc. (Beijing, China). Then, 18S
ribosomal RNA was used as the endogenous reference gene. The relative expression level
was calculated by the 2−∆∆CT method. The StepOne Plus Real-Time PCR System (Applied
Biosystems, Inc., Carlsbad, CA, USA) was applied in our study.

4.3. Gene Cloning and Vector Construction

The cDNA sequence of PdERECTA (Accession number in GenBank: HM775855) was
amplified by PCR from the total cDNA of poplar NE-19 and cloned into the pCAMBIA-1301
binary vector driven by the CaMV-35S promoter.

Genomic DNA was extracted from leaves by the CTAB method using DN14-CTAB
Plant Genomic DNA fast extracting kits (Aidlabs Bio Inc., Beijing, China) following the
manufacturer’s procedure. The promoter region around 3.0 kb upstream of the PdERECTA
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translation initiation site was cloned from the genome DNA of NE19 and constructed into
the pCAMBIA1391 vector to drive the GUS (β-glucuronidase) reporting gene (marked as
pPdER::GUS). All these reconstructed plasmids were then introduced into the A. tumefaciens
strain EHA105.

4.4. Subcellular Localization

The ORF of PdERECTA was fused with GFP (green fluorescent protein) and ligated
into the pCAMBIA1301 vector driven by the CaMV-35S promoter and then introduced
into the A. tumefaciens strain GV3101. GFP that was not fused with PdERECTA was also
cloned into the pCAMBIA1301 vector under the drive of CaMV-35S and introduced into
A. tumefacien. A. tumefaciens containing these reconstructed vectors were infiltrated into
the leaves of tobacco (Nicotiana benthamiana). The infiltrated tobacco plants were then
incubated in the dark for 48 h. The infected leaves were then immersed in the solution
containing FM4-64 dye [N-(3-Triethylammoniumpropyl)-4-(6-(4-(Diethylamino) Phenyl)
Hexatrienyl) Pyridinium Dibromide, a plasma membrane-specific dye] and observed using
a laser confocal fluorescence microscopy (ZEISS LSM780; Zeiss, Oberkochen, Germany). A
488 nm argon laser was used to excite GFP and FM4-64. Emissions were collected over a
wavelength range of 492 to 545 nm for GFP, and 620 to 700 nm for FM4-64, separately.

4.5. Generation of Transgenic Populus plants

One- to two-month-old plantlets growing in culture bottles were used for genetic trans-
formation. The procedure was described before with a few modifications [18,108–110]. The
impaired leaves were dipped into the infection medium, which contained the A. tumefaciens
incubated in YEB medium overnight till the OD600 = 0.4–0.6, for around 8–10 min with gentle
shaking. The infected tissues were then transferred into differentiation medium and incubated
in the dark for two days. After, transfected leaves were washed 3–4 times with sterile water
supplemented with 500 mg/L cefotaxime and transferred to the selective medium (differen-
tiation medium plus 300 mg/L cefotaxime and 5 mg/L hygromycin). Resistant vegetative
propagules on the selective medium were cut and transferred into RIM plus 300 mg/L cefo-
taxime and 5 mg/L hygromycin for further screening. Empty vector without the PdERECTA
coding sequence was also induced into A. tumefaciens and went through all these processes.
The grown-up plantlets were propagated and then transplanted into pots.

4.6. Histochemical Staining

GUS activity detection was performed by histochemical staining. Fresh poplar leaves
or plantlets were submerged in GUS reaction buffer then incubated at 37 ◦C for 12 h.
Stained samples were discolored using 75% alcohol 3–4 times and then photographed.

4.7. Molecular Verification

For DNA analysis, the purified genome DNA extracted using the CTAB method from
both the vector control line (VT) and PdERECTA overexpression lines (OxPdER) used for
PCR using the vector-specific primers.

For RNA analysis, the leaves of VT and OxPdER lines were collected and frozen in
liquid nitrogen and used for RNA extraction. The relative expression level of PdERECTA in
both the VT and overexpression lines was detected by qRT-PCR.

4.8. Stomatal Density and Size Determination

The leaf samples of the flank of leaf vein, middle of the leaf, and the edge of the leaf were
collected separately from fully expanded leaves using a punch (6 mm in diameter), and over
10 leaves from 5 plantlets each line were used in this assay. To measure the stomatal size, the leaf
samples were immersed in 10 µM/L ABA solution and kept in the dark for two hours before
fixation. All these samples were fixed, dehydrated, and examined as described before [18]. The
abaxial leaf surface of each sample was observed using a scanning electron microscope (Hitachi
S-3400 N, Chiyoda-ku, Tokyo, Japan). The magnifications used for stomatal density analysis
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and stomatal size analysis were 350 (with a visual field around 0.363 mm × 0.231 mm) and
3500 (with a visual field around 36 µm× 25 µm), separately. Three fields of view were taken in
each sample, and over 6 samples were observed in each group. The number of stomata in each
view was counted separately and the stomatal density was calculated as (number of stomata)/
(0.363 mm× 0.231 mm). The size of the stomata was measured using Image-Pro Plus.

