

REVIEW ARTICLE

OPEN

Sex difference in human diseases: mechanistic insights and clinical implications

Yuncong Shi¹, Jianshuai Ma¹, Sijin Li¹, Chao Liu¹, Yunying Liu¹, Jie Chen², Ningning Liu^{1,3} Shiming Liu³ and Hui Huang^{1,3}

Sex characteristics exhibit significant disparities in various human diseases, including prevalent cardiovascular diseases, cancers, metabolic disorders, autoimmune diseases, and neurodegenerative diseases. Risk profiles and pathological manifestations of these diseases exhibit notable variations between sexes. The underlying reasons for these sex disparities encompass multifactorial elements, such as physiology, genetics, and environment. Recent studies have shown that human body systems demonstrate sex-specific gene expression during critical developmental stages and gene editing processes. These genes, differentially expressed based on different sex, may be regulated by androgen or estrogen-responsive elements, thereby influencing the incidence and presentation of cardiovascular, oncological, metabolic, immune, and neurological diseases across sexes. However, despite the existence of sex differences in patients with human diseases, treatment guidelines predominantly rely on male data due to the underrepresentation of women in clinical trials. At present, there exists a substantial knowledge gap concerning sex-specific mechanisms and clinical treatments for diverse diseases. Therefore, this review aims to elucidate the advances of sex differences on human diseases by examining epidemiological factors, pathogenesis, and innovative progress of clinical treatments in accordance with the distinctive risk characteristics of each disease and provide a new theoretical and practical basis for further optimizing individualized treatment and improving patient prognosis.

Signal Transduction and Targeted Therapy (2024)9:238

; <https://doi.org/10.1038/s41392-024-01929-7>

INTRODUCTION

Sex represents a significant physiological factor impacting human growth, development, and behavior, with implications across various bodily systems. Sex disparities lead to differences in disease incidence, clinical features, physiological mechanisms, and response to treatment.¹ For instance, women had a higher susceptibility to hypothyroidism and autoimmune diseases, while men faced an elevated risk and mortality rate of developing cancer.^{2,3} Growing evidence suggested that physiological and environmental factors participated in sex disparities within cardiovascular, neoplastic, metabolic, immune, and nervous systems. Sex hormones, sex chromosomes, and epigenetic factors regulated gene expression, receptors, and signaling pathways, thereby influencing sex-specific neurobiology and pathological manifestations.⁴ Over the years, heart failure has remained a essential factor of global cardiovascular incidence and mortality, with a rapidly increasing prevalence.⁵ In the United States, women of all ages exhibited higher mortality rates of heart failure compared to men.⁶ Lifestyle factors, environmental exposures, and estrogen-related compounds can induce epigenetic modifications in adult women and developing fetuses/offspring, which can be transmitted through germlines and affect heart failure development. Cancer also exhibited sex differences, with men generally facing a significantly higher cancer risk and mortality compared to women.³ Smoking, alcohol consumption, and other lifestyle habits closely associated with cancer, along with variations in gene

expression and hormone levels, which resulted in sex disparities of cancer risk. Numerous metabolic processes (including glucose and lipid metabolism), immune system renewal, and nervous system development experienced distinct biological processes in the evolution and development of the human body, which were different between males and females. Such sex differences regulated homeostasis through the activation of sex-determining genes and fetal hormone programming, having significant influence on disease risk.⁷ Currently, most drugs and clinical treatments lack research data on sex differences. However, with advancements in modern medicine, clinical experts increasingly recognize the value of personalized drug delivery plans and precision medicine. Sex differences in various diseases serve as crucial factors to consider when formulating personalized treatment strategies for patients. Therefore, identifying subtle distinctions in different body systems under varying sex statuses can contribute to reveal the potential mechanisms underlying cardiac function, tumors, metabolic disorders, immune-related conditions, and neurological diseases within different populations, thereby further improving clinical disease prognosis (Table 1).

SEX DIFFERENCE IN CARDIOVASCULAR DYSFUNCTION

Introduction

Cardiovascular disease (CVD) is one of the leading causes of morbidity and mortality in Europe, with mortality rates of 40% in

¹Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China; ²Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China and ³Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China

Correspondence: Shiming Liu (liushiming@gzmu.edu.cn) or Hui Huang (huangh8@mail.sysu.edu.cn)

These authors jointly supervised this work: Yuncong Shi, Jianshuai Ma

Received: 20 December 2023 Revised: 26 June 2024 Accepted: 23 July 2024

Published online: 10 September 2024

Table 1. Clinical trials in sex-related human diseases

Clinical phenotype	Study population	Study objective	Main findings	References
Thyroid hormone and sex-related cardiovascular dysfunction	55031 hospitalized patients with congestive heart failure	Hospitalization time and mortality rate for heart failure	The proportion of women in congestive heart failure inpatients with hyperthyroidism was higher, with a lower median age and longer hospital stay	²⁰
Thyroid hormone and sex-related cardiovascular dysfunction	2225 patients with ischemic or non ischemic heart failure	The prognostic impact of thyroid abnormalities on heart failure patients	In patients with heart failure, hypothyroidism is more common in older adults and women. Thyroid dysfunction was significantly associated with increased risk of death in patients with symptomatic heart failure and ejection fraction $\leq 35\%$	² ²⁷
Hormonal disturbances of Perinatal cardiomyopathy and sex-related cardiovascular dysfunction	44 women with perinatal cardiomyopathy	The impact of subsequent pregnancy on cardiac function in women with perinatal cardiomyopathy	Subsequent pregnancies in women with a history of perinatal cardiomyopathy were associated with significantly reduced left ventricular function and can lead to clinical deterioration and even death.	²⁴
Hormonal disturbances of Perinatal cardiomyopathy and sex-related cardiovascular dysfunction	220 perinatal cardiomyopathy women	Comparing the clinical characteristics, manifestations, and prognosis of perinatal cardiomyopathy between African American and African American women	Young African-American women were more likely to develop PPCM and had poorer cardiac performance and prognosis compared with non-African American women.	²⁶
Hormonal disturbances of Perinatal cardiomyopathy and sex-related cardiovascular dysfunction	100 perinatal cardiomyopathy patients followed up for 1 year postpartum	Prospectively evaluate the recovery and clinical outcomes of left ventricular ejection fraction in perinatal cardiomyopathy.	During a one-year follow-up, it was found that 13% of women had significant events or sustained severe cardiomyopathy. Black women have more left ventricular dysfunction at 6 and 12 months before and after childbirth.	³²
Estrogen and sex-related cardiovascular dysfunction	4441 postmenopausal women	The heterogeneity between menopausal age and incidence rate of heart failure was investigated.	Compared with women with lower body mass index and waist circumference, the risk of developing heart failure significantly increases as obesity worsens, especially among women who experience menopause at the age of 55 or older.	³¹
Estrogen and sex-related cardiovascular dysfunction	Including 1401175 postmenopausal women	Risk of heart failure and atrial fibrillation	Postmenopausal women with a history of premature menopause or early menopause may have an increased risk of developing heart failure and atrial fibrillation. Compared with postmenopausal women aged ≥ 50 , postmenopausal women aged 40 to 49 had a higher incidence of heart failure and atrial fibrillation with earlier menopausal age.	³⁰
Estrogen and sex-related cardiovascular dysfunction	5629 postmenopausal women without heart failure	Relationship between menopausal age and incidence rate of heart failure	Early menopausal age was associated with a moderate increase in heart failure risk	²⁹
Estrogen and sex-related cardiovascular dysfunction	2947 postmenopausal women	The relationship between early menopause (occurring before the age of 45) and menopausal age in postmenopausal women and left ventricular remodeling and heart failure events	Early menopause was associated with higher left ventricular mass to volume ratio, and concentric left ventricular remodeling was more severe. The older the menopausal age, the lower the risk of heart failure.	³⁰
Sex hormones and sex-related metabolic diseases	424 adults	sex differences in adipose tissue insulin resistance	Both low testosterone levels in men and higher testosterone levels in women can lead to more severe adipose insulin resistance	¹⁴⁶

Table 1. continued

Clinical phenotype	Study population	Study objective	Main findings	References
Gene and sex-related metabolic diseases	117 White NIDDM patients with diabetic nephropathy and 125 patients without any nephropathy and NIDDM \geq 10 years were enrolled at Joslin Diabetes Center	Association between angiotensinogen gene M235T polymorphism and the risk of diabetic nephropathy in patients with non-insulin-dependent diabetes mellitus (NIDDM)	The DNA polymorphism M235T in the angiotensinogen gene was highly expressed in men with NIDDM, which may account for the increased risk of diabetic nephropathy in men with NIDDM, but not in women.	¹⁴⁹
Gene and sex-related metabolic diseases	3,561 patients with type 1 diabetes were from Denmark, Finland, France and Sweden	Relationship between rs5186 polymorphism of angiotensin type II receptor 1 gene (AGTR1) and diabetic nephropathy.	The AA genotype of the AGTR1 rs5186 polymorphism may be associated with a significantly increased risk of diabetic kidney disease in men, but not in women.	¹⁵⁰
Gene and sex-related metabolic diseases	525 patients with type 2 diabetes	Association of ACE I/D and AGT M235T polymorphisms with based on sex diabetic nephropathy risk.	Female diabetic carriers of the ACE D allele had a significantly increased risk of developing diabetic nephropathy, while there was no significant effect for male diabetic patients. Neither the AGT TT genotype nor the T allele were associated with the risk of diabetic nephropathy in male or female diabetic patients.	^{236, 237}
Gene and sex-related cancer	The study included 231 participants, including 138 patients with colorectal cancer, 55 patients with colorectal adenomas and 38 healthy controls	Sex differences in tumorigenic gene expression characteristics in patients with colorectal tumors	The higher the expression of PD-L1, the lower the risk of men developing proximal colorectal cancer. Elevated dMMR/MSI and EGFR expression may increase a woman's risk of developing proximal colorectal cancer.	³³⁴
Sex hormones and sex-related autoimmune diseases	T cells were isolated from 22 female SLE patients and 17 control women	The number of estrogen receptor subtypes in T cells was compared and the ability of receptor agonist-specific ligands to activate marker gene expression was measured	ER α and ER β agonists can also increase the expression of calcineurin and CD154 in T cells of SLE patients and promote T cell activation.	³³⁰
Sex hormones and sex-related autoimmune diseases	The 20 patients with SLE included 7 men and 13 women	To investigate the effects of estrogen in vitro on the production of anti-dsDNA antibodies and total IgG in peripheral blood mononuclear cells in patients with SLE	Estradiol use increased the production of anti-dsDNA antibodies and IgG in patients with active SLE, but not in patients with inactive SLE and the normal population.	³³⁷
Sex chromosome and sex-related autoimmune diseases	2826 SLE patients, 1033 SS patients, and 7074 controls	Correlation between dose effects of X chromosome and autoimmune disease	The estimated prevalence of SLE and SS in women with 47, XXX was \sim 2.5 and \sim 2.9 times higher, respectively than that in women with 46, XX and \sim 25 and \sim 41 times higher, respectively, than that in men with 46, XY.	³⁹²
Sex chromosome and sex-related autoimmune diseases	33 patients with Sjögren's syndrome and 15 control subjects were enrolled	To investigate the expression of CXCL9, -10, -11, and CXCR3 in the tear film and ocular surface of patients with Sjögren's syndrome	Expression of CXCL9, -10, -11, and CXCR3 increased in the tear film and ocular surface of patients with Sjögren's syndrome.	³⁶⁶
Sex hormones and sex-related neurodegenerative diseases	From 64 patients with SLE, RA, and SS and 17 healthy blood donors	To explore the correlation between CD40-CD40L co-stimulatory pathway and many autoimmune diseases, including SLE, RA and SS	Sera from SLE and SS patients had significantly higher levels of sCD40L compared to sera from healthy control donors. sCD40L was not detected in urine samples of patients with either active or inactive nephritis and in salivary samples from SS patients or normal subjects.	⁴⁵⁷
	A total of 260 PD patients and 308 controls recruited from the Swedish population were genotyped	Potential contribution of genetic variation in the estrogen receptor β gene to the etiology of PD	Genetic variations in the estrogen receptor β gene may influence the age of onset of PD.	

Clinical phenotype	Study population	Study objective	Main findings	References
Sex hormones and sex-related neurodegenerative diseases	394 AD patients were compared with 469 control subjects	To investigate whether nine single nucleotide polymorphisms across the CYP19 gene are associated with AD	Genetic variations in the CYP19 gene, located at 15q21.1, encoding the brain aromatase gene, may alter the risk of Alzheimer's disease.	⁴⁵³
Sex hormones and sex-related neurodegenerative diseases	10,450 U.S. Medicare participants diagnosed with ALS	10,450 U.S. Medicare participants diagnosed with ALS	Tamoxifen was associated with a lower risk of ALS, while testosterone was associated with a higher risk of ALS in women.	⁵¹⁰
Sex hormones and sex-related neurodegenerative diseases	Data on 15,826 MS patients from 25 countries	The impact of sex on disability accumulation and disease progression was evaluated to determine whether male MS patients have worse clinical outcomes than women	Male relapsing patients accumulate disability more quickly than female patients. In contrast, rates of disability accumulation were similar in men and women with primary progressive MS.	⁴⁶⁹

ACE angiotensin-converting enzyme, AD Alzheimer's disease, AGT Angiotensinogen, ALS amyotrophic lateral sclerosis, dMMR deficient mismatch repair, EGFR epidermal growth factor receptor, ER estrogen receptor, MS multiple sclerosis, MSI microsatellite instability, NIDDM non-insulin-dependent diabetes mellitus, PD Parkinson's disease, PD-L1 programmed death-ligand 1, RA rheumatoid arthritis, SLE systemic lupus erythematosus, SS Sjögren's syndrome

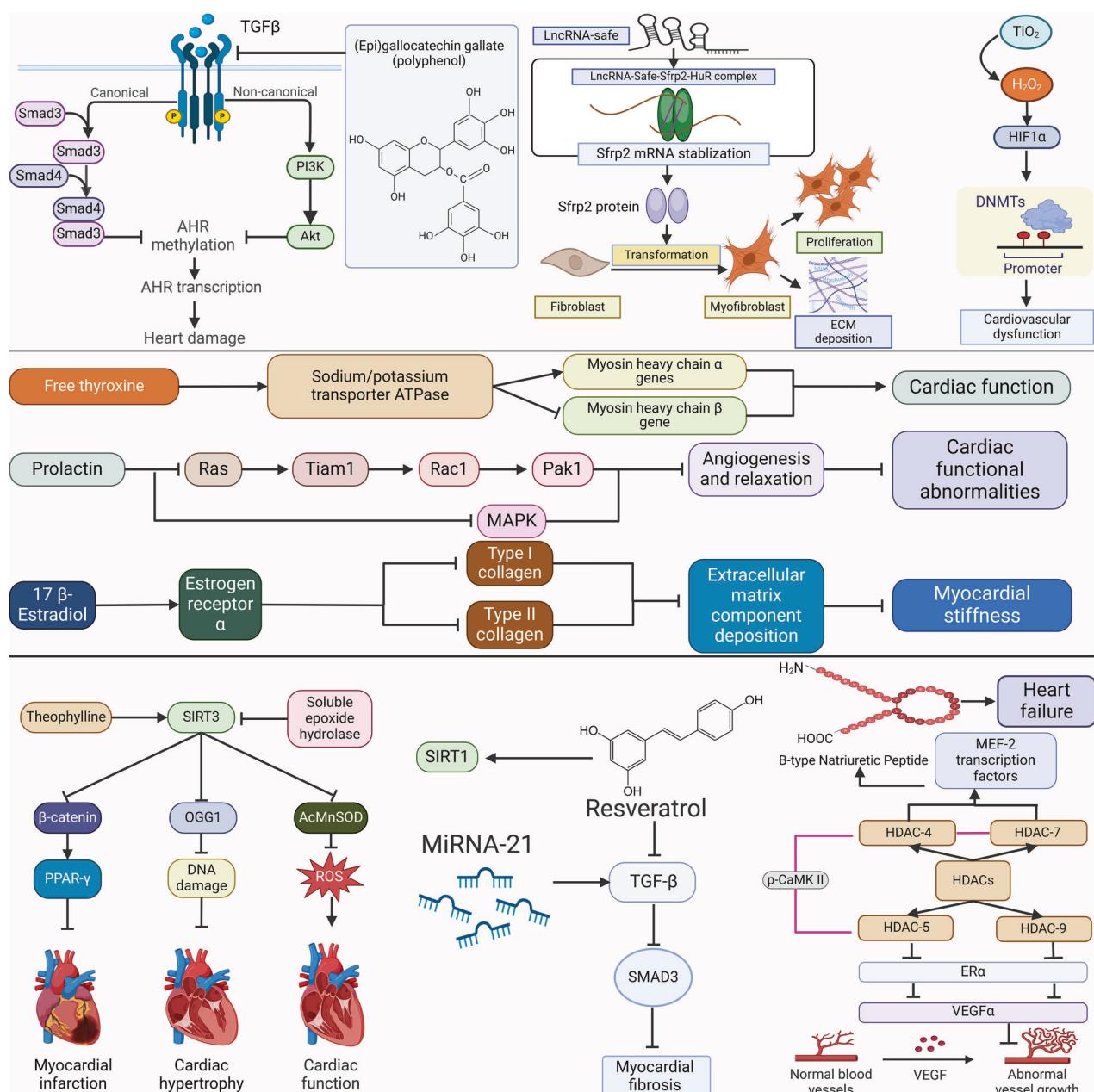
men and 49% in women.⁸ Men had a more significant risk of CVD, ischemic heart diseases, and myocardial infarction than women before menopause. In contrast, women's risk of chronic CVD and ischemic heart disease death rose dramatically after menopause.⁹⁻¹¹ Pregnancy and childbirth may lead to young female spontaneous coronary dissection and acute myocardial infarction due to increased cardiac stress.¹¹ Heart failure has become a principal cause of female morbidity and mortality. It is estimated that one in five women will develop heart failure by the age of over 40 years old.¹² Women have a similar prevalence of heart failure as males, but their mortality rate is greater.¹³ Male heart failure is typically characterized by heart failure with reduced ejection fraction (HFrEF) [left ventricular ejection fraction(LVEF) \leq 40%], while female heart failure tends to be more often characterized by either heart failure with preserved ejection fraction (HFpEF) or mild reduction (LVEF 41-49%).¹⁴ Studies have found that the prevalence of heart failure in China has increased since 2017, particularly among women.¹⁵ Turecamo et al.¹⁶ indicated that rural women were at a higher risk of developing heart failure among low-income populations in the southeastern United States. Mansur et al.¹⁷ discovered that women had a better prognosis in HFrEF than men, while mortality rates in HFmrEF and HFpEF were comparable between male and female. An extensive national inpatient sample research discovered that inpatient death rates were greater among cardiac arrest patients. The prevalence of cardiac arrest among heart failure patients is higher in individuals under 65 years old who have concomitant renal disease and coronary artery disease, whereas it is lower in women or HFpEF patients.¹⁸

Cardiovascular disease is the most common complication for hyperthyroidism patients. 6% of patients with hyperthyroidism's initial clinical manifestation are congestive heart failure.¹⁹ Udani et al.²⁰ discovered that congestive heart failure and hyperthyroidism were more common in female patients with a lower median age, who had longer hospital stays. It has been reported that about one-third of patients could have hyperthyroidism cardiomyopathy, resulting in reduced cardiac function.²¹ Hypothyroidism is more common in older people and women heart failure patients. Thyroid dysfunction is related to significantly increased death risk in symptomatic heart failure and LVEF \leq 35% patients.² The prevalence of pregnancy-related HFpEF has been rising during the last few decades.²² Peripartum cardiomyopathy (PPCM) is an idiopathic cardiomyopathy (LVEF $<$ 45%, with or without left ventricular dilatation) that develops during the third trimester of pregnancy or within 5 months after delivery.²³ PPCM is the most prevalent cardiomyopathy during pregnancy.²³ Studies have indicated that patients with PPCM in the late postpartum period were at higher risk for more severe heart failure.²⁴ In a large community retrospective cohort study, PPCM was responsible for approximately 68% of heart failure causes in pregnant women, resulting in adverse fetal outcomes.²⁵ A prospective cohort of PPCM found that even though most women had improved left ventricular ejection fraction at 6 or 12 months of follow-up, 13% of female patients may still appear major events or persistent severe cardiomyopathy.²⁶ Women with prior PPCM, particularly those with chronic left ventricular dysfunction, could cause a higher unfavorable pregnancy outcomes. In a cohort study of PPCM pregnant women, 44% of those with left ventricular residual dysfunction gave rise to heart failure clinical manifestations during their second pregnancy. However, those women who recovered from PPCM could still generate systolic dysfunction in later pregnancies.²⁷

Estrogen insufficiency is regarded as a major risk factor for women's cardiovascular disease. Menopause usually occurs in women between the ages of 47 and 51. Epidemiological studies show that postmenopausal women are more likely to cause cardiovascular disease than premenopausal women. This risk is positively correlated with increasing age after menopause.

Furthermore, premenopausal women are at a lower risk of developing heart disease than men of the same age, which may be due to the protective effect of estrogen.²⁸ Early menopause was linked to a greater left ventricular mass-to-volume ratio and more concentric left ventricular remodeling in a multi-ethnic study of atherosclerosis.²⁹ Appiah et al.³⁰ indicated that women in early menopause are more susceptible to develop heart failure compared to women in late menopause.³⁰ Compared with menopausal women aged ≥ 50 years, the earlier the age of menopause in menopausal women aged 40-49 years, the higher the incidence of heart failure and atrial fibrillation.³¹ The Atherosclerosis Risk in Communities study found that the worsening of female obesity was related to significantly increased heart failure risk, especially those who had gone through menopause at age 55 or older.³²

Mechanism


Female cardiovascular dysfunction is distinguished from male cardiovascular dysfunction by an imbalance of thyroid hormone metabolism, hormonal alterations in prenatal cardiomyopathy, and changes in estrogen associated with menopause. Furthermore, genetic and environmental factors may influence epigenetic modification in sex-specific ways, resulting in disparities in cardiovascular pathophysiology and heart functional performance. (Fig. 1).

Hormone regulation. Plasma or tissue thyroid hormone levels may have some effect on cardiovascular function. Free thyroid hormone increased cardiac β receptor sensitivity to catecholamine, upregulated gene expression for sodium/potassium transporter ATPase, resulting in increased cardiac contractility and cardiac output.³³ Conversely, thyroid hormone activated the phosphatidylinositol 3-kinase/serine/threonine protein kinase signaling pathway, generating endothelial nitric oxide and vasodilation.³⁴ Thyroid hormone induced smooth muscle relaxation by increasing calcium reuptake in the arterioles. They also increased calcium ATPase protein in the sarcoplasmic reticulum and downregulated the phospholamban transcription, thereby causing peripheral vascular dilation and reducing systemic vascular resistance.³³ Furthermore, thyroid hormone can activate the renin-angiotensin aldosterone system, aggravating Na^+ , fluid retention, and cardiac preload. Hyperthyroidism can cause decompensation following high cardiac output and consequent heart failure via various pathways. Hypothyroidism caused damage to ventricular and atrial filling and relaxation, decreased heart rate and myocardial contractility, and increased systemic vascular resistance and artery stiffness, resulting in reduced cardiac output and increased cardiac afterload, exacerbating cardiac dysfunction symptoms.³⁵ Subclinical hypothyroidism increased systemic vascular resistance and arterial stiffness by inhibiting vascular smooth muscle cell relaxation and decreasing nitric oxide availability, resulting in impaired ventricular filling and diastolic dysfunction. These effects were reversible with thyroid hormone replacement.³⁶ Low T3 syndrome could be caused by type 3 deiodinase activation, which was characterized by decreased T3 and elevated rT3 levels.³⁷ Type 3 deiodinase can specifically reduce the thyroid hormone signal transduction in the heart tissue, thereby regulating thyroid function and accelerating cardiac dysfunction progression.³⁷ Even if thyroid stimulating hormone was maintained at normal levels, low T3 may increase mortality in heart failure patients.^{38,39}

The pathophysiological mechanisms of PPCM are still being investigated. It may primarily induce cardiovascular dysfunction through mechanisms such as anti-angiogenicity, cell apoptosis, inflammation, and immunological response. Hormone secretion during pregnancy had a significant effect on cardiovascular dysfunction occurrence. The adenohypophysis secreted substantial amounts of prolactin (PRL), a polypeptide hormone during

pregnancy. In PPCM, oxidative stress imbalance led to the increase of protease cathepsin D and metalloproteinase activities. Proteases can cleave PRL into 16-kDa PRL.⁴⁰ The 16 kDa PRL fragment was biologically active and increased in PPCM patients' serum. In PPCM, 16 kDa PRL primarily caused heart failure by blocking angiogenesis and promoting cell apoptosis. 16 kDa PRL blocked the activation of the mitogen-activated protein kinase (MAPK) and Ras/Tiam 1/Rac 1/Pak 1 signaling pathways, preventing angiogenesis and relaxation, resulting in cardiac structural and functional abnormalities as well as PPCM occurrence.⁴¹ Furthermore, 16 kDa PRL stimulated microRNA-146a expression, which decreased neuroblastoma RAS viral oncogene homolog expression and subsequently altered endothelial cell proliferation and metabolism. 16 kDa PRL promoted plasminogen activator inhibitor-1, which blocked urokinase plasmin activator, decreasing endothelial cell migration, extracellular matrix remodeling, and breakdown.⁴² 16 kDa PRL can also reduce the effects of nitric oxide on vascular relaxation and remodeling by inhibiting endothelial nitric oxide synthase and inducible nitric oxide synthase expression.⁴³ During the middle and late stages of pregnancy, the placenta released a substantial number of soluble forms, such as tyrosine kinase-1 (sFlt-1). sFlt-1, an anti-angiogenic factor, antagonized angiogenesis, weakened oxidative stress protection and elevated the level of the 16 kDa PRL fragment, all of which had cardiotoxic effects.⁴⁴ The processes mentioned above confirmed the anti-vascular action of 16 kDa PRL and sFlt-1, decreasing heart vascular density. The 16 kDa PRL protein activated nuclear factor κ B, stimulated DNA fragmentation via caspases 8, 9, and 3, and initiated both endogenous and external apoptotic pathways.⁴⁵ In addition, 16 kDa PRL prompted endothelial cells to convert miRNA-146a into exosomes, which were taken up by myocardial cells, inhibiting the ErBB pathway and increasing myocardial cell apoptosis.⁴⁶ Persistent inflammatory response could cause cardiac dysfunction in PPCM patients. PRL and interferon γ activated protein kinase B (Akt) and increased the chemokine C-C motif chemokine ligand 2 production, leading to heart inflammation. Akt activation decreased SOD2 expression, lowered antioxidant defense, and exacerbated heart inflammation and fibrosis.⁴⁷ Signal transduction and activator of transcription 3 (STAT3) participated in PPCM development. STAT3 was activated by the production of cytokines (interleukin-6 and chemokine C-C motif chemokine ligand 2) and cell adhesion molecule-1, promoting cardiac cells inflammatory response.⁴⁸ In terms of immune response, β 1-adrenaline receptor antibody inhibited peroxisome proliferator-activated receptor gamma coactivator 1 alpha and vascular endothelial growth factor expression to increase myocardial cell apoptosis.⁴⁹ It also played a crucial part in the mechanism of PPCM-induced cardiovascular dysfunction.

Recent research indicates that estrogen protected against sex-related cardiovascular dysfunction by regulating the renin-angiotensin-aldosterone system, oxidative stress, extracellular matrix, inflammatory response, and cell death. 17 β -Estradiol (E2) is the primary female steroid hormone and source of circulating estrogen. In premenopausal women, the ovaries produce and secrete E2. E2 has been shown to reduce angiotensin-converting enzyme activity, angiotensin II levels, tissue responsiveness to angiotensin II, inhibit β -myosin heavy chain expression, calcineurin activity, and activation of extracellular signal-regulated kinase and MAPK, preventing cardiomyocyte hypertrophy.⁵⁰ In terms of the oxidative stress mechanism, the study discovered that E2 boosted angiotensinogen levels and angiotensin-(1-7) synthesis in tissues and circulation, reducing oxidative stress and improving endothelial function.⁵¹ E2 inhibited p38 α -MAPK and increased p38 β MAPK activity, reducing reactive oxygen species (ROS) generation in cardiomyocytes and improving survival following ischemia-reperfusion injury.⁵² Furthermore, E2 prevented mitochondrial ROS generation while directly stimulating nitric oxide release by endothelial nitric oxide

Fig. 1 Sex-related mechanisms of cardiovascular dysfunction mainly include hormone and epigenetics regulation. Thyroid hormone can lead to cardiovascular dysfunction by up-regulating the expression of genes encoding sodium/potassium transporter ATPase. Prolactin blocked the mitogen-activated protein kinase activation, accelerating impaired cardiovascular function. E2 down-regulated the type I and III collagen gene expression, promoting myocardial stiffness. DNA methylation, histone modification, and non-coding RNA regulation lead to sex differences in cardiovascular pathophysiology and cardiac functional performance in individuals and offspring. This figure was created with the aid of BioRender (<https://biorender.com/>). AHR aromatic hydrocarbon receptor, Akt protein kinase B, ECM extracellular matrix, ER α estrogen receptor α , HDAC histone deacetylase, HIF-1 α hypoxia-inducible factor-1 α , PI3K phosphoinositide 3-kinase, OGG1 oxoguanine-DNA glycosylase-1, PPAR- γ peroxisome proliferator-activated receptor- γ , ROS reactive oxygen species, SIRT Sirtuin, SMAD3 Smad family member 3, TGF β transforming growth factor β , VEGF vascular endothelial growth factor

synthases, thus increasing vasodilation. The study demonstrated that E2, mediated by estrogen receptor (ER) α , down-regulated type I and III collagen gene expression in female cardiac fibroblasts, resulting in lower extracellular matrix component deposition and myocardial stiffness.⁵³ E2 inhibited the expression of inflammatory cytokines (interleukin-1 β , interleukin-6, and tumor necrosis factor- α) in cardiomyocytes, as well as the levels of inflammatory soluble intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and e-selectin, by activating the ER.^{54,55}

As a result, vascular smooth muscle cells and cardiomyocytes' inflammatory responses were reduced, while cardiomyocyte stiffness, myocardial hypertrophy, and fibrosis were alleviated. In the regulation of the apoptosis mechanism, E2 increased phosphoinositol 3 kinase/Akt signaling and reduced apoptosis-regulated signal kinase-1 and caspase-3-like activity, resulting in decreased cardiac cell death and preventing congestive heart failure in mice.⁵⁶ E2 suppressed p38-MAPK phosphorylation and enhanced atrial natriuretic peptide production by binding to ER β ,

and then inhibited ventricular hypertrophy.⁵⁷ E2 can promote atrial natriuretic peptide and brain natriuretic peptide synthesis in cardiomyocytes, reducing phenylephrine-induced hypertrophy.⁵⁸ E2 inhibited the calcineurin/NF-AT3 signaling pathway, increased the phosphoinositol 3 kinase/Akt pathway, and lowered peripheral artery resistance and cardiac hypertrophy, thus protecting the heart.^{32,59} Therefore, E2 inhibited cardiovascular dysfunction development via the mechanisms mentioned above.

Epigenetic modification. Many investigations have discovered that epigenetic modification is vital in the pathophysiology of sex-related cardiovascular dysfunction. Cardiomyocytes express sex hormone receptors and respond to sex hormones. Sex hormones regulate heart remodeling and function through DNA methylation. Sebag et al. discovered that the heart wall of female mice was thinner and lighter using echocardiography on male and female C57bl6n mice, and there was evident concentric remodeling after long-term gonadectomy. The expression of cardiac calsequestrin 2 (CSQ2) and sodium-calcium exchanger-1 (NCX1) in women's hearts increased significantly compared to men, and these expressions decreased following ovariectomy. DNA extracted from the hearts of C57bl6n mice revealed distinct cardiac CSQ2 CpG site dynamic DNA methylation. This methylation is affected by sex and hormonal status. Intact female C57bl6n mice showed lower CpG methylation at CpG site 3 of the CSQ2 promoter and increased CSQ2 expression levels. In estrogen-deficient mice, relative to intact female mice, the lower CSQ2 protein in ovariectomized mice is associated with increased DNA methylation of CSQ2 CpG site 3. Male C57bl6n mice demonstrated the opposite behavior. Following castration (CAS), CpG methylation at CpG site 3 was reduced. As a result, investigations have revealed that estrogen and androgen at least partially govern cardiac calcium homeostasis protein expression via DNA methylation changes, which then affect heart structure and function.⁶⁰ However, the role of sex hormone-regulated DNA methylation on cardiac function in vitro is unclear. Clarifying the effects of sex or hormone deprivation on cardiac function in blood vessels may help to understand the mechanisms by which DNA methylation regulates cardiac dysfunction.

Environmental exposures during pregnancy and perinatal periods can give rise to cardiac dysfunction by disrupting the normal epigenetic processes that occur during early development. Kunovac et al. demonstrated that maternal inhalation exposure to nano-TiO₂ during pregnancy destroyed the mouse offspring's heart and mitochondrial function via epigenetic reprogramming. Maternal inhalation exposure to nano-TiO₂ increased fetal H2O₂ levels, which triggered hypoxia-inducible factor-1 α activity, resulting in increased transcription of genes (such as DNA methyltransferase (DNMT1) and higher protein production. Increasing DNMT1 expression could cause a global or site-specific increase in methylation, up-regulate fibrogenic genes expression and suppress key genes such as GPx4, contributing to the increase of ROS accumulation and cardiovascular dysfunction.⁶¹ However, the effects of other specific genes methylation expression and regulatory pathways on mitochondrial and cardiac function may require further exploration in the future. The negative consequences of in-utero exposure to the nonsteroidal estrogen diethylstilbestrol are especially pronounced in women. The DNA methylation of the calsequestrin 2 (CASQ2) promoter was found increased in the hearts of female mice treated with diethylstilbestrol. Thus, exposure to diethylstilbestrol during pregnancy altered adult female ventricular DNA methylation, resulting in myocardial hypertrophy and ventricular remodeling.⁶² Svoboda et al. discovered that Pb exposure during gestation and lactation reduced DNA methyltransferase activity and expression in the heart.^{63,64} Acute Pb exposure can disrupt the cardiac calcium signal, resulting in arrhythmia and reduced cardiac contractility.⁶⁵⁻⁶⁷ In addition, prenatal exposure to Epigallocatechin-3-gallate(EGCG)

gave rise to myocardial fiber loss and cardiac remodeling in offspring. This mechanism may involve epigenetic alteration of linked genes. Prenatal EGCG exposure increased the pik3r1, TGF- β , and SMAD4 promoters methylation level, decreased the ahr methylation level, and inhibited these genes transcription, resulting in cardiac histological damage in later years. These findings indicate that EGCG may need to be taken with caution during pregnancy.⁶⁸ In addition, vascular calcification is one of the critical pathological manifestations of cardiovascular dysfunction. Adeno-associated virus encoding alkB homolog 1 (Alkbh1)-mediated DNA 6mA demethylation promoted vascular calcification through osteogenic reprogramming in male mice. It provided a potential target molecule for the early diagnosis and drug development of vascular calcification.⁶⁹

Histone methyltransferase Set7 regulates histone methylation, which influences a wide range of physiologic and pathological processes.⁷⁰ Miranda et al.⁷¹ discovered that Set7 protein levels were higher in the heart of female obesogenic diet mice. Set7 deletion mice did not develop obesity-induced glucose intolerance or decreased heart function recovery following ischemia/reperfusion injury.⁷¹ Set7 deletion female mice showed no decrease in left ventricular developed pressure, positive first derivative of left ventricular pressure (+dP/dT), or negative first derivative of left ventricular pressure (-dP/dT) during ischemia/reperfusion, unlike wild-type obese female mice. This is because Set7 deletion in female obesogenic diet mice rectified lower Bcl2 levels after heart ischemia/reperfusion, resulting in reduced cardiomyocyte apoptosis and improved cardiac recovery after ischemia/reperfusion.⁷¹ Further studies are needed to investigate the effect of Set7 in obesity-induced glucose homeostasis and insulin resistance. In addition, the specific mechanism by which Set7 deletion prevents the reduction of cardiac Bcl2 levels in the I/R response of obese female mice needs to be further clarified. KDM5C and histone lysine specific demethylase 5D (KDM5D) genes encode H3K4 histone demethylase on the X and Y chromosomes, respectively. Kosugi et al.⁷² constructed female mice with KDM5C knockouts and male mice with KDM5C and KDM5D knockouts, and discovered that noncompaction cardiomyopathy occurred in both types of mice. However, the mechanism was unclear.⁷² As a muscle-specific histone methyltransferase, Smyd1 participated in regulating cardiac mitochondrial energy.⁷³ Oka et al.⁷⁴ demonstrated that pressure overload lowered Smyd1 expression and binding to the H3K4Me3-rich promoter region of *Perm1*, resulting in the downregulation of *Perm1* expression.⁷⁴ The modifications described above decreased enzyme expression and their components that encode the tricarboxylic acid cycle, electron transport chain, mitochondrial fatty acid oxidation, and glucose consumption. As a result, mitochondrial repair was hampered, leading to heart failure.⁷⁵ The class IIa histone deacetylases (HDACs) (HDACs 4, 5, 7 and 9) recruit class I HDACs and interact with other transcriptional repressors to perform their functions.⁷⁶ Rooij et al.⁷⁷ discovered that female knocked-out HDAC5 and HDAC9 mice showed reduced left ventricular remodeling following myocardial infarction. This is due to the decreased levels of HDAC5 and HDAC9, which facilitated the activation of ER α signaling. These alterations boosted the target gene vascular endothelial growth factor α expression and neovascularization in the infarction location, which alleviated left ventricular remodeling following myocardial infarction.⁷⁷ Class II HDACs regulated cardiac remodeling by decreasing the enhancer factor 2 (MEF2) activity.^{78,79} Calmodulin-dependent protein kinase phosphatase (CaMKP) regulates CaMKII-mediated MEF2 activation in a sex-specific way. Pressure overload frequently causes systolic and diastolic dysfunction, which manifests as pathological left ventricular hypertrophy. Pre'vilon et al.⁷⁸ mimicked pressure overload with transverse aortic constriction (TAC) mouse models and discovered that CaMKP were expressed in the male and female mice nucleus and cytoplasm, respectively.

Consequently, female mice with nucleus phosphorylated CaMKII escaped dephosphorylation and deactivation by cytoplasmic CaMKP. Phosphorylated-CaMKII increased the output of HDAC4, HDAC5, and HDAC7 from the nucleus, decreasing their inhibitory effect on the activity of MEF2 transcription factors, and promoting pathological left ventricular hypertrophy markers Brain Natriuretic Peptide and α -SK gene transcription, leading to cardiovascular dysfunction.⁷⁸ Further work is needed to identify sex differences in CaMKP expression and related signaling processes in cardiomyocytes and the molecular mechanisms upstream of this sex-specific CaMKP compartmentalization after TAC. Sirtuins 1 and 3 have critical roles in the pathophysiology of sex-related cardiovascular dysfunction. Garcia et al.⁸⁰ discovered that rats missing methyl donors had a lower ratio of S-adenosylmethionine (SAM) to S-adenosylhomocysteine (SAH) during pregnancy and lactation. Peroxisome proliferator-activated receptor- γ coactivator-1 α (PGC-1 α) activation is dependent on protein arginine methyltransferase-1 (PRMT1) methylation and sirtuin 1 deacetylation. Decreased sirtuin1 and PRMT1 expression led to an imbalance in PGC-1 α acetylation/methylation. In rats lacking methyl donors, down-regulation of PGC-1 α , PPAR α , and estrogen-related receptor α in the myocardium decreased the expression of mitochondrial enzymes and respiratory complexes I and II involved in fatty acid oxidation. This led to myocardial hypertrophy and mitochondrial arrangement disorder.⁸⁰ Hajjalizadeh et al.⁸¹ showed that estrogen can lower oxidative stress, apoptosis, and inflammation by increasing sirtuin 1 level, thus delaying pathological cardiac hypertrophy and heart failure occurrence. Doxorubicin, the most often used chemotherapeutic medication for female breast cancer patients, frequently reduces clinical efficacy due to cardiotoxicity.⁸¹ Anthracycline cardiomyopathy is caused by oxidative stress, mitochondrial damage, apoptosis, and cardiac fibrosis. Activation of sirtuin 1 and sirtuin 3 reduced doxorubicin-induced cardiotoxicity. Cappetta et al.⁸² discovered that doxorubicin caused heart systolic and diastolic dysfunction by increasing fibroblast activity and collagen deposition. Resveratrol, a sirtuin 1 activator, improved heart function by decreasing TGF- β and pSMAD3/SMAD3 levels, fibroblast activation, and doxorubicin-induced cardiac fibrosis. Pillai et al.⁸³ demonstrated that doxorubicin therapy lowered sirtuin 3 levels in cardiomyocytes while increasing mitochondrial protein acetylation and ROS generation, resulting in mitochondrial breakdown, cell death, and cardiac cytotoxicity. Sirtuin 3 transgenic mice reduced doxorubicin-induced cardiac hypertrophy by decreasing oxygen-guanine-DNA glycosylase-1 levels and protecting mitochondrial DNA. Song et al.⁸⁴ found that the ejection fraction and fraction shortening were significantly reduced and myocardial fibrosis and myocardial apoptosis were significantly aggravated in estrogen-deficient female C57BL/6 mice at 28 days after infarction. Myocardial cells at the periphery of myocardial infarction showed decreased expression of sirtuin 3 and peroxisome proliferator-activated receptor γ (PPAR γ), but dramatically enhanced expression of β -catenin. β -catenin, a critical factor in the Wnt and TGF- β 1-SMAD-3 signaling pathways, increased myocardial fibroblast transformation, resulting in myocardial fibrosis.⁸⁵ PPAR γ belongs to a nuclear steroid receptor superfamily that requires ligands to function. Activating PPAR γ reduced the size of myocardial infarctions in rats with acute ischemia-reperfusion damage.⁸⁶ Sirtuin 3 activator theacrine reduced post-myocardial infarction cardiac remodeling induced by myocardial fibrosis and apoptosis. The expression of sirtuin 3 protein and PPAR γ was dramatically increased. β -catenin expression was dramatically reduced in myocardial cells along the border of myocardial infarction. Studies indicate that Sirtuin 3 activator theacrine improved heart function after estrogen-deficient mice myocardial infarction by boosting sirtuin 3 levels and modulating the β -catenin/PPAR γ signaling pathway. However, the effect of theacrine in postmenopausal women coronary heart disease and myocardial infarction prevention or treatment was

unclear and needed to be confirmed in clinical trials.⁸⁴ In addition, intrauterine growth restriction is an obstetric complication characterized by placental insufficiency and subsequent cardiovascular remodeling, which can progress to adult cardiomyopathy. Jamieson et al.⁸⁷ discovered that compared to old male soluble epoxide hydrolase (sEH) knockout mice, old female sEH knockout animals showed improved contractile performance and less cardiac hypertrophy. Old female sEH knockout mice protected the heart by keeping greater sirtuin 3 activity, lowering AcMnSOD levels and oxidative stress, and preserving normal mitochondrial ultrastructure.⁸⁷ Sirtuin 6 can maintain the homeostasis function of endothelial cells, delay vascular senescence and prevent cardiomyocyte hypertrophy. Study found that sirtuin 6 in male mice degraded runt-related transcription factor 2 by deacetylation and ubiquitination to slow the VSMC osteogenic differentiation and calcification.⁸⁸ In male mice, sirtuin 6 inhibited GATA6 transcription by deacetylating Nkx2.5. GATA6 inhibited DNA damage repair, thereby accelerating VSMC osteogenic phenotype transformation and calcification.⁸⁹ However, capsaicin led to increased expression of sirtuin 6, which in turn promoted sirtuin 6-mediated hypoxic-inducible factor-1 α deacetylation and degradation to play a protective role in vascular calcification.⁹⁰

Lactate was found to be an epigenetic modifying factor. Hypoxia-induced lactate generation has been demonstrated to increase histone lysine lactylation in gene promoter areas, which regulates gene expression.⁹¹ Li et al.⁹² discovered increased lactate levels and histone lactylation in the preeclampsia placenta. Only the fibrosis-related genes FN1 and SERPINE1 were elevated in the preeclampsia placenta, as well as the HTR8/SVneo and TEV-1 cell lines. Upregulation of the FN1 and SERPINE1 genes was linked to decreased cardiac function and heart failure development.⁹³⁻⁹⁵ The study found that 1% O₂ and sodium lactate treatment dramatically enhanced H3K18 lactylation levels in the FN1 and SERPINE1 promoter regions of HTR8/SVneo and TEV-1 cells. Furthermore, the addition of the lactate dehydrogenase inhibitor oxalate decreased the elevated FN1 and SERPINE1 gene promoter regions H3K18 lactylation levels caused by 1% O₂. As a result, the study revealed that lactate, as an epigenetic regulatory factor, enhanced the FN1 and SERPINE1 expression via histone lactylation under hypoxia. This demonstrates the potential effect of epigenetic changes mediated by glycolytic metabolic intermediates in preeclampsia pathogenesis.⁹²