4.9. Leaf Instantaneous Gas Exchange Analysis

Two-month-old plantlets were used for the leaf instantaneous gas exchange analysis
under the normal conditions in the plant growth chamber. Three lines, including VT and
two OxPdER lines, were measured and each line contained five individuals. A Li-Cor
portable photosynthesis analysis system (Li-COR 6400; Lincoln, NE, USA) was used to
detect the net CO2 assimilating rate, transpiration, and stomatal conductance of the mature
leaves of VT and OxPdER plants. The light and CO2 curves of the fully expanded leaves
(the sixth to eighth leaf) were obtained using the internal programs in the Li-COR 6400
portable photosynthesis analysis system. Light curves were measured at photosynthetically
active radiation (PAR) levels of 1500, 1200, 1000, 800, 600, 400, 200, 150, 100, 50, and
0 µmol m−2 s−1 with 500 µmol/mol external CO2. CO2 curves were measured at external
CO2 concentration levels of 1800, 1500, 1250, 1000, 800, 600, 400, 300, 200, 150, 100, 50, and
0 µmol/mol with 800 µmol m−2 s−1 PAR. The experiment covered net CO2 assimilation,
stomatal conductance, transpiration, and vapor pressure deficit (VPD). Instantaneous WUE
was calculated as net CO2 assimilation/transpiration.

4.10. Short-Term Drought Treatment

Two-month-old plantlets growing in soil were used for the short-term drought stress
assay in the plant growth chamber. All the plantlets of each line were divided into two
groups, one for drought treatment and the other as the control. The soil was saturated with
water and drained for 2 h before the treatment. All the plantlets of the drought treatment
group stopped watering after that until day 7, while the control group was watered
normally. On day 5, all the plantlets were used for physiological analysis. Phenotypes of
the VT and OxPdER lines were photographed on the first day, fourth day, fifth day, and
sixth day after stopping watering, and the seventh day after re-watering.

4.11. Long-Term Drought Experiment

Two-month-old plantlets grown in soil were used for the long-term water deficit assay.
Fifty-eight plants of the VT and OxPdER lines were divided into three groups and the soil
relative water content was kept at 70% (control), 30% (middle stress), and 20% (severe
stress) separately. The soil RWC was calculated as (fresh weight − dry weight)/(saturated
weight− dry weight)× 100%. Each line in each group contained five individuals, and each
group contained three pots without plants to determine the soil evaporation. All the pots
were weighed every day and supplemented lost water. Plant daily water consumption was
calculated as supplemented water minus soil evaporation. This assay lasted for 40 days.
The height of each plant was measured every five days. After 40 days, the chlorophyll
fluorescence and plant biomass were determined.

4.12. Physiological Analysis

The fourth to sixth leaves were collected from the drought treatment group and control
group separately for physiological analysis. To measure the leaf relative water content
(RWC), the leaves were weighted immediately after being detached from plantlets, then
stoved and weighted again.

The malondialdehyde (MDA) content was measured by thiobarbituric acid (TBA)-
reactive substances. In total, 0.1 g of fresh leaves were ground with 2 mL of 10%
trichloroacetic acid (TCA) then centrifuged at 4000 RPM for 10 min. Then, 0.5 mL of
supernatant of each extracting solution were taken and mixed with 0.5 mL of 0.6% TBA
and bathed in boiling water for 15 min. The reaction mixture was centrifuged after cooling
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down. The absorbance of the supernatant was measured at 532, 600, and 450 nm by a
microplate reader (Tecan Infinite M1000 PRO, TECAN, Männedorf, Switzerland). The
MDA content was calculated by the following equation: MDA (1 mol/g FW) = (6.45 ×
(A532 − A600) − 0.56 × A450) × Vr ÷ (Vs × FW) × Vt [Vt: Total volume of extract (mL);
Vr: reaction volume (mL); Vs: Extract volume used for reaction (mL); FW: Sample fresh
weight (g)]. All the experiments had three technical replicates.

To measure the leaf relative electrolyte leakage (REL), mixed leaf samples (0.1 g) of
each line were washed gently with double distilled water three times, then immersed in
5 mL of double distilled water, and placed at room temperature for 3 h. The conductivity of
the solution was detected using a DDS-307 Conductivity Meter (LEICI Company, Shanghai,
China) and recorded as R1. All the samples were boiled for 15 min and then cooled down
to room temperature. The conductivity of each sample was remeasured and recorded as
R2. Blank double distilled water was used as a control to elucidate the innate conductivity
and recorded as C1, C2, separately. The relative electrolyte leakage was calculated as
REL = (R1 − C1)/(R2 − C2) × 100%.

The proline content, H2O2 content, and soluble sugar content were measured with
the proline assay kit, hydrogen peroxide assay kit, and plant soluble sugar content test
kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, China) separately following the
manufacturer’s instructions.

4.13. Chlorophyll Fluorescence and P700 Absorption Measurement

Photosynthetic activities were measured using a Dual-PAM-100 fluorometer (Walz,
Effeltrich, Germany). All the plantlets were kept in the dark for 15 min before the assay.
Chlorophyll fluorescence was measured and calculated as described before [111–113].
Actinic light (AL) was set to 214 mmol photons m−2 s−1 in this assay, and five individuals
were measured every line in each group.

4.14. Statistical Analysis

The data are presented as the mean values ± SEs (standard errors). All the experi-
mental data were analyzed with Statistical Product and Service Solutions 25.0 (SPSS, IBM,
Armonk, NY, USA). One-way ANOVA was used to compare the statistical difference in the
mean among the plant lines under different treatments based on Duncan’s Multiple Range
Test (DMRT) at a significance level of p ≤ 0.05.
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