Non-coding RNA has emerged as a crucial regulator of heart disease, with the potential to be a therapeutic target for sex-related cardiovascular dysfunction. MiRNA may have opposite effects on cardiac structure and function in different sexes. García et al. discovered that miRNA-29b expression was increased in the left ventricular myocardium of transverse aortic contraction female mice under pressure stress, but down-regulated in the transverse aortic contraction male animals. MiRNA-29b targets (collagen and GSK-3 β) showed that males had more severe myocardial fibrosis, whereas females had greater hypertrophy. The cardiac systolic and diastolic function of transverse aortic contraction females was worse, indicating that miRNA-29b had a negative effect on female hearts but a positive effect on male left ventricles during pressure overload.⁹⁶ Florijn et al. found low miRNA-34a, miRNA-224, and miRNA-452 levels in diabetic patients with left ventricular diastolic dysfunction and female diabetes patients with estimated glomerular filtration rate < 60 ml/min. Compared with men, diabetic HFpEF women had higher angiopoietin-2 expression and the miRNA-224/452 cluster on the X chromosome. The increased plasma angiopoietin-2 level suggested that HFpEF women were predisposed to microvascular injury, which was consistent with previous research demonstrating that coronary microvascular dysfunction was a distinct pathophysiology of HFpEF women.^{97,98} Furthermore, HFpEF women had considerably greater plasma levels of miRNA-224 and miRNA-452 than males. This could be because the X chromosomal origin of

both miRNAs was only related to female-specific differential expression.⁹⁹ The obesity diet elevated the expression of miRNAs associated with heart hypertrophy in female mice. Oliveira Silva et al. discovered that the amount of miRNA-143-3p in the obese female mice hearts increased, which was accompanied by a drop in Sox6 mRNA levels and increased MYH7 expression. Loss-of-function experiments in cardiomyocytes found that inhibiting miRNA-143-3p increased Sox6 mRNA expression while decreasing Myh7 levels. As a result, the miRNA-143-3p-Sox6-Myh7 pathway could be the primary mechanism causing heart hypertrophy in obese female mice. Further studies are needed in the future aimed at determining sex differences in the miRNA-143-3p-Sox6-Myh7 axis in human heart tissues and the effects on heart structure, which may provide some enlightenment and theoretical basis for the development of sex-specific cardio-targeted miRNA-143-3p therapies.¹⁰⁰ LncRNA Myosin Heavy Chain Associated RNA Transcripts (MHRT) have recently been discovered to be cardioprotective lncRNAs. Zhang et al. discovered that rs3729829 locus allele (GA/AA) carriers of the MHRT gene showed a significantly higher congestive heart failure risk than GG genotype carriers in young and female patients and those without hypertension and diabetes, implying that detecting MHRT gene rs3729829 in these subpopulations may be more clinically significant than in older and male patients, as well as those with hypertension and diabetes.¹⁰¹ Meessen et al. discovered that in heart failure patients with a higher NYHA class, worse renal function, and lower hemoglobin levels, circulating long non-coding RNA LIPCAR levels were greater, and these relationships were stronger in females than in males.¹⁰² Zhuang et al. performed experimental and bioinformatic investigations of mouse and human heart tissues and cells to confirm that the lncRNA OIP5-AS1 was cardiomyo-rich. Female mice deficient in lncRNAs OIP5-AS1 exhibited progressive heart failure following cardiac pressure overload (TAC), whereas male mice did not. Female OIP5-AS1 knockout mice's loss of mitochondrial transcription factors PGC1α and Esrrg (ERRgamma) after TAC may impair their ability to generate energy, leading to cardiac systole dysfunction and increased heart failure risk. As a result, the study revealed that lncRNAs OIP5-AS1 could be related to mitochondrial function and heart failure development sex-specific changes.¹⁰³

As a common manifestation of various heart diseases, cardiac fibrosis eventually gave rise to end-stage cardiovascular dysfunction. Non-coding RNA is critical in regulating both normal and pathological cellular processes, including gene expression programs linked to sex-based cardiovascular dysfunction. Zhang et al. revealed that miRNA-21 activated the TGF-β/Smad2/3 signal pathway and efficiently inhibited cardiac fibrosis by inhibiting it. Estrogen has an antifibrotic action. Men had higher gene expression levels of the TGF-β signaling pathway than women but lacked estrogen's protective impact. It was believed that activating the male TGF-β signaling pathway could enhance heart fibrosis and dilated cardiomyopathy development.¹⁰⁴ Hao et al. discovered that lncRNA-Safe was significantly expressed in female mice fibroblasts and fibrous tissue following myocardial infarction. LncRNA-Safe exacerbated cardiac fibrosis, at least in part, by increasing Safe-Sfrp2-HuR complex-mediated Sfrp2 mRNA stability and protein expression. LncRNA-Safe knockdown prevented TGF-β-induced cardiac fibrosis and improved cardiac function in female myocardial infarction mice by decreasing fibroblast proliferation, fibroblast-myofibroblast transition, and type I collagen secretion. The data showed that lncRNA-Safe could be a new target for anti-myocardial fibrosis treatment in women.¹⁰⁵ LINC00707 is a kind of long non-coding RNA that can regulate multiple diseases. Zhao et al. discovered that LINC00707 and S1PR1 expressions were considerably lower in female rheumatic heart disease rats. Female rats with rheumatic heart disease had higher levels of Collagen III/I (COLIII/I), COLIIIa1 mRNA, FSP1 mRNA, and miR-145-5p in their heart valve tissues. The luciferase

reporter experiment confirmed that miR-145-5p was directly regulated by LINC00707. LINC00707 dramatically reduced the miRNA-145-5p expression. S1PR1 is a downstream gene of miRNA-145-5p, which is negatively regulated. Therefore, LINC00707 can reduce myocardial damage and fibrosis in female rheumatic heart disease rats via modulating miRNA-145-5p/S1PR1. Future studies need to further explore the potential mechanisms between S1PR1, miR-145-5p, LINC00707 and rheumatic heart disease.¹⁰⁶ Guo et al. identified the effect of the lncRNA RASSF1-AS1 in cardiac fibrosis development. RASSF1-AS1 expression was increased during the cardiac fibrosis process in female mice. Over-expression and knockout experiments of female mice primary cardiac fibroblasts found that RASSF1-AS1 negatively regulated the RASSF1A protein level. RASSF1-AS1 aggravated cardiac fibrosis by directly binding to RASSF1A mRNA and inhibiting its translation. Therefore, RASSF1-AS1 may be a potential therapeutic target for cardiovascular dysfunction.¹⁰⁷ In conclusion, miRNA-21, lncRNA-Safe, LINC00707, lncRNAs OIP5-AS1 and RASSF1-AS1 can be used as new therapeutic targets related to sex-related cardiovascular dysfunction in the future.¹⁰³⁻¹⁰⁷ Therefore, the regulation of non-coding RNA changes has important clinical significance for the clinical diagnosis and prognosis of sex-related cardiovascular dysfunction. At present, these epigenetic targets or drugs have not been used in sex-related cardiovascular dysfunction clinical practice. However, we believe that through continuous exploration and large-scale clinical studies in the future, more emerging epigenetic drugs for the treatment of sex-related cardiovascular dysfunction will be created in order to better improve cardiovascular disease patients' symptoms and prognosis.

Clinical implications

Sex-related cardiovascular dysfunction treatment aim to improve symptoms, slow or reverse cardiac deterioration, and reduce readmission and mortality. The treatment of cardiovascular dysfunction mainly includes life intervention, drug therapy and interventional therapy. In addition, we also need to timely risk factor intervention for diseases such as PPCM and estrogen deficiency that can cause female cardiac dysfunction, so as to better improve cardiovascular prognosis.

In order to decrease cardiac dysfunction incidence rate caused by PPCM, it is necessary to take preventive strategies of healthy diet and exercise to improve the female cardiovascular health of childbearing age before pregnancy. Acute PPCM patients require coordinated cardiovascular and obstetric care to ensure the mother and baby's health and safety during pregnancy. The 2018 ESC guidelines introduced the concept of "BOARD" for gestational heart failure treatment, which may benefit a large number of PPCM patients. Doctors should pay attention to contraindicated drugs, such as angiotensin converting enzyme inhibitors, angiotensin receptor blockers, warfarin during PPCM treatment.¹⁰⁸ Most importantly, bromocriptine should be used in conjunction with prophylactic doses of anticoagulants such as heparin to reduce the thromboembolism risk.¹⁰⁹ Furthermore, numerous studies have advised bromocriptine in conjunction with regular heart failure medication as a specialized treatment regimen for severe PPCM. In female patients with PPCM XI related cardiogenic shock and an initial average left ventricular ejection fraction of 15%, temporary percutaneous mechanical circulation support using Impella heart pumps contribute to improve heart failure symptoms.¹¹⁰ Pentoxyphilline combination with other heart failure drugs contribute to improve PPCM patients prognosis.¹¹¹ Therefore, clinicians should focus on PPCM management and therapy, which is critical for preventing and delaying cardiovascular dysfunction in pregnant women, as well as lowering the high maternal and fetal mortality rates.

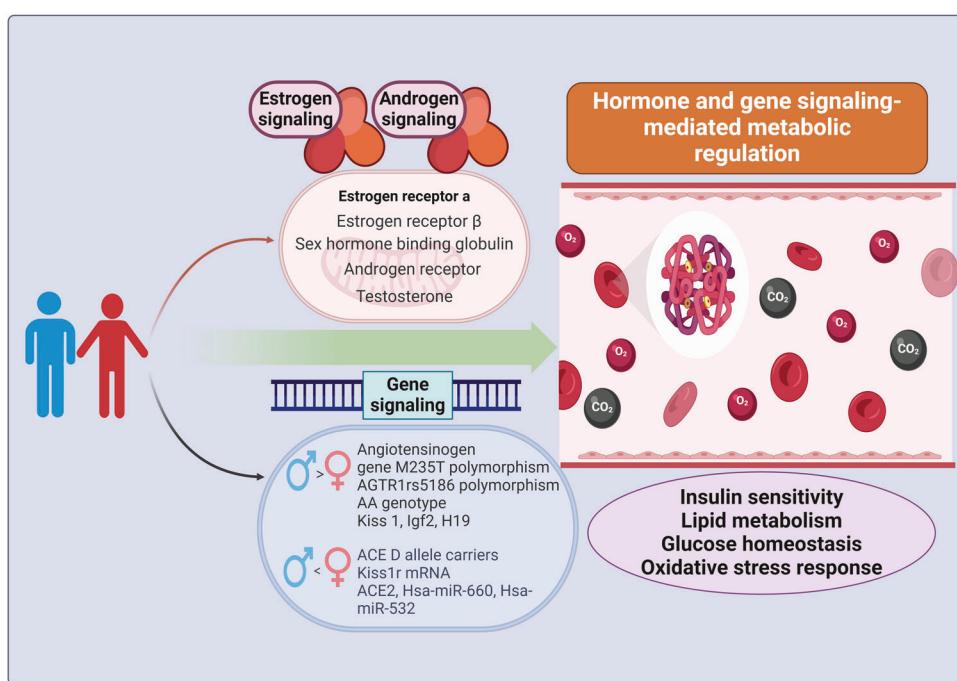
To prevent and treat cardiovascular dysfunction in menopausal women, it is recommended that they engage in frequent moderate exercise and maintain a healthy weight and waist

size.¹¹² Furthermore, it is better that hormone replacement therapy should be started as early as possible in the first year after menopause in postmenopausal women to decrease cardiovascular risk.¹¹³ The 2022 North American Menopause Association Hormone Therapy Position Statement emphasizes that the benefits will far outweigh the risks for women who start hormone replacement therapy at age <60 years or within 10 years of menopause.¹¹³ Current hormone replacement therapy medication regimens include estrogen alone or with progestogen, topical estrogen usage, the estrogen/progesterone cycle sequence, and a continuous estrogen/progestogen combination. At present, most of the estrogens supplemented in clinical practice are natural estrogens, such as estradiol valerate and 17 β -hydroxysteroids, which can avoid the endometrial cancer additional risk as much as possible. In addition, women with uterus need to combine with progestogens for hormone replacement therapy. Progesterone, dydrogesterone and other progesterone with relatively small risk of endometrial cancer are recommended to reduce endometrial cancer risk. Continuous combination regimens are the most effective for preventing endometrial hyperplasia and cancer. Oral therapy is recommended for young, newly menopausal patients with obvious symptoms who need hormone replacement therapy to work quickly. Percutaneous therapy is suggested to decrease thrombosis risk for patients with prolonged menopause and insignificant symptoms.¹¹³

At present, there is no sex specificity in the diagnosis and treatment of cardiovascular dysfunction guidelines in China, Europe, and America. Although women are underrepresented in some studies and there is not much prospective randomized data on the safety and efficacy of sex-specific treatments, some meaningful results have been obtained from some studies. Previous studies have found that sacubitril/valsartan can improve heart function and reduce hospitalization rates in female heart failure patients with preserved ejection fraction.¹¹⁴ As for β receptor blockers, carvedilol has more benefits in treating male heart failure, while metoprolol improves heart failure better in women.¹¹⁵ There is no sex difference in the treatment of heart failure with aldosterone receptor antagonists, sodium glucose cotransporter 2 inhibitors, ivabradine, and soluble guanylate cyclase agonists. Cardiac resynchronization therapy benefits women with heart failure more than men.¹¹⁶ In REPORT-HF clinical studies, women have a higher risk of heart failure with preserved ejection fraction and its complications compared with men. Women with acute heart failure and reduced left ventricular ejection fraction received lower frequency of coronary angiography, cardiac stress testing, and coronary revascularization treatment than men, and these sex differences were not correlated with national income levels and geography.¹¹⁷ In the clinical trial cohort of contemporary high-risk myocardial infarction patients, women with acute myocardial infarction and decreased left ventricular ejection fraction had a higher risk of heart failure hospitalization and comorbidities. Sacubitril/valsartan had the same good therapeutic impact and tolerability as ramipril, regardless of sex.¹¹⁸ Therefore, when patients' clinical indications match the appropriate conditions for sacubitril/valsartan and there are no adverse events, clinical doctors should advise heart failure patients to prioritize sacubitril/valsartan treatment. The post-hoc analysis of the VICTORIA trial (Vericiguat Global Study) revealed that the therapeutic benefit of vericiguat on heart failure patients with decreased ejection fraction was unaffected by sex differences.¹¹⁹ In the GALACTIC-HF clinical trial, males and females showed no significant difference in the therapeutic impact of omecamtiv mecarbil on heart failure patients with decreased ejection fraction. This could be attributed to the trial's lower female participation rate (women make up only 21% of GALACTIC-HF participants).¹²⁰ The study discovered that women's plasma concentrations of omecamtiv mecarbil were higher, hence they required a lower dose. Despite the higher plasma omecamtiv

mecarbil concentration, omecamtiv mecarbil was well tolerated in women compared with men.¹²⁰ The frequency of ischemia diseases in women was less, resulting in less myocardial scarring and arrhythmia matrix. Omecamtiv mecarbil's selective impact on myocardial globulin caused greater myocardial contractility in women, resulting in a decreased incidence of major adverse events (ventricular arrhythmias and ischemic events) in women.^{121,122} Currently, the benefits and drawbacks of medicines and surgical surgery for treating cardiovascular dysfunction in women indicate that more clinical trials are required to investigate and validate. To achieve these, it is necessary for women to have sufficient representativeness in clinical research and to prospectively investigate sex differences, which may be of great significance for delaying the occurrence and progression of sex-related cardiovascular dysfunction patients.

SEX DIFFERENCE IN METABOLIC DISORDERS


Introduction

In recent years, more evidence indicated that sex differences may participate in the numerous metabolic diseases pathogenesis and treatment. Metabolic homeostasis disorders caused by obesity, metabolic syndrome, insulin resistance, and atherosclerotic dyslipidemia in its development process is due to an intrinsic difference in genotype (i.e. sex chromosome), as well as a significant sex difference in changes in the surrounding metabolic environment (such as sex hormones, other hormones, or metabolites).¹²³ Globally, the proportion of overweight and obese women is higher than that of men.¹²⁴ Type 1 diabetes is the only common autoimmune disease not dominated by women.¹²⁵ Girls tend to have more residual β cell function in their bodies than boys. Female estrogen plays an important role in preventing type 1 diabetes in adolescent girls.^{126,127} However, women have a higher risk of developing type 2 diabetes than men.¹²⁵ In obese patients, the effect of insulin on the target organs is reduced, and the nutrient storage capacity is impaired, resulting in insulin resistance and early metabolic dysfunction. Insulin resistance in adipose tissue is the core of metabolic diseases, as adipose tissue is essential for energy regulation.¹²⁸ Metabolic syndrome is a key factor associated with obesity and insulin resistance. Metabolic syndrome pathogenic mechanism was that caused inflammation by decreasing the sensitivity of pro-inflammatory adipokines to insulin in visceral adipose tissue, which led to cardiometabolic disorders and increased cardiovascular disease risk.^{129,130} There are sex differences in the metabolic syndrome and insulin resistance development. Males are more susceptible to develop metabolic syndrome than premenopausal females; nevertheless, the protective effect of females gradually decreases as estrogen levels in the body decline. Postmenopausal women and men tend to have a higher risk of developing insulin resistance than premenopausal women.¹³¹

Mechanism

It is generally understood that sex disparities exist in the cause, pathophysiology, and treatment effectiveness of metabolic diseases. Hormone, gene and epigenetic regulation have important effects on metabolic homeostasis. Therefore, understanding the potential mechanism differences between male and female metabolic diseases is critical for patients management and treatment. (Fig. 2).

Hormone regulation. Hormone plays an important role in sex differences, which are not only related to the adipose tissue anatomical distribution, but also to energy and glucose homeostasis. Therefore, men and women have different susceptibility to metabolic disorders such as insulin resistance and metabolic syndrome. Leptin is a circulating peptide hormone produced by adipocytes. Plasma leptin is related to insulin resistance,

Fig. 2 The regulation of sex hormones and gene affects insulin sensitivity, lipid metabolism, glucose homeostasis, and oxidative stress responses. Hormone regulation mainly includes estrogen receptor α , estrogen receptor β , sex hormone binding globulin, androgen receptor and testosterone. In the metabolic diseases regulated by gene signaling, the genes with higher expression in males than in females mainly include Angiotensinogen gene M235T polymorphism, AGTR1rs5186 polymorphism AA genotype, Kiss 1, Igf2 and H19. However, the genes that women expressed more than men mainly included ACE D allele carriers, Kiss1r mRNA, ACE2, Hsa-miR-660 and Hsa-miR-532. Hormonal and gene signaling regulate insulin sensitivity, lipid metabolism, glucose homeostasis, and oxidative stress responses, thereby influencing the occurrence of metabolic diseases. This figure was created with the aid of BioRender (<https://biorender.com/>). ACE angiotensin-converting enzyme, AGTR1 angiotensin II type 1 receptor gene

inflammation and thus participate in the long-term metabolic diseases regulation. Study has found that plasma leptin levels were higher in women than in men because of their higher proportion of adipose tissue and faster leptin synthesis. In the Jackson Heart Study, it was showed that leptin levels were significantly correlated with female stroke risk, but not in male.¹³² Adiponectin is a kind of cytokine mainly produced by adipose tissue, which can regulate the coronary heart diseases, diabetes, and metabolic disorders pathophysiological process. Women had higher levels of adiponectin than men. Postmenopausal women plasma adiponectin levels were significantly higher compared with premenopausal women. According to the Frachial Offspring study, high adiponectin levels was an important protective factor for preventing the coronary heart disease risk in males. Adiponectin levels were inversely associated with the coronary heart disease risk.¹³³

Endogenous estrogen regulated glucose homeostasis by activating ER α and ER β .^{134–136} The ER α expression in female adipose tissue was higher than that in male adipose tissue. ER α activation enhanced glucose-stimulated insulin biosynthesis, reduced islet toxic lipid accumulation, and promoted β cell survival through pro-apoptotic stimulation. ER β activation promoted glucose-stimulated insulin secretion.¹³⁷ Estrogen regulated liver insulin production and transport, improves liver insulin response, and reduced liver insulin degradation, thereby lowering blood glucose.^{135,136,138} Estrogen mediated the improvement of insulin sensitivity in adipocytes, protected adipocytes from oxidative stress, and improved insulin stimulated glucose uptake by skeletal muscle.¹²⁴ Estrogen improved heart function through ER α and alleviated myocardial damage induced by insulin resistance. Estrogen can also enhance nitric oxide production in the vascular endothelium and promote vascular relaxation.^{135,136}

Furthermore, estrogen signaling also affects lipid metabolism. Bryzgalova et al. found that estrogen increased liver Lepr expression by binding to ER α , upregulated genes involved in lipid transport, thus regulating liver insulin sensitivity and glucose homeostasis.¹³⁹ Taken together, estrogen stimulated insulin secretion and regulated the expression of lipid genes, thereby lowering blood glucose and preventing type 2 diabetes. The discovery could eventually open up new ideas for treating type 2 diabetes. However, the specific mechanism by which estrogen in males promotes insulin transport to the muscle needs to be further investigated in the future.

Androgens play an important role in physiological processes such as metabolic syndrome. Androgens could inhibit fat deposition.¹⁴⁰ Androgen deficiency could decrease insulin sensitivity in healthy young men.¹⁴¹ Lack of androgen receptor (AR) promoted adiponectin secretion and significantly increased triglycerides and decreased insulin sensitivity. Androgens are involved in lipid metabolism regulation. Normal serum levels of androgens had a protective effect on metabolism.¹⁴² Testosterone levels in obese men were generally low, as were serum total testosterone and free testosterone levels in type 2 diabetic patients.¹⁴³ A 25% decrease in serum testosterone in elderly men can lead to doubling insulin resistance.¹⁴⁴ Severe testosterone deficiency caused blood lipids changes, thus increasing diabetes and vascular diseases risk. Clinical research has shown that testosterone enhanced insulin sensitivity in men with hypogonadism, as well as decreased the metabolic syndrome and cardiovascular complications risk.¹⁴⁵ Furthermore, testosterone accelerated insulin resistance in overweight or obese women adipose tissue. Therefore, both males testosterone deficiency and females excessive testosterone can increase the adipose insulin resistance risk.¹⁴⁶ These studies revealed that hypogonadism was an

independent risk factor for metabolic syndrome. The androgen/AR signal is involved in the regulation of cellular insulin signaling, glucose, lipid, and metabolic homeostasis development, and has significant sex differences.¹⁴⁷ In addition, sex hormone binding globulin (SHBG) contributed to type 2 diabetes patients glucose metabolism and insulin resistance. A meta-analysis of multiple prospective clinical studies revealed that women had higher SHBG levels compared with men. SHBG was an independent risk factor for female type 2 diabetes patients. SHBG concentrations in women were inversely associated with the risk of developing type 2 diabetes.¹⁴⁸ Therefore, these studies findings may have implications for the broader clinical use of sex-related hormones to assess metabolic disease risk. It also emphasized the importance of considering sex as a key factor in assessing the cardiac and metabolic diseases risk in order to improve their management and prevention.

Gene and epigenetic modification. Gene and epigenetic modifications are important for regulating the occurrence of metabolic diseases in both men and women. Joslin Diabetes Center study showed that the DNA polymorphism M235T in the angiotensinogen gene was highly expressed in type 1 diabetes male patients, which increased diabetes nephropathy risk, but no difference was found in females.¹⁴⁹ In a large cohort study of type 1 diabetes patients from Denmark, Finland, France, and Sweden discovered that the angiotensin II type 1 receptor gene (AGTR1) rs5186 polymorphism AA genotype significantly increased male diabetes nephropathy risk but had no significant impact on women.¹⁵⁰ Tien et al. found that female diabetes carriers with the angiotensin-converting enzyme (ACE) D allele had a significantly higher risk of progressing to diabetes nephropathy, whereas no significant correlation was observed for men with type 2 diabetes.¹⁵¹ Kisspeptin (KP) regulated the hypothalamic pituitary gonadal (HPG) axis. KP was encoded by the KISS 1 gene. The deficiency of KP or its functional receptor KISS 1 R generated hypogonadotropic hypogonadism. Ziarniak et al. discovered that the Kiss1r mRNA expression in the female type 2 diabetes rats liver and adipose tissue increased significantly, whereas Kiss1r expression in male type 2 diabetes rats remained unchanged.¹⁵² Type 2 male diabetes rats had higher levels of Kiss 1 mRNA in the pancreas and Kiss 1 protein in the liver, whereas type 2 diabetes female rats only had an increase in Kiss 1 mRNA in the liver.¹⁵³ Study has shown that the increase in Kiss 1r mRNA levels in type 2 diabetes female rats was associated with promoter hypermethylation.¹⁵² Hyperglucagon may increase liver KP. KP decreased glucose stimulated insulin secretion and insulin levels. Therefore, developing drugs that antagonize KP is expected to be a promising therapeutic strategy to enhance type 2 diabetes β cell function.¹⁵⁴ Ding et al. demonstrated that due to methylation imbalance in the differential methylation region, the expression of imprinted genes Igf2 and H19 in the islets of male gestational diabetes offspring was higher than that in female offspring, potentially leading to ultrastructural defects and functional impairment of the islets.¹⁵⁵

Sex-based whole genome methylation data of human pancreatic islet clusters revealed that the DNA methylation and gene expression of 61 x chromosome genes and 18 autosomal genes differed between men and women. Among them, six genes including APLN, ATF4, and HMGA1 may be regulated insulin secretion.¹⁵⁶⁻¹⁵⁸ However, sixteen genes including ARSD, KDM5C, and KIF4A could have sex differences.¹⁵⁹⁻¹⁶¹ The CpG islands within the promoter region indicated that the X chromosome methylation level in active females was lower than that in inactive females.¹⁶² In male pancreatic islets, DNA methylation at specific CpG sites on the X chromosome was higher than in females. The expression of ACE2 encoding angiotensin-I-converting enzyme 2 in the males islets was lower than that of females. Studies have shown that in human islets, the CpG site labeled microRNA had different DNA methylation between sexes, resulting in type 2

diabetes patients islet function changes.¹⁶³ In human islets, DNA methylation affected miRNAs and their target genes expression. There were three miRNAs with significantly differentially expressed sex-based DNA methylation in autosomes: hsa-miR-548H4, hsa-miR-220B and hsa-miR-663B. Sex-based DNA methylation differences were found at 160 miRNA-annotated loci on the X chromosome, with 22 loci showing higher methylation levels in females. Women also had six unique hypermethylated miRNAs. There are 138 loci in males that exhibited a high degree of methylation, corresponding to 59 unique miRNAs with high methylation in males. Compared with males, hsa-miR-660 and hsa-miR-532 located on the X chromosome in female pancreatic islets showed lower DNA methylation levels and higher expression. In females, increased DNA methylation of NKAP and SPESP1 proximal promoter led to decreased expression. Silencing of two X chromosome genes, APLN and NKAP, and an autosomal gene, BCL11A contributed to increased insulin secretion in clone beta cells.¹⁶⁴ Study revealed that chromosomal range and gene-specific sex differences existed in human pancreatic islet X chromosome DNA methylation, whereas autosomal chromosomes only showed site-specific differences. These epigenetic modifications based on sex-specific metabolic phenotypes influence insulin secretion by regulating differential gene expression and microRNA levels in human pancreatic islets.

Clinical implications

The presence of metabolic disease risk factor clusters increased cardiovascular and renal vascular diseases occurrence, particularly obesity and obesity-related cardiac metabolic risk factors such as glucose and lipid metabolism disorders. Hormone replacement therapy and new oral hypoglycemic drugs contribute to metabolic regulation, which requires sex-specific management. Identifying the key factors and treatment strategies that cause metabolic disorders is critical for strengthening metabolic diseases, cardiovascular and renal complications primary and secondary prevention. Therefore, we should conduct further study from the perspective of sex differences.

Estrogen therapy participated in regulating glucose homeostasis and improving insulin resistance. Determining estrogen tissue specific effects and ER targets will be conducive to the new selective ligand targeting drugs development, thus preventing the type 2 diabetes, metabolic syndrome, obesity occurrence. Study has found that early estrogen replacement therapy can inhibit mitochondrial hydrogen peroxide levels after oophorectomy in rats, prevent oxidative damage to lipids and proteins, increase glutathione peroxidase and catalase activities, and promote brain glucose uptake, thereby protecting against oxidative stress and metabolic disorders caused by oophorectomy.¹⁶⁵ Estrogen replacement therapy significantly improved insulin sensitivity and decreased diabetes prevalence.^{166,167} Inada et al. used orchectomy (ORX), E2, or both to treat hyperglycemic male induced early inhibitory factor (ICER) - transgenic (Tg) mice. Study found that with or without ORX, E2 treatment in the early stage of diabetic nephropathy can cause a rapid decrease in blood glucose, a sharp increase in the number of β cells, a decrease in glomerular sclerosis, type IV collagen deposition, and proteinuria, thus alleviating diabetic nephropathy occurrence. E2 treatment was more effective than ORX alone in slowing diabetic nephropathy progression. Although pancreatic islet transplantation can improve glucose levels and eliminate proteinuria in ICER-Tg mice. However, E2 combined with ORX treatment had a greater effect on improving glomerulosclerotic lesions and renal function than pancreatic islet transplantation. As a result, E2 treatment could be a novel therapeutic strategy for improving hyperglycemia and preventing diabetes nephropathy.¹⁶⁸ Anastrozole, an aromatase inhibitor (Da), protected against kidney damage in male streptozotocin-induced diabetes rats by inhibiting estradiol synthesis, urinary protein, glomerulosclerosis, and

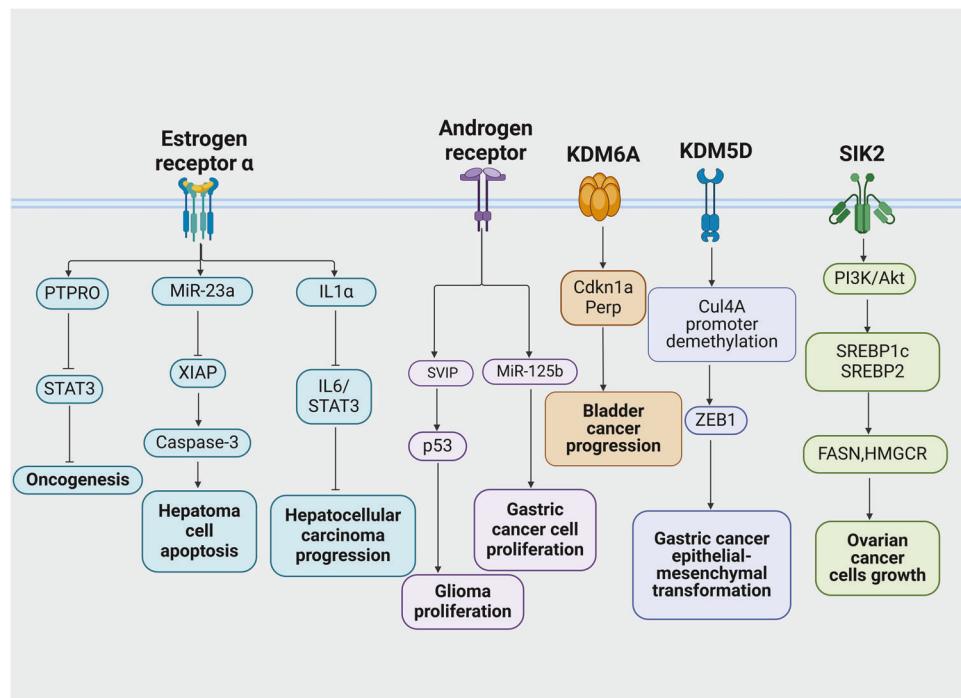
tubulointerstitial fibrosis.¹⁶⁹ More and more evidence suggests that testosterone therapy can help to improve visceral obesity and metabolic syndrome.^{170,171} Testosterone therapy decreased visceral fat mass, plasma insulin and leptin levels, improved glucose and lipid homeostasis, which reduced the cardiovascular diseases related to metabolic syndrome risk in men.^{172,173}

Androgen deprivation therapy (ADT) is a first-line treatment and basic management method for advanced prostate cancer patients, which inhibited the androgen/AR signaling function. However, long-term ADT treatment may significantly increase the amount of fat and circulating insulin levels.¹⁷⁴ In prostate cancer (PCa) patients due to severe testosterone deficiency, resulting in significant insulin resistance and hyperglycemia, as well as increased diabetes and metabolic syndrome risk.¹⁷⁵⁻¹⁷⁷ Therefore, it is suggested that PCa patients receiving ADT treatment make lifestyle changes in order to prevent insulin resistance and metabolic syndrome. Furthermore, insulin sensitizers combined with anti-androgen drugs could be a more effective method for treating metabolic syndrome and advanced PCa patients.^{178,179} In the future, a new generation of treatment options targeting androgen synthesis or directly targeting AR in combination with ADT will have the potential to better manage PCa patients' metabolic and cardiovascular risk factors and complications.

The clinical application of both traditional and novel oral hypoglycemic drugs has a wide impact on regulating glucose and cardiovascular metabolic homeostasis. Clinical trials show that metformin can slow the progression of diabetes in pregnant women by 40%.¹⁸⁰ Raparelli et al. demonstrated that women with type 2 diabetes benefited more from metformin treatment than men in terms of cardiovascular protection. Women treated with glucagon-like peptide 1 (GLP-1) receptor agonists had a lower rate of cardiovascular events than men.¹⁸¹ Clinical trials showed that the combination of exenatide and metformin can improve insulin sensitivity, lower insulin resistance, and blood lipid levels, and increase adiponectin levels, which was more beneficial for female patients with type 2 diabetes than male. Therefore, the combination therapy of exenatide and metformin may be more suitable for female patients.¹⁸² Currently, sodium glucose co-transporter 2 (SGLT2) inhibitor is now more commonly used in men. Study suggests that SGLT2 inhibitor may have a more effective therapeutic response to improve glucose metabolism in men. SGLT2 inhibitor treatment can significantly decrease the atherosclerotic cardiovascular disease, chronic kidney disease and heart failure risk for type 2 diabetes patients, as well as make a protective impact on heart and kidney function.^{183,184} SGLT2 inhibitor treatment did not show sex differences in major cardiovascular adverse events.¹⁸⁵ Clinical studies revealed that empagliflozin had no significant difference in decreasing the cardiovascular death risk, hospitalization for heart failure, or enhancing cardiovascular prognosis in male and female heart failure patients.¹⁸⁶ In addition, DELEVER clinical trials have also found that dapagliflozin treatment had similar health benefits in preventing the heart failure deterioration or cardiovascular death in male and female patients with heart failure with mildly reduced or preserved ejection fraction.¹⁸⁷

In summary, estrogen and androgen therapy, as well as novel drugs (GLP-1 receptor agonists, SGLT2 inhibitors) clinical application have a profound impact on regulating glucose homeostasis and improving metabolic abnormalities. Female patients with type 2 diabetes are more likely to develop cardiovascular diseases. Therefore, clinicians could need pay close attention to related risk factors in order to decrease cardiovascular and metabolic diseases incidence. Sex differences could need be taken into account when selecting treatments for metabolic diseases such as anti-diabetes to guide future basic and clinical studies. Further understanding of sex differences in metabolic disease treatment can help us better target the prevention of metabolic disorders.

SEX DIFFERENCE IN CANCER


Introduction

In recent years, epidemiological studies have emphasized that sex is a noticeable factor that caused differences in the many cancers incidence rate and survival rates, including colorectal cancer, breast cancer, gastric cancer, pancreatic cancer, lung cancer and liver cancer. Studies confirmed that women had a lower incidence and mortality rate for hepatocellular carcinoma compared with men.¹⁸⁸⁻¹⁹⁰ Gastric cancer is the third leading cause of cancer-related deaths among men and women worldwide. The global male gastric cancer incidence rate was twice that of female, and female gastric cancer treatment prognosis was better.^{3,191} Study data showed that the prevalence of esophageal cancer, hepatocellular cancer, colorectal cancer and pancreatic cancer in men was 4.39 times, 2.89 times, 1.31 times and 1.30 times higher than that in women, respectively.¹⁹² However, clinical study demonstrated that breast cancer and thyroid cancer were two exceptions, with women having a higher incidence rate than men.¹⁹³

Mechanism

Male and female cancer incidence and mortality rates may differ primarily include the following mechanisms: traditional sex hormone regulation, gene variations, and epigenetic influences. (Fig. 3).

Hormone regulation. In terms of sex hormone regulation, sex hormone receptors activated downstream regulatory genes by binding to ligands to participate in cancer-related signaling pathways. Estrogen signaling pathway played a protective role in the tumors occurrence and development such as liver cancer and colorectal cancer. Multiple studies have supported that the estrogen signaling pathway may have anti-liver cancer effects through regulating liver cancer cells proliferation, apoptosis, and oxidative stress response.¹⁹³ ER α can inhibit human hepatocellular carcinoma cell proliferation and invasion by downregulating MTA 1 transcription.¹⁹⁴ E2 was activated by ER α and combined with miR-23a regulatory region to induce its expression, thereby downregulating its target gene X-linked inhibitor of apoptosis protein (XIAP), activating caspase-3 activity, and leading to liver cancer cells apoptosis.¹⁹⁵ E2 antagonized the malignant development of hepatocellular carcinoma cells by activating caspase 1 dependent cell apoptosis, inhibiting inflammatory factors secretion, cell proliferation, and autophagy.¹⁹⁶ Estradiol decreased liver cell cycle regulators expression and cyclin E kinase activity while activating p53 and p21 expression levels, thus inhibiting liver cancer process.¹⁹⁷ ER α up-regulated protein tyrosine phosphatase receptor type O (PTPRO) expression, reduced signal transduction dependent on Janus kinase (JAK) and phosphoinositide 3-kinase (PI3K) dephosphorylation, and STAT3 transcriptional activity, thus delaying tumor progression.¹⁹⁸ In addition, estrogen regulated oxidative stress and inflammatory cells and inflammatory factors expression, thus inhibiting cancer cells development. Estrogen regulated Foxo3a or downregulated ER α expression, activated the Akt/Foxo3a signaling axis, inducing oxidative stress and apoptosis in hepatocellular carcinoma cells. Estrogen can prevent the tumor microenvironment formation by regulating the polarization of macrophages, NK cells, and Th1 cells, as well as the production of inflammatory cytokines TNF α , interleukin-4, and interleukin-6.^{199,200} Estrogen signaling pathway activated ER α promoter, binded to interleukin-1 α , regulated interleukin-1 α expression through STAT3 and NF- κ B signaling, and ultimately inhibited hepatocellular carcinoma progression.²⁰¹ Estrogen can also have a certain protective effect in preventing colorectal cancer by promoting cancer cell apoptosis, inhibiting cancer cell proliferation and metastasis.²⁰² Study revealed that male mice colorectal cancer incidence rate was significantly higher than that in female mice. Estradiol inhibited inflammation and colorectal cancer in male mice by activating nuclear factor erythroid 2-related factor 2 (Nrf2)-related pathways.²⁰³ Estradiol can prevent the loss of

Fig. 3 This figure shows the mechanisms of sex differences that regulate cancer, including estrogen, androgen signaling pathways and gene expression. Estrogen receptors affect the occurrence of various tumors such as hepatocellular carcinoma by regulating PTPRO, miR-23a and IL1a. Androgen receptors promote the proliferation of tumor cells by regulating SVIP and miR-125b. KDM6A, KDM5D and SIK2 regulate the expression of many genes and thus affect the progression of many cancers. This figure was created with the aid of BioRender (<https://biorender.com/>). Akt protein kinase B, Cdkn1a cyclin-dependent kinase inhibitor 1 A, CUL4A cullin 4A, FASN fatty acid synthase, HMGCR hydroxy-3-methylglutaryl-CoA reductase, IL Interleukin, KDM6A X-linked lysine demethylase 6A, KDM5D histone lysine specific demethylase 5D, PERP p53 apoptosis effector related to PMP22, PI3K Phosphoinositide 3-kinase, PTPRO: Protein tyrosine phosphatase receptor type O, SIK2 Salt inducible kinase 2, SREBP1c sterol regulatory element binding protein 1c, SREBP2 sterol regulatory element binding protein 2, STAT3 Signal transduction and activator of transcription 3, SVIP small VCP/p97 interacting protein, XIAP X-linked inhibitor of apoptosis protein, ZEB1 Zinc Finger E-Box Binding Homeobox 1

SOD and glutathione peroxidase activity as well as inhibit lipid peroxidation, thereby reducing the AP-1 and NF- κ B activation, lipid peroxide levels, and tumor occurrence.^{204–207} Furthermore, estrogen also promoted cell apoptosis in renal cell carcinoma, whereas androgens and AR increased angiogenesis, proliferation, and invasion of renal cell carcinoma, caused immune cell depletion and dysfunction, thus resulting in the renal cell carcinoma development.^{208–215} Estrogen regulated gene expression, inflammatory factors, and immune cell responses to prevent many cancers progression. Premenopausal women had higher estrogen levels compare to men, which could be the reason for the lower female cancer rates. The protective effect of estrogen on tumor cells needs to be further explored in clinical studies in the future.

Androgens bind to AR and activated the PI3K/Akt pathway, which regulated the cyclin-D and epidermal growth factor receptor (EGFR) signaling pathways, promoting cancer progression.²¹⁶ Study indicated that male glioblastoma patients had a higher incidence rate and a worse prognosis than female patients, which could be due to men having significantly higher androgen concentrations than women, and the activation of androgen receptors in glioblastoma cells promoted cell apoptosis imbalance.²¹⁷ Yu et al. discovered that the AR was widely expressed in glioblastoma. The active AR ligand 5 α -dihydrotestosterone (DHT) may contribute to glioblastoma occurrence by reducing the effect of TGF β receptor signaling on glioblastoma cells growth and apoptosis.²¹⁸ Study has found that AR upregulation promoted glioblastoma proliferation and progression by decreasing small VCP/p97 interacting protein (SVIP) and p53 expression.²¹⁹ Androgens and AR were linked to gastric cancer development. The high incidence of male gastric cancer may be due to AR signaling

pathway regulation. Androgens activate the AR/miR-125b signaling pathway in gastric cancer, thereby inhibiting cell apoptosis and promoting cell proliferation.²²⁰ AR antagonist bicalutamide, can weaken the AR/miR-125b-axis to induce cancer cell apoptosis and inhibit cell growth. Currently, AR targeting strategies have been extensively explored in clinical trials for hepatocellular carcinoma, breast cancer, bladder cancer, and ovarian cancer.^{221–225} In summary, at present, androgens have been shown to promote various cancers development. Therefore, developing therapeutic drugs targeting AR can serve as a new direction for preventing cancer progression.

Gene and epigenetic modification. The most obvious genetic difference between sexes is the different copies of the sex chromosomes (X and Y chromosomes). Males and females have significantly different X and Y chromosome gene numbers and mutation rates. A subset of X chromosome genes could prevent X inactivation and protect women from complete function loss due to a single mutation. Andrew et al. found six chrX genes in the non-pseudoautosomal region (PAR): ATRX, CNRSR2, DDX3X, KDM5C, X-linked lysine demethylase 6 A (KDM6A), and MAGEC3, which increased the risk of functional loss mutations in males. It was also discovered that the dual alleles of the EXITS gene in women were beneficial in protecting women from developing tumors risk.²²⁶

P53 was regarded as the most famous tumor suppressor gene on the autosome. In the p53 compound mutation mouse model, males were more susceptible to invasive cancer and had a lower survival rate than females. Consistent with this, TP53 mutations had a higher incidence in male cancers compared to females,

resulting in poorer survival and prognosis in male lung adenocarcinoma. Multiple X-encoded alleles have become regulatory factors for p53 function.^{227,228} KDM6A, DDX3X, and UBA1 were more highly expressed in healthy female tissues than in males. The X chromosome had tumor inhibition function by regulating p53 and mutant alleles expression. The components of the X chromosome p53 pathway network were obvious in unexpressed mutant X alleles. Compared to males, the mutated X allele overall expression was inhibited in female cancers, leading to a higher p53 mutations risk in male cancers.^{227,228} Furthermore, the loss of Y chromosome in male cells has been connected with some cancers development, including lung cancer, glioblastoma and renal tumors.²²⁹⁻²³¹ Mutated p53 caused a decrease in mitochondrial number and ATP production, as well as promoted oxidative stress and sustained DNA damage, thereby accelerating cancer occurrence. However, wild-type p53 can inhibit mitochondrial DNA mutations and promote mitochondrial biogenesis.^{232,233} Mitochondria may be more adapted to female environments, an increase in ROS further promoted p53 accumulation.²³⁴ Therefore, p53 mutations and sex chromosomes are regarded as important factors in molecular pathways that gave rise to sex differences in cancer risk. Y chromosome gene expression (EDY) is a distinct feature that can easily cause cancer in men. Studies have discovered that Y chromosome loss was a common early event in urothelial bladder cancer.²³⁵ Smoking induced Y chromosome loss. The loss of the Y chromosome in blood cells was related to increased non-hematological tumors risk. South Korea clinical study found that the programmed cell death ligand 1 (PD-L1) expression was negatively correlated with male proximal colorectal cancer patients, while female proximal colorectal cancer were significantly associated with high expression of dMMR/MSI and EGFR.²³⁶ Therefore, this could be a potential mechanism for the disparity in colorectal cancer incidence and mortality rates among men and women.²³⁷ In a word, these studies emphasized the critical and distinct effect of sex chromosomes in tumor suppression, while also providing new insights into the potential mechanisms of sex differences in cancer.

Molecular indicators of sex differences in glioblastoma were identified in the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases. The analysis revealed that autosomal genes NOX, FRG1BP, and AL354714.2, as well as X-linked genes PUDP, KDM6A, DDX3X, and SYAP 1, had different DNA methylation and expression profiles in male and female glioblastomas.²³⁸ KDM6A is a bisexual dimorphic gene. Wild-type KDM6A can inhibit tumor cell activity. KDM6A knockout mice decreased p53 target genes Cdkn1a and Perp expression, increasing female mice bladder cancer risk. Study has revealed that the effect of the X chromosome was mainly due to the XCI escape gene KDM6A, which reduced female bladder cancer risk through the epigenetic mechanism of regulating the p53 signal pathway. Developing treatments that target the KDM6A-dependent epigenome could narrow the difference in male and female bladder cancer risk by decreasing male bladder cancer risk.²³⁹ EGFR is closely related to DNA methylation and ovarian cancer development. Samudio Ruiz et al. found that the presence of a large amount of epidermal growth factor receptor (EGFR) activators in the ascites of ovarian cancer led to sustained overexpression of EGFR and its ligands in the tumor microenvironment. Long term exposure to EGF or sustained activation of EGFR may increase DNMT activity and global DNA methylation. DNMT inhibitors/low methylation agents 5-aza-2'-deoxycytidine (AZA) and EGFR targeted drugs prevented ovarian cancer progression by altering EGF mediated DNMT activity and overall methylation.²⁴⁰⁻²⁴³ Histone lysine specific demethylase 5D (KDM5D) could be one of the important epigenetic modifiers that gave rise to male gastric cancer poor prognosis. Study has found that KDM5D downregulation in gastric cancer cells inhibited cullin 4A (Cul4A) promoter demethylation, resulting in

an increase in Zinc Finger E-Box Binding Homeobox 1 (ZEB1) and mesenchymal marker expression, a decrease in p21 and p53 expression, thereby promoting male gastric cancer epithelial-mesenchymal transition. Therefore, KDM5D is expected to become a promising male gastric cancer therapeutic target.²⁴⁴ H3K27me3 demethylase ubiquitously transcribed X (UTX) is a sex specific tumor suppressor in t-cell acute lymphoblastic leukemia (T-all). H3K27me3 demethylase UTX undergoes repeated mutations in male T-all. However, UTX escaped and became inactive in female T-all mother cells and normal T cells. This may be the reason why men had a higher risk of developing T-all than women. Study has shown that H3K27me3 demethylase UTX, as a tumor suppressor gene, made a protective effect on T-all.²⁴⁵ OTUB1 (ovarian tumor associated proteinase B1) is an OTU superfamily deubiquitination enzyme that specifically inhibited the deubiquitination of c-MYC proteins linked to K48 and K63, thereby accelerating cardiomyocyte apoptosis, inflammation response, and oxidative stress. Study has discovered that knocking down the deubiquitination enzyme OTUB1 can alleviate myocardial fibrosis and myocardial atrophy by inhibiting doxorubicin (DOX) in the treatment of ovarian cancer-induced cardiomyocyte apoptosis, inflammation, and oxidative stress, as well as prevent DOX-induced cardiovascular dysfunction in mice. It has shown that OTUB1 could be a promising therapeutic target for protecting against DOX-induced cardiac toxicity in ovarian cancer mice. However, in DOX-induced heart failure, whether OTUB1 can inhibit cardiotoxicity by regulating gene expression in other cell types needs further experimental verification.²⁴⁶ Salt inducible kinase 2 (SIK2) is a tumor-promoting factor in ovarian cancer. In vitro and in vivo experiments have revealed that SIK2 upregulated the sterol regulatory element binding protein 1c (SREBP1c) and sterol regulatory element binding protein 2 (SREBP2) expression via the PI3K/Akt signaling pathway, promoting major lipogenic enzyme fatty acid synthase (FASN) and cholesterol synthase hydroxy-3-methylglutaryl-CoA reductase (HMGCR) transcription, thereby enhancing fatty acid and cholesterol synthesis and contributing to ovarian cancer cell growth. SIK2 overexpression promoted ovarian cancer cells intraperitoneal metastasis. SIK2 activation also increased AMPK-induced acetyl Coa carboxylase phosphorylation, which accelerated ovarian cancer progression. Therefore, SIK2 would be regard as a potential target for ovarian cancer diagnosis and treatment.²⁴⁷⁻²⁴⁹

For a long time, miRNA has been important in regulating female liver cancer via the estrogen and receptor pathway. Li et al. found that ER α protein level was decreased in female hepatocellular carcinoma. This may be due to the fact that the elevation of p53 increased miR-18a level, which inhibited ER α protein expression and thus accelerated female liver cancer occurrence.²⁵⁰ Furthermore, it was discovered that miRNA-206 expression was elevated in ER negative tumors and miRNA-206 down-regulated ER α expression by targeting it. Overexpression of miRNA-221, miRNA-222 and miRNA-206 induced the ER α positive cells proliferation. In turn, ER α directly inhibited miRNA-221 and miRNA-222 by recruiting co-inhibitors NCoR and SMRT in the negative feedback loop. Therefore, these miRNAs may serve as important factors in promoting the transformation of ER α -positive precursors to ER α -negative tumors. The ER α and miRNA-221, miRNA-222 and miRNA-206 molecular pathways and their interactions need to be further explored and validated.²⁵¹ MiR-141 and miR-200 a/b/c were reported to be the most significantly overexpressed miRNAs in ovarian cancer, while miR-199, miR-140, miR-145, and miR-125b were significantly downregulated. As a result, these miRNAs may be useful as diagnostic biomarkers for ovarian cancer.²⁵² Tang et al. discovered that miRNA-423-5p expression was decreased in ovarian cancer patients tissue and plasma. Increased ovarian tissue and plasma miR-423-5p expression can slow ovarian cancer progression by inhibiting cell proliferation, colony formation, and invasion. However, the direct

target of miR-423-5p in ovarian cancer will need to be further clarified in the future. In addition, the expression level of miR-423-5p in ovarian cancer patients and its correlation with clinical outcomes will need to be further explored.²⁵³ Long chain non-coding RNA FTX (lnc-FTX) is regarded as a regulatory gene in predicting the risk of sex differences in hepatocellular carcinoma patients. Liu et al. indicated that the expression level of lnc-FTX in female liver was higher than that in male liver, and it was positively correlated with patient survival. However, the expression of lnc-FTX was significantly decreased in female hepatocellular carcinoma. lnc-FTX inhibited hepatocellular carcinoma growth and metastasis by competitively binding to miR-374a and mini-chromosome maintenance complex component 2 (MCM2), which inhibited Wnt/β-catenin signaling and DNA replication. This finding could provide new insights into the mechanisms that prevent hepatocellular carcinoma in women. However, further studies will be worthy to be explored whether sex hormones are involved in the regulation of lnc-FTX in inhibiting hepatocellular carcinoma progression.²⁵⁴ Qu et al. found that circ-ASPH was widely expressed in glioma cells. The upregulation of circ-ASPH regulated AR expression in Glioma by targeting the miR-599/AR/SOCS2-AS1 signaling pathway, thus promoting glioma development. As a result, circ-ASPH may be a promising target for future glioma treatments.²⁵⁵ In summary, there are significant differences in the DNA methylation and demethylation expression of tumor-related genes between males and females. The key enzymes of DNA methylation, demethylation and histone modification, as well as non-coding RNAs, exist sex differences in multiple cancers regulation. Further study of epigenetic-related drugs based on the different characteristics of these genes expression in men and women, and then validation in clinical trials, which would have promising value for improving clinical cancer treatment and prognosis.

Clinical implications

Sex not only affects the incidence rate and mortality of different cancers, but also has obvious differences in the diseases treatment response and effect. Hormone replacement therapy and immunotherapy can also play different roles in tumor prevention due to sex differences. Sex differences could affect tumor drugs pharmacokinetics and their response to local treatments such as radiotherapy. Male and female wild-type mice were found to be less affected by paclitaxel induced neurotoxicity and radiation induced cardiac toxicity compared to male mice treated with paclitaxel.²⁵⁶ Female rats have a lower risk of adverse reactions such as vasculitis and pneumonia caused by radiation therapy.²⁵⁷ The mechanism may be that RhoB can reduce the sensitivity of female mouse hearts to radiation therapy and increase the radiation toxicity of male mice. Therefore, RhoB has a key value in promoting estrogen dependent cardiac protection in female mice.²⁵⁶

Radiation therapy usually used in patients undergoing breast-conserving therapy and regional lymph node involvement patients, which is essential to improve breast cancer survival. However, radiation to the heart from radiotherapy increased breast cancer-related cardiac insufficiency incidence and mortality. Radiation therapy can cause damage to heart tissue in as little as minutes. It is manifested in endothelial cell injury that aroused rapid recruitment of inflammatory cytokines (monocyte chemo-kines, tumor necrosis factor, and interleukin) and pro-fibrotic cytokines (platelet-derived growth factor, transforming growth factor β) in myocardial tissue, resulting in inflammatory response activation, promoting ROS production and increasing vascular permeability.²⁵⁸ In addition to serving as the second messenger signal in cells, ROS stimulated pro-fibrotic proteins, chemokines, cytokines expression in endothelial cells and participate in the MAPK and nuclear factor-κB (NF-κB) signaling pathway regulation.²⁵⁹ ROS can also cause mitochondrial calcium overload, cell

membrane swelling and apoptosis factors release, thus participating in chronic inflammatory damage.²⁶⁰ Radiation therapy can give rise to fibroblasts premature activation after only 3-4 cell division cycles. Meanwhile, the activity of these mitotic cells to produce interstitial collagen I, III, and IV was 25 to 26 times higher than normal.²⁶¹ These factors together increased myocardial fibrosis. Furthermore, radiation increased focal ischemia, oxidative stress, and DNA damage, which further interfered with the cardiomyocytes normal function and gave rise to cardiomyocytes apoptosis.^{262,263} These acute and chronic changes together resulted in cardiac function reduction and accelerated heart failure progression. Anthracyclines exert a critical role in breast cancer chemotherapy. Anthracycline-induced cardiotoxicity can occur through a variety of mechanisms. Increased oxidative stress and reactive oxygen species formation were thought to be the primary causes of heart failure. Anthracyclines can lower the levels of antioxidant enzymes GSH-Px and SOD in the myocardium, so that free radicals and superoxides cannot be removed in time, and thus damage cardiomyocytes. Anthracyclines generated free radicals via non-enzymatic pathways.²⁶⁴ Anthracyclines could also specifically bind to the phospholipid cardiolipin and accumulate within the mitochondria, disrupting the membrane and electron transport chains.²⁶⁵ Moreover, anthracyclines can interact directly with iron to form reactive iron complexes and contribute to iron cycling between divalent and trivalent, which has been linked to ROS production and iron homeostasis changes.²⁶⁶ These changes above accelerated heart failure progression. Trastuzumab prolonged metastatic HER2-positive breast cancer patients overall survival. However, it could also trigger heart failure. It was found that the cardiac dysfunction induced by trastuzumab was reversible, mainly manifested by cardiomyocyte hypertrophy, mild interstitial fibrosis, and focal vacuolar changes.²⁶⁷ Pathogenetic mechanisms were mainly caused by mitochondria and contractile proteins structural and functional changes, however, cardiomyocyte death was rare.²⁶⁸ Trastuzumab suppressed BCL-XL expression and up-regulated BCL-XS activity. BCLXL inhibited apoptosis, whereas BCL-XS promoted apoptosis. As a result, apoptosis imbalance activated the mitochondrial apoptotic pathway, causing mitochondrial dysfunction and cell death, which led to cardiac insufficiency.²⁶⁹ ErbB2 knocked out mice heart showed ventricular dilation and cardiac wall thinning.²⁷⁰ Trastuzumab can inhibit the neuregulin-1/ErbB2 axis to weaken myocardial repair mechanism and lead to myocardial injury.²⁷¹ Furthermore, preclinical data suggests that activating the HER2 signaling pathway reduced oxidative stress in cardiomyocytes. Trastuzumab inhibited the HER2 signaling pathway, thus giving rise to oxidative balance disruption and cardiovascular dysfunction.²⁷²

In recent years, estrogen replacement therapy has shown promising results in improving the prognosis of cancers such as liver, lung, and kidney cancer. Multiple clinical studies have observed that hormone replacement therapy during menopause reduced female hepatocellular carcinoma patients risk and prolonged their survival. Therefore, exploring drugs targeting the estrogen signaling pathway could have potential clinical significance for the treatment of liver cancer patients.^{273,274}

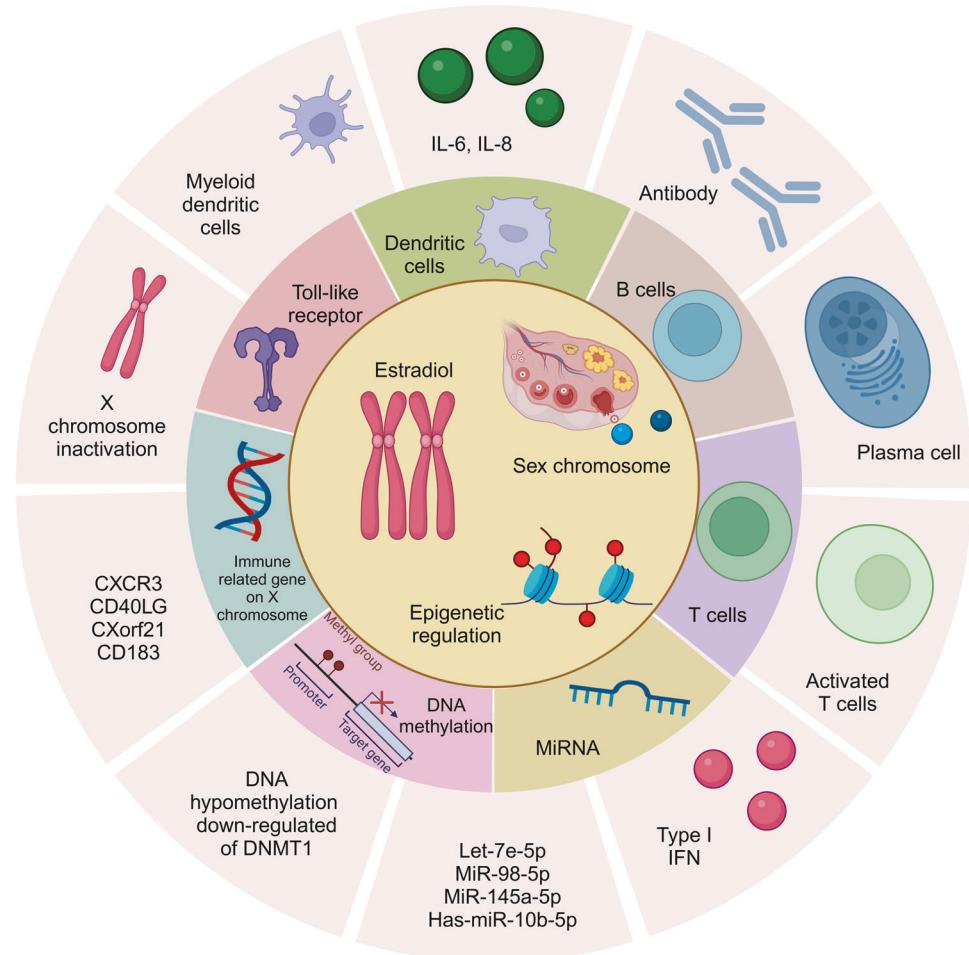
Estrogen is metabolized primarily by the liver. Therefore, its metabolites also have a certain impact on liver cancer cells proliferation. Study has shown that overexpression of the liver-specific cytochrome P450 1A2 (CYP1A2) promoted the conversion of E2 into the metabolite 2-methoxyestradiol (2-ME), decreased the vascular endothelial growth factor (VEGF) and Bcl-2 expression, which contributed to induce cell apoptosis, and alleviate liver cancer cells proliferation and progression.²⁷⁵ Sorafenib is the only effective first-line drug approved for the advanced hepatocellular carcinoma treatment, which participated in the anti-proliferation, anti-angiogenic and pro-apoptotic processes of liver cancer cells.²⁷⁶ Combining E2 with sorafenib can improve the therapeutic effect in patients with liver cancer cells.²⁷⁵ Stabile et al.

demonstrated that the combination of aromatase inhibitor anastrozole and nonsteroidal anti-inflammatory drug aspirin could significantly reduce lung tumors when compared to single drug therapy and that the mechanism of action was mainly to decrease lung cancer risk by inhibiting estrogen and COX2 activities, pro-inflammatory cytokines, and macrophage recruitment. It was particularly effective at preventing lung cancer in female ovariectomized mice and women with lung inflammation risk factors.²⁷⁷ Furthermore, anti-estrogen therapy or hormone replacement therapy can prevent lung cancer development by blocking ERs, making it particularly effective for lung cancer patients who express ERs.^{278,279} Previous studies and the latest meta-analysis have indicated that female hormone replacement therapy had a protective effect on gastric adenocarcinoma. Hormone replacement therapy can reduce gastric cancer risk by more than 28% compared to patients who did not receive it. Both estrogen therapy alone and estrogen-progesterone therapy decreased gastric cancer risk compared to non-users.^{280,281} In conclusion, it is necessary to carry out more estrogen replacement therapy clinical trials in different cancers male and female patients to find the more suitable population for the treatment, so as to better explore the application value and therapeutic effect of estrogen replacement therapy.

Drug therapy that targets androgens and their receptors has the potential to prevent glioblastoma and prostate cancer. AR antagonists enzalutamide and bicalutamide can not only promote cell death in glioblastoma, but enzalutamide can also alleviate glioblastoma volume and proliferation, thereby inhibiting glioblastoma progression. Therefore, AR antagonists could be regarded as promising drugs for clinical glioblastoma treatment.^{282,283} Orozco et al. discovered that dutasteride, cyproterone, and flutamide can significantly reduce glioblastoma cell proliferation and invasion. Moreover, the combination therapy of Dutamide and Fluticasone is the most effective strategy for inhibiting glioblastoma cell proliferation. Therefore, the study indicated that the synergistic treatment of AR antagonists and 5α-reductase inhibitors could be a more promising glioblastoma therapeutic strategy.²⁸⁴ Zalcman et al. demonstrated that afatinib, an EGFR kinase inhibitor, can block AR activation and nuclear translocation in glioblastoma cells. As a result, the combination of AR antagonists and EGFR kinase inhibitors was expected to be a more effective glioblastoma therapeutic method. In addition, natural compounds curcumin, ALZ 003, and Cedrol inhibited glioblastoma cells proliferation by blocking AR signaling, and could be used as new drugs for the future glioblastoma treatment, thus opening up new avenues for glioblastoma prevention.²⁸⁵⁻²⁸⁷ Study found that AR antagonists bicalutamide, cyproterone, enzalutamide, and flutamide participated in prostate cancer clinical treatment.^{283,284,288,289} Seviteronel, a selective CYP 17 lyase inhibitor and androgen receptor inhibitor had significant anti-tumor activity and had completed phase I and II clinical trials for prostate cancer patients.^{290,291}

Immune checkpoint blockade therapy, which includes the inhibition of programmed cell death 1 (PD-1) or ligand 1 (PD-L1) and cytotoxic T lymphocyte antigen-4 (CTLA-4), helps to extend various cancer lineages survival. The treatment efficacy of immune checkpoint blockade in tumor patients varies by sex and age.²⁹² Two systematic reviews and meta-analyses found that anti-PD-1/PD-L1 monotherapy was more effective in men, whereas the combination of anti-PD-1/PD-L1 chemotherapy was more beneficial to women with advanced lung cancer.²⁹³

At present, many drugs have important clinical significance in ovarian cancer treatment. Polyethylene glycol liposome doxorubicin (PLD) is a nano-doxorubicin anticancer agent. PLD can significantly reduce conventional doxorubicin's cardiotoxicity. Because of its significant anti-cancer efficacy and tolerability, the 2018 National Comprehensive Cancer Network Guidelines


recommended PLD as a first-line ovarian cancer chemotherapy drug. Clinical trials have also showed the significant clinical value of PLD combined with carboplatin as a first-line refractory recurrent ovarian cancer chemotherapy regimen.²⁹⁴ Kelm et al. found that Withaferin A treatment reduced plasma angiotensin II and angiotensin II type 1 receptor-induced inflammatory factors expression in tumor-bearing mice, decreased cardiac fibrosis, and enhanced cardiac function, suggesting that it could play a protective role in cardiac remodeling and dysfunction caused by ovarian cancer xenotransplantation.²⁹⁵ PDE10A is expressed in human tumor cell lines. Chen et al. found that PDE10A inhibition not only reduced ovarian cancer cells growth and induced cell apoptosis, but also enhanced the chemotherapy efficacy of doxorubicin (DOX) on ovarian cancer, preventing DOX induced cardiac toxicity and dysfunction. Inhibiting PDE10A alleviated cardiomyocytes DNA damage and mitochondrial dysfunction and improved DOX-induced cardiomyocyte death and cardiac fibrosis. PDE10A inhibition reduced DOX-induced myocardial atrophy in C57BL/6J mice by blocking cAMP/PKA (protein kinase A) and cGMP/PKG (protein kinase G) dependent signaling pathways. As a result, inhibiting PDE 10A might be deemed as a promising anticancer therapeutic strategy.²⁹⁶ Raab et al. revealed that a new selective SIK2 small molecule inhibitor, MRIA9, could enhance the sensitivity of ovarian cancer cells and patients to paclitaxel treatment. The study suggests that future development of inhibitors that selectively target SIK2 could contribute to prevent paclitaxel resistance in ovarian cancer patients, improving their prognosis.²⁹⁷

Together, these findings highlight that sex factors could need to be taken into account in clinical trials in order to better investigate sex differences in cancer management and treatment. Individualized therapeutic regimens based on sex differences in disease contribute to improve cancer patients' symptoms and prognosis.

SEX DIFFERENCES IN AUTOIMMUNE DISEASES

Introduction

Autoimmunity means the loss of self-tolerance to the state of immune response and autoantigen. The disease state result from autoimmunity that is called "autoimmune disease", which often leads to organ and tissue damage. Immune disease is the most common type of disease showing sex dimorphism. sex dimorphism in immune diseases affects not only the incidence of the disease but also in the course and severity of the disease.¹²³ Women account for approximately 78% of patients with autoimmune diseases, which is one of the main reasons of morbidity and mortality in senior female.²⁹⁸⁻³⁰⁰ Epidemiological studies have revealed that women were susceptible to have autoimmune diseases like systemic lupus erythematosus, Sjögren's syndrome, and multiple sclerosis. Women's susceptibility to autoimmune diseases may be caused by stronger congenital and adaptive immune responses, which is shown in that women have a lower incidence of severe infection and better response to vaccine antibodies than men.³⁰¹⁻³⁰³ As a chronic autoimmune disease, multiple sclerosis has been the culprit of neurological diseases in the younger, whose typical feature is the demyelinating lesions of the central nervous system.³⁰⁴ Multiple sclerosis is caused by an absence of self-tolerance to myelin and central nervous system antigens, which typically results in the continuous activation of autoreactive T lymphocytes.³⁰⁵ Furthermore, the pathological mechanism of multiple sclerosis disease is characterized as the disrupt communication between T cells, B cells, effectors, and regulatory subsets.³⁰⁶ Multiple sclerosis has a sex-related susceptibility, with women having a higher incidence than men, by a ratio of 2-3:1.³⁰⁷ In addition, a comparison of consecutive cross-sectional studies revealed that the proportion of women to men in multiple sclerosis cases increased gradually over time.³⁰⁸ Systemic lupus erythematosus is featured as

Fig. 4 The pathogenesis of sex-based autoimmune diseases. Estrogen, sex chromosomes and epigenetic regulation are the main causes of sex-related autoimmune disease. These factors can play a role by affecting B cells, T cells, dendritic cells, Toll-like receptors, related immune genes on X chromosome, DNA methylation and miRNA. Affecting B cells can make B cells mature and increase the secretion of plasma cells and antibodies. Estrogen also affects the activation of DC through TLR signal pathway. These factors can lead to the increase of inflammatory factors IL-6, IL-8 and type I interferon resulting in autoimmune activation. Related immune genes encoded by X chromosome, such as CXCR3, CD40LG, CXorf21, CD183, also play an important role in immune activation. In addition, due to the increase of X chromosome inactivation escape genes, the number of X chromosome may be an important reason for sex bias immune function. In epigenetic regulation, estrogen can lead to global DNA hypomethylation by down-regulating the expression of mRNA and protein in DNMT1. Therefore, the decrease of DNA methylation at X promoter site will lead to abnormal expression of X-linked genes. In addition, miRNA can play a role in autoimmune diseases in a sex-specific manner. Let-7e-5p, miR-98-5p, miR-145a-5p, has-miR-10b-5p can exert immune response by regulating the expression of inflammation-related genes such as IL-1 and IFN α . This figure was created with the aid of BioRender (<https://biorender.com/>). CD40LG Chemokine receptor 40 Ligand, CD183 Chemokine receptor 183, CXCR3 C-X-C motif chemokine receptor 3, CXorf21 Chromosome X open reading frame 21, DC Dendritic cells, DNMT DNA methyltransferase, IFN interferon, IL interleukin, TLR Toll-like receptor

abnormal immune activity caused by gene, epigenetic, and hormonal factors, but the exact pathogenesis is unknown.³⁰⁹ Systemic lupus erythematosus is more common in women, with a male-to-female ratio of 8:1 to 15:1.³¹⁰ The prevalence of systemic lupus erythematosus increased dramatically during the child-bearing, but decreased significantly before puberty and after menopause.³¹¹ Sjögren's syndrome is featured as lymphocyte infiltration of the exocrine glands. T and B cells were the most common infiltrating cells.^{312,313} Overactivation of B cells is regarded as the primary cause of primary Sjögren's syndrome.³¹³ Multiple studies suggested that effector T cells, particularly Th1, Th17, and follicular helper T cells (Tfh) participated in the primary Sjögren's syndrome development.³¹² Most of patients with systemic lupus erythematosus are between 40 and 50 years old, with a prevalence rate of 0.29%-0.77%. The elderly have a prevalence rate of 3%-4%, and 9 times higher in women than in man.³¹⁴

Mechanism

Autoimmune diseases, as one of the most common diseases showing sex dimorphism, need to be explored the mechanism of sex differences in autoimmune diseases. Currently, sex hormones, sex chromosomes, and epigenetic mechanisms play vital roles in sex-related autoimmune diseases.^{123,315-318} (Fig. 4)

Hormone regulation. The occurrence and function of congenital and adaptive immune responses is influenced by sex hormones, so the imbalance of sex hormones can lead to immune response disorders and autoimmune diseases.³¹⁹ Given the potential mechanism of immune response changes in women's preferences, estrogen is widely assumed to be the cause of autoimmune diseases. Thus, we concentrate on the function of estrogen in autoimmune diseases associated with sex. Mouse macrophages exposed to low levels of estradiol for 16 hours increased LPS-induced TNFA, interleukin-1, and interleukin-6 gene expression,

thus enhancing the proinflammatory ability of macrophages and monocytes.³²⁰ Similarly, low estradiol levels boost immunological response and interleukin-1 activity in male monocytes.³²¹ It has been demonstrated that estrogen promoted B cells maturation and stimulated antibodies secretion, increasing the number of bone marrow progenitor B cells and the survival rate of spleen B cells, thus speeding up the onset of autoimmune responses.³²² Furthermore, reduced estrogen levels can enhance type 1 helper T cells (TH1) immune response, whereas high levels of estrogen can boost type 2 helper T cell (TH2) cell and humoral immunity. Although autoreactive T and B lymphocytes are the focus of autoimmune diseases, numerous studies have shown that innate immune cells are crucial in the autoimmune diseases development.³²³ Dendritic cells (DC), especially plasma cell-like DC (pDC), are activated in autoimmune diseases. In systemic lupus erythematosus, autoantigens produced type I interferon (IFN) through the Toll-like receptor (TLR)-7 or TLR-9 pathway, which triggered autoimmune response.³²⁴ Hormone receptor gene expression analysis showed that the peripheral blood mononuclear cells of patients suffering from systemic lupus erythematosus exhibited an increase in the expression of ER α mRNA, while ER β expression decreased. Studies have shown that estrogen had distinct effects on the pathophysiology of systemic lupus erythematosus due to it regulated different ERs.³²⁵ ER α depletion weakened glomerulonephritis and anti-double stranded DNA (dsDNA) antibodies development and extended NZB × NZWF1 mice survival, while ER β deficiency did not affect lupus pathological feature.^{326,327} Activated ER β was found to bind directly to interleukin-17A and interleukin-21 genes promoters, upregulating interleukin-17 and interleukin-21 transcription levels and helper T cells (Th) 17 expression, which may lead to an increased autoimmune thyroiditis mice immune response.³²⁸ However, ER α signal transduction pathway had beneficial anti-inflammatory effects in arthritis and multiple sclerosis mouse models.^{328,329}

NKanda et al. showed that estradiol enhanced anti-dsDNA antibodies and IgG production in active systemic lupus erythematosus patients, accelerating systemic lupus erythematosus progression.³³⁰ In addition, study found that BALB/c lupus mice given E2 expressed the anti-DNA antibody transgene encodes H chain and gave rise to increased Bcl-2 expression, thereby improving autoimmune reactive B cells survival.^{331,332} E2 treatment promoted autoimmune reactive B cells survival and autoantibodies production by increasing B cell activating factor level in immune cells, thus promoting systemic lupus erythematosus pathogenesis.³³³ Studies have shown that calcineurin, a marker of T cell activation through ER, was expressed more strongly in T cells of female systemic lupus erythematosus patients treated with E2 compared to male. Similarly, ER α and ER β agonists could also increase calcineurin and CD154 level in systemic lupus erythematosus patients' T cells, resulting in T cell activation and enhancement of autoimmune response.^{334,335} Furthermore, E2 can stimulate T cells to express CD40 ligand in systemic lupus erythematosus patients, indicating that estrogen-dependent increase of CD40L expression can overstimulate systemic lupus erythematosus T cells and participate in the systemic lupus erythematosus occurrence.³³⁶ E2 treatment increased autoantibodies and TH2 cytokines levels in wild-type mice, which induced lupus phenotype, accelerated kidney damage and death.³³⁷ Several DC subsets expressed different ER patterns and affected ER α signal transduction.³²⁴ MHC-II and pDC-TREM regulated the type I IFN production and accelerated autoimmune response. E2 treatment enhanced the differentiation of MHC II and CD86 DC on cell surface, and increased interleukin-12, interleukin-18 and IFN- γ levels, thus promoting innate immune response.³³⁸ However, the differentiation of pDC and the endogenous expression of MHC-II and pDC-TREM decreased in ER α -deficient lupus susceptible mice, which inhibited the autoimmune reaction of ER α -deficient lupus

susceptible mice.³³⁹ E2 enhanced TLR-7 and TLR-9 dependent production of IFN- α in postmenopausal women pDC, thereby modulating pDCs innate function.³⁴⁰ Cunningham et al found that TLR-9 increased the expression of interleukin-6 and MCP-1 produced by DC in wild-type mice, however, decreased in ER α -KO mice. Study has indicated that ER α was related to TLR signal transduction. ER α deficiency can reduce the inflammatory response stimulated by TLR9, which in turn had a protective effect against autoimmune disease.³⁴¹ IFN- α had a variety of immunomodulatory effects and could exert noticeable impacts on systemic lupus erythematosus progress. Compared with healthy men, TLR-7-mediated IFN- α increased in peripheral blood lymphocytes of healthy women, resulting in an increased incidence of female systemic lupus erythematosus. Furthermore, TLR-7-mediated IFN- α secretion was enhanced by the delivery of recombinant IFN regulatory factor 5 (IRF5) protein into human pDC, whereas IRF5 mRNA expression and IFN- α production were reduced in pDC through ER gene knockout, resulting in a decreased autoimmune response.³⁴² Furthermore, studies have confirmed that estrogen increased STAT1 expression, thus inducing IFN-stimulated gene expression and up-regulating TLR-8 level, resulting in enhanced immune response.³⁴³ In summary, these data show that estrogen affects DC activation and IFN production through TLR signal pathway, thereby activating the immune response and contributing to autoimmune diseases occurrence. There are significant differences in adult women estrogen levels during puberty, pregnancy and menopause, but there is still a lack of relevant research and evidence. In the future, it is imperative to further investigate the effect of estrogen in sex-related autoimmune diseases during the puberty, pregnancy and menopause period. In addition, we suggest that human innate immune cells and sex hormones need to be comprehensively studied to understand accurately the role of specific hormones on their transcriptome, methylation group, chromatin landscape and immune function.

Sex chromosome. The difference in estrogen level can only to some extent explain the sex dimorphism of immune diseases because even in childhood or postmenopausal women with no difference in estrogen levels between sexes, sex bias in women with autoimmune diseases is often observed.³⁴⁴ These variations could be buried in sex chromosomes, which participated in different autoimmune response.^{345,346} The mouse model known as "tetranuclear genotype" (FCG) can be applied to isolate sex chromosomes and phenotypic effects induced by gonadal hormones.³⁴⁷ This separation eliminates the interference of sex hormone levels to study the effect of sex chromosomes on sex disparities in the disease. By comparing ovariectomized XX and XY – mice with castrated XXSry and XY–Sry mice, it was found that mice with XX sex chromosomes had increased double-stranded DNA autoantibody levels and immune cell activation, leading to increased susceptibility and severity of pristane-induced lupus in mice.^{346,348}

Klinefelter syndrome (XXY) has a 14-fold higher risk of systemic lupus erythematosus or Sjögren's syndrome than euploid women (XX), and Turner syndrome (X, O) has a lower systemic lupus erythematosus incidence than Klinefelter syndrome (XXY) patients.^{349–351} The X chromosome encoded 1100 annotated genes, the majority of which were unrelated to sex-related genes, whereas the Y chromosome contains a substantial amount of significant sex-specific genes involved in germ cell differentiation and masculinization.^{352,353} Uneven gene doses on chromosomes have different roles in regulating immune homeostasis and tolerance. Most of X chromosomes genes were related to the development of immune cells, congenital and adaptive immune responses.³⁵⁴ To sum up, the female X chromosome rich in immune-related genes may raise female autoimmunity susceptibility, especially systemic lupus erythematosus and Sjögren's

syndrome. In addition, there is obvious genetic inequality between females (XX) and males (XY). The X chromosome has three times the total DNA of the Y chromosome. The number of transcriptionally active genes in the X chromosome is more than 100 times that of the Y chromosome. To alleviate these inequalities, epigenetic silencing was randomly performed on X chromosomes from men or women through X chromosome inactivation (XCI) process in the early phase of embryogenesis.^{355,356} The assessment of human sex gene expression shows that about 20% of X-resident genes escape inactivation, leading to rich expression of active proteins in women and creating opportunities for autoimmune activation. Therefore, the increase in XCI escape genes may cause sex differences in immune function.^{357,358} To summarize, these findings support the link between sex chromosomes and autoimmune diseases development. It is not clear how the maintenance mechanism of XCI varies according to immune cells type and how they change with age. In addition, it is unclear how many X-inactivation-specific transcriptional interacting proteins function to maintain XCI in immune cells and, in turn, how they promote abnormal escape in specific women's preferred immunity. The solution of these problems is very important for us to understand the sex differences in immune diseases in precision medicine, and will ultimately provide key mechanism perceptions of the causes of women's susceptibility to autoimmune diseases.

Gene regulation. It has been demonstrated that immune genes on the X chromosome can avoid silence and participate in autoimmune diseases pathogenesis. CD40LG (CD154), encoded by the X chromosome, is primarily a type II transmembrane protein found on T helper cells. It bound to CD40, which was expressed in antigen-presenting cells and activated DC and B cells, causing pro-inflammatory responses. In DC, CD40LG helped to up-regulate additional stimulatory molecules level and promoted antigen cross-presentation, which drove CD4 and CD8T cell responses. In B cells, CD40LG was involved in driving the class switch of immunoglobulins, germinal center formation, and plasma cells activation and production.³⁵⁹ Compared with the healthy donor, CD40L was up-regulated in salivary and lacrimal glands of patients with Sjögren's syndrome, and enhanced adhesion molecule-intercellular adhesion molecule-1/CD54 expression, thus promoting autoimmune diseases occurrence.³⁶⁰ Meanwhile, CD40LG exhibited variable XCI escape in primary CD3T cells stimulated in vitro from healthy female donors and systemic lupus erythematosus patients, as well as abnormal overexpression in primary T cells from systemic lupus erythematosus and Sjögren's syndrome women, indicating that CD40LG encoded by the X chromosome was linked to autoimmune diseases development.³⁶¹⁻³⁶³ CD40L also participated in the pathogenesis of Sjögren's syndrome, and the fact that many female T cells express biallelic CD40L may explain sex differences.³⁶² Overexpression of CD40 led to high autoantibody titer and enhanced autoimmune response.^{364,365} Taken together, these findings highlighted the link between CD40LG escape, immune activation, and autoimmune diseases.³⁶⁶

Toll-like receptor (TLR) is a type I transmembrane protein that detects the molecular pattern of microbial or cell damage fragments, thereby triggering immune response. Abnormal signal transduction of TLR7 promoted systemic lupus erythematosus and Sjögren's syndrome pathophysiological processes. The increase in IFN- α expression caused by the TLR7 signal resulted in systemic lupus erythematosus occurrence, which was positively associated with disease activity.³⁶⁷ Furthermore, TLR7 mediated B cells activation and overexpression to promote autoantibodies level, which is closely related to systemic lupus erythematosus pathogenesis.³⁶⁸ The expression of TLR7 and inflammatory markers in salivary glands was markedly increased in primary Sjögren's syndrome patients and positively associated with the expression of TNF, LT- α , CXCL13 and CXCR5.³⁶⁹ TLR7 mainly

induced pDC to produce type I interferon and activated autoimmune reaction through interferon regulatory factor 7 (IRF7) transcription factors.^{370,371} TLR8 is another X-linked endonucleic acid receptor, which was abnormally increased in immune cells of female Sjögren's syndrome, accompanied by activation of type 1 IFN response, promoting inflammation and exacerbating Sjögren's syndrome occurrence.³⁷² Males had faster systemic lupus erythematosus disease progression and higher TLR7 and TLR8 expression as a result of TLR7 and TLR8 translocation from the X to Y chromosomes. The moderate increase of TLR7 promoted autoreactive lymphocytes and myelocytes proliferation, however, excess TLR7 increased acute inflammatory responses and the number of inflammatory associated dendritic cells, leading to autoimmune response activation.³⁷³⁻³⁷⁵ Similarly, compared with XY immune cells, TLR7 showed increased expression at transcriptional and proteome levels in XX and XXY, giving rise to significantly higher levels of IFN- α / β expression, thus resulting in sex differences of autoimmune responses activation.^{376,377} The escape of TLR7 and TLR8 alleles from immune cells in X chromosome silences may make women more susceptible to autoimmune diseases.

CXorf21, as an X-linked type 1 IFN response gene, may escape X chromosome inactivation in immune cells.³⁷⁸⁻³⁸⁰ Compared with men, CXorf21 was more expressed in women. CXorf21 knockdown decreased TLR7-induced IFNA1mRNA expression and TNF- α and interleukin-6 secretion, thereby reducing autoimmune reaction.³⁸¹ CXorf21 has been found in systemic lupus erythematosus and Sjögren's syndrome susceptibility genes through GWAS studies, and its level has been discovered related to disease activity.³⁸²⁻³⁸⁴ In addition, elevated levels of the CXorf21 gene in female monocyte, B cell and lymphoblastic cell lines compared to male led to increased susceptibility to female autoimmune diseases.^{385,386} Therefore, further studies on CXorf21 and TLR7 genes in the future will make the potential mechanism of sex differences in autoimmune diseases more clear.

C-X-C motif chemokine receptor 3 (CXCR3), as an X-linked gene, can exhibit XCI escape. CXCR3 is also a chemokine receptor that is mainly expressed on activated CD4 and CD8 T cells and serves an adaptive immune function.³⁸⁷ Compared to XY T cells expressing CXCR3, XX T cells had increased levels of CXCR3 and activated phenotype.³⁸⁸ In addition, CXCR3 expression in CD4T cells of systemic lupus erythematosus patients was higher in women.³⁸⁹ CXCR3 enrichment was also found in active lupus nephritis patients CD4T cells, suggesting a correlation between CXCR3 and systemic lupus erythematosus.³⁹⁰ Additionally, CXCR3 was overexpressed in Sjögren's syndrome patients salivary gland, and T cells infiltrate and accumulate in salivary gland, thereby accelerating Sjögren's syndrome occurrence and development.^{391,392} Taken together, CXCR3 participated in the development of autoimmune diseases based on sex differences. For years, when scientists tried to clarify sexism in nature, hormones played a central role, but the results were either uncertain or even contradictory. To fill this knowledge gap, the scientific community has highlighted the recognition of these key genes and their effector protein products, thus promoting women's susceptibility to autoimmune diseases.

Epigenetic modification. Some studies have found sex-specific transcriptome and methylation differences separated from X chromosome inactivation, implying that sexual dimorphism may influence autoimmune diseases progression via epigenetic mechanisms.

DNA methylation and demethylation participated in estrogen regulation of autoimmune diseases. In systemic lupus erythematosus and rheumatoid arthritis, increased DNA demethylation and ER α expression were observed in the proximal promoter region of ER α gene transcription site, suggesting that ER α overexpression may be associated with systemic lupus erythematosus and

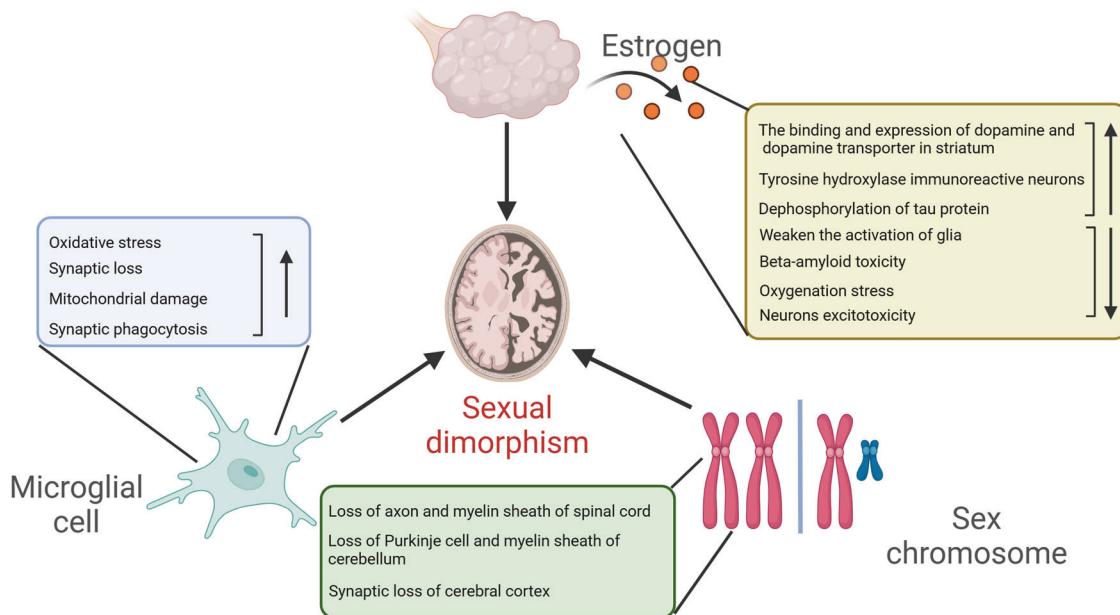
rheumatoid arthritis.³⁹³ In female systemic lupus erythematosus CD4+ T cells, estrogen down-regulated DNMT1 expression and enhanced the global DNA hypomethylation. ER antagonists saved DNMT1 and DNA hypomethylation down-regulated by estrogen, suggesting that estrogen seemed to play an important role in systemic lupus erythematosus development by regulating DNA hypomethylation.³⁹⁴ The decrease of DNA methylation at the X promoter site may lead to dose abnormality of X-linked genes in immune cells. The CD40LG promoter in CD4T cells from healthy men was unmethylated, whereas the CD40LG promoter in healthy women (XX) was partially methylated.³⁶¹ As a result, 5'azacytidine-induced demethylation promoted higher CD40LG expression in healthy female CD4T cells than in male, resulting in an elevated autoimmune response. Systemic lupus erythematosus is an epigenetic disease marked by DNA methylation damage in T cells. CD4 T cells in systemic lupus erythematosus patients exhibited female-specific CD40LG promoter hypomethylation, leading to elevated CD40LG expression and inflammatory responses activation, thereby accelerating lupus activity progression.³⁶¹ Taken together, demethylation of CD40LG may increase women's susceptibility to lupus. Similarly, in female patients with systemic sclerosis, overexpression of CD40LG transcripts and proteins in CD4T cells was linked to reduced DNA methylation in the CD40LG promoter and enhancer regions.³⁶³

MicroRNAs (miRNA) made a critical impact on autoimmune diseases based on sex difference. MiRNAs, such as miR106A and miR-17-92, regulated inflammation-related genes such as interleukin-1 and TNF- α , leading to immune responses. It has been found that the X chromosome contains nearly 800 miRNAs, which was approximately ten times more than the Y chromosome.³⁹⁵ Therefore, sex differences in X-linked and immunomodulatory related miRNA expression can be used to explain why women have a stronger immune system.^{396,397} MiR-17-92 cluster located on the X chromosome has been shown to be a crucial element in the maturation of B and T cells, engaged in autoimmunity activation process.^{398,399} In addition, miR106a on the X chromosome has been shown to down-regulate interleukin-10, thereby inhibiting inflammatory response. In addition, E2 increased the activation of IFN- α signal transduction in B cells by decreasing let-7e-5p, miR-98-5p and miR-145a-5p expression and regulating kappa B kinase ϵ (IKK ϵ) level in systemic lupus erythematosus.⁴⁰⁰ The expression of serine/arginine-rich splicing factor 1 (SRSF1) was decreased in systemic lupus erythematosus patients. Has-mir-10b-5p regulated SRSF1 transcription and down-regulated SRSF1 protein expression by inhibiting the 3'-UTR activity of SRSF1, resulting in T cell activity and enhanced autoimmunity.⁴⁰¹ The expression of has-miR-10b-5p in healthy women T cells was higher than that of healthy men, and the expression of has-miR-10b-5p in systemic lupus erythematosus patients T cells was also higher, resulting in immune response activation.⁴⁰¹ In conclusion, DNA methylation, demethylation, and miRNA regulation of immune response may help explain sex differences in autoimmune diseases. There are numerous differences between the immune responses of men and women. However, it is not until recent years that sex differences in the immune system have been properly recognized and studied. Considering the notable variations in immune response between the sexes, the importance of studying bisexual disease models is becoming more and more obvious.

Clinical implications

The treatment of autoimmune diseases has different effects in men and women. There are sex-specific variations in how cancer patients respond to bevacizumab and rheumatoid arthritis patients respond to glucocorticoids, indicating that the efficacy of women is better than that of men.^{402,403}

The main component of compound oral contraceptive (OCP) is 17 α -ethynodiol, which is a synthetic analog of natural


estrogen. However, considering the unpredictability and variability of systemic lupus erythematosus, it may not be safe for systemic lupus erythematosus patients to use OCP.^{404,405} Several studies revealed that patients exposed to OCP may develop systemic lupus erythematosus.^{404,406-409} However, two higher-quality randomized controlled trials (RCTs) found no correlation between OCP and systemic lupus erythematosus.^{410,411} A single-blind, non-placebo study found no significant difference in systemic lupus erythematosus disease activity, seizure incidence and time of first attack between groups receiving different types of contraceptive treatment, including OCP.⁴¹⁰ The second double-blind randomized controlled trial in the safety (SELENA) study included 183 systemic lupus erythematosus patients who were randomized to receive OCP or a placebo for a year. Study indicated that the incidence of systemic lupus erythematosus did not differ between the two groups.⁴¹¹ As a result, the World Health Organization suggests that if antiphospholipid antibodies were not present or cardiovascular risk factors were unknown, most female systemic lupus erythematosus patients can use OCP.⁴⁰⁴ Most notably, though, OCP is disabled in female systemic lupus erythematosus patients who have a history of thrombosis or who have positive or unknown antiphospholipid antibody.^{412,413} Depending on the type of hormone used, dosage, and length of use, OCP's impact and risk on systemic lupus erythematosus may change. Although it is theoretically feasible, OCP application should be fully discussed to balance each patient benefits and risks.

The best way to relieve menopausal symptoms is hormone replacement therapy.⁴¹⁴ Large prospective cohort studies reported a causal relationship between hormone replacement therapy and an increased risk of systemic lupus erythematosus in postmenopausal women.⁴¹⁵ Furthermore, Meier et al. found that a larger probability of developing systemic lupus erythematosus as the duration and cumulative dose of hormone use increased.^{416,417} According to several randomized controlled trials, hormone replacement therapy alone can not raise the risk of thrombosis or coronary heart disease in patients with inactive systemic lupus erythematosus who were antiphospholipid antibody negative and had no history of thrombosis.⁴¹⁸ However, most studies have found that hormone replacement therapy use in patients with active systemic lupus erythematosus may increase thrombotic events.^{419,420} In summary, hormone replacement therapy is not safe for systemic lupus erythematosus patients with antiphospholipid antibodies or previous vascular thrombosis events.⁴²⁰ Therefore, it is suggested that clinicians should formulate different treatment plans according to different sexes of patients, so as to better achieve the individualized treatment emphasized by precision medicine.³¹⁶ Taken together, sex is a particularly factor to be considered in the autoimmune diseases randomized controlled trials in the future. A comprehensive sex stratification model, including large forward-looking data sets with genetics, biomarkers and treatments, will generate significant value in public health, prognosis and precision medicine.

SEX DIFFERENCE IN NEURODEGENERATIVE DISEASES

Introduction

Neurodegenerative diseases of the central nervous system are a class of neurological diseases that cause the central nervous system to gradually lose its neurons, impacting millions of people's lives globally. It primarily encompasses Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, which have a significant impact and challenge for the public health system. Alzheimer's disease is the most prevalent neurodegenerative disease. Alzheimer's disease is distinguished by cognitive deterioration, memory loss, and loss of daily activity. Amyloid plaque and intracellular neurofibrillary tangle deposition are typical pathological and diagnosis features of Alzheimer's disease. Furthermore, these pathological changes can cause

Fig. 5 Mechanisms related to sex differences in neurodegenerative diseases: including estrogen, sex chromosomes and microglia. Compared with men, women have higher levels of estrogen. Estrogen can not only reduce the depletion of binding and expression of dopamine and dopamine transporter in the striatum, but also reduce the loss of tyrosine hydroxylase immunoreactive neurons and weaken glial activation. This effect makes estrogen play a protective role in Parkinson's syndrome. In addition, estrogen also plays a protective role in Alzheimer's disease. This is not only shown in that estrogen can not only induce dephosphorylation of tau protein and prevent hyperphosphorylation in its neurons, but also protect neurons from β -amyloid toxicity, oxidative stress and excitotoxicity. In addition, activation of gray matter microglia plays a key role in neurodegenerative diseases, which can not only lead to synaptic phagocytosis and synaptic loss, but also lead to oxidative stress and mitochondrial damage. The accumulation of brain-specific genes on the X chromosome in the sex chromosome puts them in a unique position that affects the response of the central nervous system to injury. X chromosome can cause the loss of axon and myelin sheath of spinal cord, Purkinje cell and myelin sheath of cerebellum and synapse loss of cerebral cortex. This figure was created with the aid of BioRender (<https://biorender.com/>)

neuronal apoptosis, cellular pathway damage, and a gradual decline in brain structure and function.^{421–423} The incidence of Alzheimer's disease is expected to triple by 2050.^{424–426} It is worth noting that the incidence of Alzheimer's disease in women is roughly double that of men, and that women's progresses faster, whereas the biological causes of these differences are still unknown.⁴²⁷ The second most prevalent neurodegenerative disease is Parkinson's disease, with an annual incidence of 0.014% in the general population and 0.16% among those aged 65 and older.⁴²⁸ Parkinson's disease is primarily characterized by stiffness, tremors, impaired balance and coordination, slow movement, and potentially loss of movement.⁴²⁹ The hallmarks of Parkinson's disease include the build-up of α -synuclein aggregates in intracellular pathways and the death of dopaminergic neurons in the substantia nigra.⁴³⁰ Parkinson's disease could be caused by oxidative stress, mitochondrial dysfunction, and elevated reactive oxygen species production, which could lead to neuronal loss, α -synuclein misfolding, and aggregation.^{431,432} Importantly, the risk of developing Parkinson's disease was 1.6–1.9 times higher in men than in women.⁴³³ Amyotrophic lateral sclerosis (ALS) is a rare disease whose incidence increases with age. The prevalence of ALS in men was higher than that in women, about 1.35 times higher.^{434,435} The primary characteristics of amyotrophic lateral sclerosis were progressive skeletal muscle weakness, muscle atrophy, muscle bundle fibrillation, medulla oblongata paralysis, and the pyramidal sign.

The aging brain is more susceptible to neurodegenerative diseases. Aging, as an important risk factor, affects men and women differently when it comes to NDs. Gur et al. discovered that the brain volume of the frontotemporal lobe was larger in males than in females using magnetic resonance imaging,⁴³⁶ whereas the distribution of brain atrophy in females was more

symmetrical.⁴³⁷ Notably, postmenopausal women showed accelerated brain volume loss.⁴³⁶ Male and female brain metabolism seemed to begin at the age of 60 and was common in the frontal lobe, temporal lobe and anterior cingulate gyrus. However, there are location differences between the sexes in the brain metabolism. Men have slower brain metabolism in the frontal lobe, caudate nucleus, and cingulate gyrus, whereas women have slower metabolism in the occipital lobe, thalamus, and cerebellum. Furthermore, a decline in brain metabolism was observed in men after the age of 70, but not in women.⁴³⁸ Female-specific risk factors for Alzheimer's disease include reproductive activity. In a population-based study, Jang et al. discovered that women with more than five pregnancies were more likely to develop Alzheimer's disease than those with fewer than five pregnancies or were not pregnant.⁴³⁹ Gilsanz et al. showed that earlier menopause increased dementia risk.⁴⁴⁰ These findings indicated that female reproductive behavior was strongly associated with the risk of developing Alzheimer's disease.

Mechanism

Sex differences in neurodegenerative diseases result in different risks and pathological manifestations, whereas the underlying mechanisms are not fully clarified. Sex hormones, sex chromosomes, and microglia participate in the regulation of neurodegenerative disease progression (Fig. 5).

Hormone regulation. Recent animal and human studies have provided additional evidence that Alzheimer's disease may be prevented by estrogen. Yue et al. found that estrogen-deficient APP23 transgenic mice had significantly lower brain estrogen levels and increased β -amyloid peptide deposition compare to APP23 transgenic mice. Study has indicated that brain estrogen

depletion may be a significant risk factor for the neuropathology of Alzheimer's disease.⁴⁴¹ It has been shown that estrogen can dephosphorylate tau protein and stop its neurons from becoming hyperphosphorylated, which delayed the onset of the brain degenerative changes linked to Alzheimer's disease.⁴⁴² In addition, estrogen enhanced Akt activation and induced the death signals GSK-3β and BAD phosphorylation and inactivation in neurons, thereby protecting neurons survival and reducing neurodegenerative diseases occurrence.⁴⁴³⁻⁴⁴⁵ Many studies revealed that estrogen had a protective effect against Alzheimer's disease by protecting neurons from amyloid beta toxicity,^{444,446,447} inhibiting oxidative stress,⁴⁴⁸⁻⁴⁵⁰ and alleviating neuronal excitatory toxicity induced by n-methyl-D-aspartate.^{451,452} Aromatase gene is an important gene for the synthesis of estrogen in vivo.⁴⁵³ Ishunina et al showed that the expression of ER α and aromatase in the hippocampus of women increased with age, while the expression of these genes decreased in women with Alzheimer's disease, leading to reduced brain estrogen production and increased risk of Alzheimer's disease.⁴⁵⁴ To summarize, estrogen plays a protective effect on the treatment of Alzheimer's disease, which warrants further investigation in the future.

Ragonese et al. confirmed that Parkinson's disease was related to the decrease of estrogen stimulation.⁴⁵⁵ Currie et al.⁴⁵⁶ also found that postmenopausal women who took estrogen supplements had a decreased likelihood of Parkinson's disease compared to those who did not.⁴⁵⁶ In addition, it has recently been shown that the single nucleotide polymorphism allele of the estrogen β receptor was more prevalent in patients with earlier occurrence of Parkinson's disease.⁴⁵⁷ Estrogen can prevent MPTP-induced depletion of dopamine expression and binding in the striatum, reduce the loss of tyrosine hydroxylase immunoreactive neurons, and weaken MPTP-induced glial activation.⁴⁵⁸⁻⁴⁶⁰ D'As-tous et al found that ER α agonist (PPT) reduced striatal dopamine depletion induced by MPTP, suggesting that ER α contributed to the neuroprotective effect of estrogen induced by MPTP.⁴⁶¹ Furthermore, it has been demonstrated that estrogen decreased MPTP-induced dyskinesia in monkeys.⁴⁶² Quesada et al. discovered that estrogen interacted with IGF-1 to protect dopaminergic neurons in the substantia nigra and striatum and maintain the motor function of animals with 6-hydroxydopaminergic lesions.⁴⁶³ Short-term estrogen therapy increased the availability of dopamine transporters in postmenopausal women's caudate putamen.⁴⁶⁴ In addition, estrogen inhibited the synthesis of free radicals and protected striatal neurons from oxidative stress, thereby reducing the occurrence of Parkinson's disease. Therefore, both animal and human studies have indicated that estrogen provided a positive regulatory effect on the dopaminergic system in the substantia nigra and striatum, which may be the basis of estrogen's protective role in Parkinson's disease. Collectively, these data are shown in that estrogen performed a variety of regulatory functions in synaptic plasticity, neuronal growth, memory formation and neuroprotection. Although the precise mechanism of estrogen's neuroprotective effect was unclear, it appeared to mediate the upregulation of growth factor production, synapses formation, and the activation of anti-inflammatory and antioxidant pathways. These results implied that neurodegenerative diseases treatment required an understanding of the interplay between genetic and hormonal regulation.

Sex chromosome regulation. Compared to different somatic tissues, the proportion of genes on the X chromosome was significantly higher than that on the autosomal chromosome, and they were expressed preferentially in the brain.⁴⁶⁵ In the evolution process, brain-specific genes accumulation on the X chromosome placed them in a special position that influenced how the central nervous system reacted to injury. In multiple sclerosis, activation, demyelination, axonal damage, and synaptic loss of microglia and

astrocytes were the central nervous system's responses to immune attacks.⁴⁶⁶ Trapp et al.⁴⁶⁷ showed experimental allergic encephalomyelitis (EAE) was an autoimmune disease mainly involved in specifically sensitized CD4 + T cells and characterized by mononuclear cell infiltration and demyelination around small blood vessels in the central nervous system. It is an ideal mice model for human multiple sclerosis. The FCG model was used to show the sex chromosome complement effect in the central nervous system during EAE.⁴⁶⁸ It was found that compared with XX, EAE mice with XY-sex chromosome complement in central nervous system showed more severe EAE, with pathological manifestations of axon and myelin loss in the spinal cord, purkinje cells and myelin loss in the cerebellum, and synaptic loss in the cerebral cortex. This is the first evidence of sex chromosomes' influence on neurodegenerative diseases. Human clinical observations also showed that Multiple sclerosis was more common in women (XX), whereas men (XY) had more serious disease progression.^{469,470} A β deposition is an essential component of pathological changes in Alzheimer's disease. APP influenced the A β synthesis because it was the upstream precursor protein of A β . SP can result from A β protein overexpression, which affected the development of Alzheimer's disease pathological process. In the Alzheimer's disease model of mice expressing human APP (hAPP), the FCG model showed that the mortality and cognitive impairment of mice with XY- sex chromosome complement were more serious than those of XX.⁴⁷¹ In humans, the genetic variant of KDM6A was expressed elevated in the brain and was linked to enhanced cognitive function in aging and preclinical Alzheimer's disease, which in turn improved human brain health. KDM6A is a histone demethylase gene that escapes X chromosome inactivation. Davis et al found that KDM6A knockdown in XX neurons aggravated amyloid beta-mediated neuronal toxicity. Therefore, the study indicated that KDM6A had a significant effect in the sex chromosome, helping to reduce mortality and prevent brain dysfunction in Alzheimer's disease.⁴⁷¹

Microglia cell and gene regulation. Microglia were activated in both white and gray matter and played a vital role in neurodegenerative diseases.⁴⁷²⁻⁴⁷⁴ Alzheimer's disease and brain aging pathophysiological process were involved with microglia activation.^{475,476} Among multiple sclerosis patients, men had more pathological magnetic resonance imaging markers than women in white matter lesions on magnetic resonance imaging, including a higher proportion of T1 "black holes" and increased longitudinal differences in measurements of demyelination and axonal integrity on diffusion tensor imaging.⁴⁷⁷ Microglia, the central nervous system's resident immune cells, can have both beneficial and harmful effects during normal and abnormal pathological status.^{478,479} Microglia were believed to be advantageous in the early stage of Alzheimer's disease and harmful in the later stage.^{480,481} Activated gray matter microglia can cause synaptic phagocytosis and loss.^{474,482} Apolipoprotein E genotype and sex are two recognized Alzheimer's disease risk factors for regulating microglial function. The study found that women with APOE4 carriers had increased affinity for pro-atherosclerotic associated lipoproteins, increased ROS production and tau accumulation, and decreased ability to clear A β , leading to the predisposition of APOE4 carriers to cardiovascular diseases and neurodegenerative diseases.⁴⁸³ By comparing the interaction between microglia and amyloid plaques in EFAD mice with APOE3 and APOE4 genotypes at 6 months, it was found that the microglia coverage of plaques was the highest in male APOE3 mice, while the highest amyloid level and low microglia coverage were shown in APOE4 genotypes and women. This suggested that APOE4 genotypes and women had an elevated risk of Alzheimer's disease.^{481,484} Furthermore, higher levels of A β aggregates may activate microglia, induce oxidative stress, mitochondrial damage, and synaptic loss, increasing the possibility of developing Alzheimer's disease.^{484,485}

As microglia were related to the numerous age-related neurodegenerative diseases pathogenesis of different sexes, everyone pays more and more attention to the regulation of sex differences in microglia throughout the life cycle. However, more researches were needed to determine the regulatory mechanisms that microglia-mediated sex effects throughout the life cycle. In short, the prevention and management of age-related brain diseases based on microglial responsiveness will become a promising treatment approach. In the future, microglia will be proved to be a potential target for regulating sex-specific inflammatory signal transduction. The identification of upstream regulatory mechanisms (hormones, chromosomes or their interactions) will guide the development of sex-specific treatment.

Clinical implications

With the aggravation of the aging of the population, neurodegenerative diseases have an increasing influence on human health. At the moment, the fact that sex disparities existed in the neurodegenerative diseases clinical management cannot be disregarded. Therefore, sex-specific treatment is critical for improving the prognosis of these diseases. Several disease improvement drugs for Alzheimer's disease are being studied worldwide, but only a few studies have conducted sex stratification analysis.⁴⁸⁶ Numerous scientific investigations have demonstrated that estrogen treatment can postpone the onset of Alzheimer's disease.⁴⁸⁷⁻⁴⁹³ The risk of Alzheimer's disease was estimated to be reduced by 29–44% as a result of estrogen therapy.^{490,491} Therefore, estrogen can be expected to become an important treatment for Alzheimer's disease, especially for estrogen deficiency in menopausal women or men may be better treatment. The study found that the use of nivaldipine alleviated the progression in patients with mild Alzheimer's disease when compared to placebo, however, the study did not include a statistical analysis of sex.⁴⁹⁴ Furthermore, women who took high-dose statins had a decreased risk of developing Alzheimer's disease, but not in black men. To summarize, statin use in Alzheimer's disease is influenced by sex and race/ethnicity.⁴⁹⁵ In a META study, Avgerinos et al. found that application of antibodies against A β in Alzheimer's disease did not show differences in sex and apoE genotype.⁴⁹⁶ The Multidomain Alzheimer's Prevention Trial and the Finnish Geriatric Intervention Study for the Prevention of Cognitive Impairment and Disability did not assess variations in outcomes based on sex.^{497,498} Therefore, the study of sex differences related to the treatment of Alzheimer's disease patients remains to be explored more widely.

Currently, there are no sex-specific treatment recommendations for Parkinson's patients.⁴⁹⁹ However, levodopa pharmacokinetics have been observed to differ by sex in some studies, with females exhibiting a markedly greater area under the curve and maximum plasma concentration in comparison to males. Only women can significantly predict curve and maximum plasma concentration, which may be connected with the higher bioavailability of levodopa in women.^{500,501} Sex differences in pharmacokinetics and pharmacodynamics often resulted in more frequent levodopa-induced dyskinesia in women, so women should consider low-dose levodopa therapy.⁵⁰² In addition, men may receive higher doses of levodopa for Parkinson's disease because of genetic mutations in coding enzymes and their involvement in dopamine metabolism.⁵⁰³ Deep brain stimulation (DBS) in the globus pallidus nucleus or subthalamic nucleus is more effective in treating late-stage Parkinson's disease with dyskinesia or drug intolerance.⁵⁰⁴ After DBS treatment, both men and women had the same improvement in the score of UPDRS-III withdrawal. Women improved more than men in daily life activities, and had a favorable impact on the comprehensive scores of motor ability, cognition and PDQ39, which were not shown in men.⁵⁰⁵ Similarly, Accolla et al estimated that one month before DBS and 11–14 months after DBS, the response of women with motor retardation

to DBS was lower than that of men, while women improved more in daily living activities after DBS.^{506,507} Therefore, DBS treatment may help to enhance Parkinson's disease patients' clinical prognosis, especially for female Parkinson's disease patients. However, there is no clear evidence of sex differences in the efficacy or side effects of anti-Parkinson's drugs, including levodopa. Data regarding sex variations in exercise and non-exercise outcomes following DBS were also lacked. Further study will be needed to explore how sex differences affect the drug response to Parkinson's disease. Therefore, it is necessary to broaden our comprehension of sex differences and to identify individuals at risk of Parkinson's disease early so as to ensure individualized treatment.

Amyotrophic lateral sclerosis is an incurable disease, with current treatments consisting of two disease palliative medications (riluzole and Edaravone) and supportive multidisciplinary therapy.^{508,509} In a clinical trial of sex hormone drugs, tamoxifen was found to be associated with a lower risk of ALS in women, while testosterone was associated with a higher risk.⁵¹⁰ Furthermore, Nefussy et al. discovered that statins caused faster progression in amyotrophic lateral sclerosis than in amyotrophic lateral sclerosis patients who did not take statins. Statins accelerated female amyotrophic lateral sclerosis progression compared to males.^{511,512} As a result, statins may be ineffective for treating amyotrophic lateral sclerosis patients.

In a word, basic and clinical research that incorporates sex differences into disease mechanisms can contribute to better identify causes and provide new therapies. Many current study results do not show sex differences in neurodegenerative diseases treatment regimens, resulting in limited meta-analyses. Women were underrepresented in basic and clinical trials, so many findings can not fully reflect the effect of sex on neurodegenerative disease pathogenesis and treatment. In addition, a variety of societal, economic, and biological factors also impeded research into sex disparities. In the future, these issues will be needed to receive more attention and solutions, and we hope to find out effective sex-specific treatment strategies in as many studies as possible.

CONCLUSION AND PERSPECTIVE

In summary, angiotensin receptor-neprilysin inhibitors, aldosterone receptor antagonists, sodium-glucose co-transporter 2 inhibitors, ivabradine, and soluble guanylate cyclase stimulators have not shown significant differences in treating cardiovascular dysfunction between men and women. Further large-scale clinical trials are needed to explore these aspects. However, the clinical applications of estrogen and androgen therapy, as well as novel oral antidiabetic drugs (GLP-1 receptor agonists, SGLT2 inhibitors), are crucial for regulating different sexes' glucose homeostasis and improving metabolic abnormalities. Hormone replacement therapy and immunotherapy may also play distinct roles in improving the prognosis of tumors such as liver cancer, lung cancer, and prostate cancer due to sex differences. PLD combined with carboplatin and selective inhibitors targeting PDE 10 A and SIK2 may offer promising treatment strategies for refractory recurrent ovarian cancer and other cancers. In the future, more drugs are expected to undergo extensive basic and clinical trials in different sexes to better identify effective treatment options, which are crucial for maintaining metabolic balance and inhibiting tumor progression. Among the sex differences observed in autoimmune diseases, women predominate in systemic lupus erythematosus and Sjogren's syndrome. The roles of estrogen, X chromosome, and epigenetic regulation, to a certain extent, contributes to women's susceptibility to autoimmune diseases, which provides new directions for clinical treatment strategies. At present, the application of OCP in the active phase of female autoimmune diseases still needs to be cautious, not only systemic lupus

erythematosus. Therefore, more valuable clinical studies deserve our implementation, and the specific mechanism of sex differences in autoimmune diseases also deserves our further attention and research. Additionally, increasing evidences suggest differences in the incidence and progression of neurodegenerative diseases between women and men. Here, we summarize the sex differences embodied in the mechanisms and treatments associated with estrogen, microglia, and sex chromosomes that cause neurodegenerative diseases. The impact of neurodegenerative diseases on the aging population is increasing. Undoubtedly, sex differences are of great significance to clinical research and practice. However, research on sex differences in neurodegenerative diseases is still relatively scarce, especially among women. In the future, sex should be considered as an important variable to study in the progression of neurodegenerative diseases.

In conclusion, there are unique characteristics in the epidemiology, etiology, pathophysiological manifestation, and treatment of patients with different diseases related to sex. Sex differences in human diseases are influenced by an individual's unique interaction of sex hormone status, sex chromosomes, and environment. Therefore, we should pay more attention to these factors and develop comprehensive management plans and prevention strategies based on their specificity to reduce the adverse effects of related risk factors on sex related diseases patients, thereby improving clinical diseases symptoms and prognosis. In the future, we hope to conduct larger-scale basic and clinical studies on sex differences in cardiovascular, metabolic, cancer, autoimmune, and neurodegenerative diseases. More representative women need to be included in clinical studies (phase I, II, and III) to observe the effects and differences in the efficacy and safety of drug therapy across sexes through analysis of outcomes between sexes and diseases. This contributes to further exploring and revealing various systemic diseases molecular mechanisms, as well as developing more precise individualized strategies for the prevention and treatment of sex-related diseases, which will better guide clinical treatment.

ACKNOWLEDGEMENTS

This work was supported by the National Key Research and Development Program (2020YFC2004405), National Natural Science Foundation of China (82330021, 82061160372, 82270771), Central Military Commission Key Project of Basic Research for Application (BWJ21J003), Regional Joint Funding Key Project of Guangdong Basic Research and Basic Research for Application (2021B1515120083), Shenzhen Science and Technology Program (KCFZ20211020163801002, ZDSYS20220606100801004, SGDX20230116092459009), Shenzhen Medical Research Fund (B2302020), and Shenzhen Key Medical Discipline Construction Fund (SZXK002), Futian District Public Health Scientific Research Project of Shenzhen (FTWS2022001), Chinese Association of Integrative Medicine-Shanghai Hutchison Pharmaceuticals Fund (HMP202202), China Heart House-Chinese Cardiovascular Association HX fund (2022-CCA-HX-090) to Hui Huang, National Natural Science Foundation of China (82073408) to JC.

AUTHOR CONTRIBUTIONS

Y.S., J.M., S.J.L., C.L., J.C., Y.L., S.M.L., N.L. and H.H. prepared the manuscript. Y.S. and J.M. wrote the main parts of the manuscript and made figures. C.L., S.J.L. and J.C. consulted and collected literatures. Y.L. finished drawing the table. S.M.L. and N.L. made editing to the manuscript. H.H. drafted the final version of the manuscript. All authors have read and approved the manuscript.

ADDITIONAL INFORMATION

Competing interests: The authors declare no competing interests.

REFERENCES

1. Mauvais-Jarvis, F. et al. Sex and gender: modifiers of health, disease, and medicine. *Lancet* **396**, 565–582 (2020).
2. Mitchell, J. E. et al. Thyroid function in heart failure and impact on mortality. *JACC Heart Fail* **1**, 48–55 (2013).
3. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J. Clin.* **68**, 394–424 (2018).
4. Oliva, M. et al. The impact of sex on gene expression across human tissues. *Science* **369**, eaba3066 (2020).
5. McDonagh, T. A. et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. *Eur. Heart J.* **42**, 3599–3726 (2021).
6. Virani, S. S. et al. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. *Circulation* **143**, e254–e743 (2021).
7. Lopes-Ramos, C. M. et al. Sex differences in gene expression and regulatory networks across 29 human tissues. *Cell Rep.* **31**, 107795 (2020).
8. Townsend, N. et al. Cardiovascular disease in Europe: epidemiological update 2016. *Eur. Heart J.* **37**, 3232–3245 (2016).
9. Ventura-Clapier, R. et al. Gender issues in cardiovascular diseases. Focus on energy metabolism. *Biochim. Biophys. Acta Mol. Basis. Dis.* **1866**, 165722 (2020).
10. Connolly, P. J. et al. Sex and gender aspects in vascular pathophysiology. *Clin. Sci.* **134**, 2203–2207 (2020).
11. Westerman, S. & Wenger, N. K. Women and heart disease, the underrecognized burden: sex differences, biases, and unmet clinical and research challenges. *Clin. Sci.* **130**, 551–563 (2016).
12. Lloyd-Jones, D. M. et al. Lifetime risk for developing congestive heart failure: the Framingham Heart Study. *Circulation* **106**, 3068–3072 (2002).
13. Virani, S. S. et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. *Circulation* **141**, e139–e596 (2020).
14. Hogg, K. et al. Heart failure with preserved left ventricular systolic function: epidemiology, clinical characteristics, and prognosis. *J. Am. Coll. Cardiol.* **43**, 317–327 (2004).
15. Peng, X. et al. Gender-specific prevalence and trend of heart failure in China from 1990 to 2019. *ESC. Heart Fail.* **10**, 1883–1895 (2023).
16. Turecamo, S. E. et al. Association of rurality with risk of heart failure. *JAMA Cardiol.* **8**, 231–239 (2023).
17. Mansur, A. P. et al. Sex differences in heart failure mortality with preserved, mildly reduced and reduced ejection fraction: a retrospective, single-center, large-cohort study. *Int J. Environ. Res Public Health* **19**, 16171 (2022).
18. Chouairi, F. et al. Trends and outcomes in cardiac arrest among heart failure admissions. *Am. J. Cardiol.* **194**, 93–101 (2023).
19. Dahl, P. et al. Thyrotoxic cardiac disease. *Curr. Heart Fail. Rep.* **5**, 170–176 (2008).
20. Udani, K. et al. Impact of hyperthyroidism on in-hospital outcomes of patients with heart failure. *J. Community Hosp. Intern. Med. Perspect.* **11**, 158–162 (2021).
21. Di Giovambattista, R. Hyperthyroidism as a reversible cause of right ventricular overload and congestive heart failure. *Cardiovasc. Ultrasound* **6**, 29 (2008).
22. Briller, J. E. et al. Pregnancy Associated Heart Failure With Preserved Ejection Fraction: Risk Factors and Maternal Morbidity. *J. Card. Fail.* **27**, 143–152 (2021).
23. Sliwa, K. et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of peripartum cardiomyopathy: a position statement from the Heart Failure Association of the European Society of Cardiology Working Group on peripartum cardiomyopathy. *Eur. J. Heart Fail.* **12**, 767–778 (2010).
24. Irizarry, O. C. et al. Comparison of clinical characteristics and outcomes of peripartum cardiomyopathy between African American and Non-African American Women. *JAMA Cardiol.* **2**, 1256–1260 (2017).
25. Ng, A. T. et al. Maternal and fetal outcomes in pregnant women with heart failure. *Heart* **104**, 1949–1954 (2018).
26. McNamara, D. M. et al. Clinical Outcomes for Peripartum Cardiomyopathy in North America: Results of the IPAC Study (Investigations of Pregnancy-Associated Cardiomyopathy). *J. Am. Coll. Cardiol.* **66**, 905–914 (2015).
27. Elkayam, U. et al. Maternal and fetal outcomes of subsequent pregnancies in women with peripartum cardiomyopathy. *N. Engl. J. Med.* **344**, 1567–1571 (2001).
28. Beale, A. L. et al. Sex differences in cardiovascular Pathophysiology: Why women are overrepresented in heart failure with preserved ejection fraction. *Circulation* **138**, 198–205 (2018).
29. Ebong, I. A. et al. Age at menopause and incident heart failure: the Multi-Ethnic Study of Atherosclerosis. *Menopause* **21**, 585–591 (2014).
30. Appiah, D. et al. Association of age at menopause with incident heart failure: a prospective cohort study and meta-analysis. *J. Am. Heart Assoc.* **5**, e003769 (2016).
31. Shin, J. et al. Age at menopause and risk of heart failure and atrial fibrillation: a nationwide cohort study. *Eur. Heart J.* **43**, 4148–4157 (2022).
32. Ebong, I. A. et al. Relationship between age at menopause, obesity, and incident heart failure: the atherosclerosis risk in communities study. *J. Am. Heart Assoc.* **11**, e024461 (2022).
33. Klein, I. & Ojamaa, K. Thyroid hormone and the cardiovascular system. *N. Engl. J. Med.* **344**, 501–509 (2001).
34. Kuzman, J. A. et al. Thyroid hormone activates Akt and prevents serum starvation-induced cell death in neonatal rat cardiomyocytes. *J. Mol. Cell. Cardiol.* **39**, 841–844 (2005).

35. Klein, I. & Danzi, S. Thyroid disease and the heart. *Curr. Probl. Cardiol.* **41**, 65–92 (2016).

36. Ripoli, A. et al. Does subclinical hypothyroidism affect cardiac pump performance? Evidence from a magnetic resonance imaging study. *J. Am. Coll. Cardiol.* **45**, 439–445 (2005).

37. Olivares, E. L. & Carvalho, D. P. Thyroid hormone metabolism in heart failure: iodothyronine deiodinases in focus. *Curr. Opin. Endocrinol. Diab. Obes.* **17**, 414–417 (2010).

38. Frey, A. et al. Prognostic impact of subclinical thyroid dysfunction in heart failure. *Int. J. Cardiol.* **168**, 300–305 (2013).

39. Chuang, C. P. et al. Impact of triiodothyronine and N-terminal pro-B-type natriuretic peptide on the long-term survival of critically ill patients with acute heart failure. *Am. J. Cardiol.* **113**, 845–850 (2014).

40. Hoes, M. F. et al. Pathophysiology and risk factors of peripartum cardiomyopathy. *Nat. Rev. Cardiol.* **19**, 555–565 (2022).

41. Morohoshi, K. et al. 16 kDa vasoinhibin binds to integrin alpha5 beta1 on endothelial cells to induce apoptosis. *Endocr. Connect.* **7**, 630–636 (2018).

42. Lee, H. et al. Inhibition of urokinase activity by the antiangiogenic factor 16K prolactin: activation of plasminogen activator inhibitor 1 expression. *Endocrinology* **139**, 3696–3703 (1998).

43. Gonzalez, C. et al. 16K-prolactin inhibits activation of endothelial nitric oxide synthase, intracellular calcium mobilization, and endothelium-dependent vasorelaxation. *Endocrinology* **145**, 5714–5722 (2004).

44. Patten, I. S. et al. Cardiac angiogenic imbalance leads to peripartum cardiomyopathy. *Nature* **485**, 333–338 (2012).

45. Tabruey, S. P. et al. The antiangiogenic factor 16K human prolactin induces caspase-dependent apoptosis by a mechanism that requires activation of nuclear factor-kappaB. *Mol. Endocrinol.* **17**, 1815–1823 (2003).

46. Yang, Y. et al. A microRNA links prolactin to peripartum cardiomyopathy. *J. Clin. Invest.* **123**, 1925–1927 (2013).

47. Ricke-Hoch, M. et al. Opposing roles of Akt and STAT3 in the protection of the maternal heart from peripartum stress. *Cardiovasc. Res.* **101**, 587–596 (2014).

48. Zouein, F. A. et al. STAT3 and endothelial Cell-Cardiomyocyte dialog in cardiac remodeling. *Front Cardiovasc. Med.* **6**, 50 (2019).

49. Shi, L. et al. β 1 adrenoceptor antibodies induce myocardial apoptosis via inhibiting PGC-1 α -related pathway. *BMC Cardiovasc. Disord.* **20**, 269 (2020).

50. Pedram, A. et al. Estrogen inhibits cardiac hypertrophy: role of estrogen receptor-beta to inhibit calcineurin. *Endocrinology* **149**, 3361–3369 (2008).

51. Mompeón, A. et al. Estradiol, acting through ER α , induces endothelial non-classic renin-angiotensin system increasing angiotensin 1-7 production. *Mol. Cell. Endocrinol.* **422**, 1–8 (2016).

52. Kim, J. K. et al. Estrogen prevents cardiomyocyte apoptosis through inhibition of reactive oxygen species and differential regulation of p38 kinase isoforms. *J. Biol. Chem.* **281**, 6760–6767 (2006).

53. Dworatzek, E. et al. Sex-specific regulation of collagen I and III expression by 17 β -Estradiol in cardiac fibroblasts: role of estrogen receptors. *Cardiovasc. Res.* **115**, 315–327 (2019).

54. Franssen, C. et al. Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. *JACC Heart Fail* **4**, 312–324 (2016).

55. Wang, M. et al. Estrogen receptor beta mediates acute myocardial protection following ischemia. *Surgery* **144**, 233–238 (2008).

56. Patten, R. D. et al. 17beta-estradiol reduces cardiomyocyte apoptosis in vivo and in vitro via activation of phospho-inositol-3 kinase/Akt signaling. *Circ. Res.* **95**, 692–699 (2004).

57. Babiker, F. A. et al. Estrogen receptor beta protects the murine heart against left ventricular hypertrophy. *Arterioscler. Thromb. Vasc. Biol.* **26**, 1524–1530 (2006).

58. Wu, C. H. et al. 17beta-estradiol reduces cardiac hypertrophy mediated through the up-regulation of PI3K/Akt and the suppression of calcineurin/NF-AT3 signaling pathways in rats. *Life Sciences* **78**, 347–356 (2005).

59. Jazbutyte, V. et al. Ligand-dependent activation of ER β lowers blood pressure and attenuates cardiac hypertrophy in ovariectomized spontaneously hypertensive rats. *Cardiovasc. Res.* **77**, 774–781 (2008).

60. Sebag, I. A. et al. Sex hormone control of left ventricular structure/function: mechanistic insights using echocardiography, expression, and DNA methylation analyses in adult mice. *Am. J. Physiol. Heart Circ. Physiol.* **301**, H1706–H1715 (2011).

61. Kunovac, A. et al. ROS promote epigenetic remodeling and cardiac dysfunction in offspring following maternal engineered nanomaterial (ENM) exposure. *Part. Fibre Toxicol.* **16**, 24 (2019).

62. Haddad, R. et al. Cardiac structure/function, protein expression, and DNA methylation are changed in adult female mice exposed to diethylstilbestrol in utero. *Can. J. Physiol. Pharmacol.* **91**, 741–749 (2013).

63. Sanchez, O. F. et al. Lead (Pb) exposure reduces global DNA methylation level by non-competitive inhibition and alteration of dnmt expression. *Metalomics* **9**, 149–160 (2017).

64. Schneider, J. S. et al. Influence of developmental lead exposure on expression of DNA methyltransferases and methyl cytosine-binding proteins in hippocampus. *Toxicol. Lett.* **217**, 75–81 (2013).

65. Silva, M. A. et al. Exposure to a Low Lead Concentration Impairs Contractile Machinery In Rat Cardiac Muscle. *Biol. Trace Elem. Res.* **167**, 280–287 (2015).

66. Ferreira da Mattos, G. et al. Lead poisoning: acute exposure of the heart to lead ions promotes changes in cardiac function and Cav1.2 ion channels. *Biophys. Rev.* **9**, 807–825 (2017).

67. Svoboda, L. K. et al. Sex-specific alterations in cardiac DNA methylation in adult mice by perinatal lead exposure. *Int. J. Environ. Res. Public Health* **18**, 577 (2021).

68. Zhang, S. et al. Prenatal EGCG exposure-induced heart mass reduction in adult male mice and underlying mechanisms. *Food Chem. Toxicol.* **157**, 112588 (2021).

69. Ouyang, L. et al. ALKBH1-demethylated DNA N6-methyladenine modification triggers vascular calcification via osteogenic reprogramming in chronic kidney disease. *J. Clin. Invest.* **131**, e146985 (2021).

70. Hanf, A. et al. The anti-cancer drug doxorubicin induces substantial epigenetic changes in cultured cardiomyocytes. *Chem. Biol. Interact.* **313**, 108834 (2019).

71. Miranda, J. B. et al. Set7 deletion prevents glucose intolerance and improves the recovery of cardiac function after ischemia and reperfusion in obese female mice. *Cell. Physiol. Biochem.* **56**, 293–309 (2022).

72. Arnold, A. P. X chromosome agents of sexual differentiation. *Nat. Rev. Endocrinol.* **18**, 574–583 (2022).

73. Warren, J. S. et al. Histone methyltransferase Smyd1 regulates mitochondrial energetics in the heart. *Proc. Natl Acad. Sci. USA.* **115**, E7871–E7880 (2018).

74. Oka, S. I. et al. Pern1 regulates cardiac energetics as a downstream target of the histone methyltransferase Smyd1. *PLoS ONE* **15**, e0234913 (2020).

75. Haberland, M. et al. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. *Nat. Rev. Genet.* **10**, 32–42 (2009).

76. van Rooij, E. et al. Myocyte enhancer factor 2 and class II histone deacetylases control a gender-specific pathway of cardioprotection mediated by the estrogen receptor. *Circ. Res.* **106**, 155–165 (2010).

77. Zhang, C. L. et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. *Cell* **110**, 479–488 (2002).

78. Prévilon, M. et al. Gender-specific potential inhibitory role of Ca2+/calmodulin dependent protein kinase phosphatase (CaMKP) in pressure-overloaded mouse heart. *PLoS ONE* **9**, e90822 (2014).

79. Ventura-Clapier, R. et al. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. *Cardiovasc. Res.* **79**, 208–217 (2008).

80. Garcia, M. M. et al. Methyl donor deficiency induces cardiomyopathy through altered methylation/acetylation of PGC-1 α by PRMT1 and SIRT1. *J. Pathol.* **225**, 324–335 (2011).

81. Hajizadeh, Z. & Khaksari, M. The protective effects of 17- β estradiol and SIRT1 against cardiac hypertrophy: a review. *Heart Fail. Rev.* **27**, 725–738 (2022).

82. Cappetta, D. et al. SIRT1 activation attenuates diastolic dysfunction by reducing cardiac fibrosis in a model of anthracycline cardiomyopathy. *Int. J. Cardiol.* **205**, 99–110 (2016).

83. Pillai, V. B. et al. Sirt3 protects mitochondrial DNA damage and blocks the development of doxorubicin-induced cardiomyopathy in mice. *Am. J. Physiol. Heart Circ. Physiol.* **310**, H962–H972 (2016).

84. Song, L. L. et al. Theacrine attenuates myocardial fibrosis after myocardial infarction via the SIRT3/ β -catenin/PPAR γ pathway in estrogen-deficient mice. *Eur. Rev. Med. Pharmacol. Sci.* **23**, 5477–5486 (2019).

85. Guo, Y. J. et al. Entanglement of GSK-3 β , β -catenin and TGF- β 1 signaling network to regulate myocardial fibrosis. *J. Mol. Cell. Cardiol.* **110**, 109–120 (2017).

86. Wang, L. et al. Rosuvastatin relieves myocardial ischemia/reperfusion injury by upregulating PPAR γ and UCP2. *Mol. Med. Rep.* **18**, 789–798 (2018).

87. Jamieson, K. L. et al. Age and sex differences in hearts of soluble Epoxide Hydrolase Null Mice. *Front Physiol.* **11**, 48 (2020).

88. Li, W. et al. SIRT6 protects vascular smooth muscle cells from osteogenic transdifferentiation via Runx2 in chronic kidney disease. *J. Clin. Invest.* **132**, e150051 (2022).

89. Li, X. et al. The transcription factor GATA6 accelerates vascular smooth muscle cell senescence-related arterial calcification by counteracting the role of anti-aging factor SIRT6 and impeding DNA damage repair. *Kidney Int.* **105**, 115–131 (2024).

90. Luo, D. et al. Capsaicin Attenuates Arterial Calcification Through Promoting SIRT6-Mediated Deacetylation and Degradation of Hif1 α (Hypoxic-Inducible Factor-1 Alpha). *Hypertension* **79**, 906–917 (2022).

91. Zhang, D. et al. Metabolic regulation of gene expression by histone lactylation. *Nature* **574**, 575–580 (2019).

92. Li, X. et al. Hypoxia regulates fibrosis-related genes via histone lactylation in the placentas of patients with preeclampsia. *J. Hypertens.* **40**, 1189–1198 (2022).

93. Tsai, F. C. et al. Gene expression changes of humans with primary mitral regurgitation and reduced left ventricular ejection fraction. *Int. J. Mol. Sci.* **22**, 3454 (2021).

94. Tsoutsman, T. et al. CCN2 plays a key role in extracellular matrix gene expression in severe hypertrophic cardiomyopathy and heart failure. *J. Mol. Cell. Cardiol.* **62**, 164–178 (2013).

95. Khan, S. S. et al. Identification of cardiac fibrosis in young adults with a homozygous frameshift variant in SERPINE1. *JAMA Cardiol.* **6**, 841–846 (2021).

96. García, R. et al. Sex-specific regulation of miR-29b in the myocardium under pressure overload is associated with differential molecular, structural and functional remodeling patterns in mice and patients with aortic stenosis. *Cells* **9**, 833 (2020).

97. Taqueti, V. R. et al. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. *Eur. Heart J.* **39**, 840–849 (2018).

98. Nelson, M. D. et al. Coronary microvascular dysfunction and heart failure with preserved ejection fraction as female-pattern cardiovascular disease: the chicken or the egg. *Eur. Heart J.* **39**, 850–852 (2018).

99. Florijn, B. W. et al. Sex-specific microRNAs in women with diabetes and left ventricular diastolic dysfunction or HFPeF associate with microvascular injury. *Sci. Rep.* **10**, 13945 (2020).

100. De Oliveira Silva, T. et al. The miRNA-143-3p-Sox6-Myh7 pathway is altered in obesogenic diet-induced cardiac hypertrophy. *Exp. Physiol.* **107**, 892–905 (2022).

101. Zhang, G. et al. Association of long-chain non-coding RNA MHRT gene single nucleotide polymorphism with risk and prognosis of chronic heart failure. *Medicine* **99**, e19703 (2020).

102. Meessen, J. et al. LIPCAR is increased in chronic symptomatic HF patients. A sub-study of the GISSI-HF trial. *Clin. Chem.* **67**, 1721–1731 (2021).

103. Zhuang, A. et al. Loss of the long non-coding RNA OIP5-AS1 exacerbates heart failure in a sex-specific manner. *iScience* **24**, 102537 (2021).

104. Zhang, M. et al. Integrated bioinformatics analysis for identifying key genes and pathways in female and male patients with dilated cardiomyopathy. *Sci. Rep.* **13**, 8977 (2023).

105. Hao, K. et al. LncRNA-Safe contributes to cardiac fibrosis through Safe-Sfrp2-HuR complex in mouse myocardial infarction. *Theranostics* **9**, 7282–7297 (2019).

106. Zhao, W. et al. LINC00707 inhibits myocardial fibrosis and immune disorder in rheumatic heart disease by regulating miR-145-5p/S1PR1. *Biotechnol. Genet. Eng. Rev.* **10**, 1–14 (2023).

107. Guo, M. et al. RASSF1-AS1, an antisense lncRNA of RASSF1A, inhibits the translation of RASSF1A to exacerbate cardiac fibrosis in mice. *Cell Biol. Int.* **43**, 1163–1173 (2019).

108. Regitz-Zagrosek, V. et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy. *Kardiol. Pol.* **77**, 245–326 (2019).

109. Karaye, K. M. et al. Peripartum Cardiomyopathy: A review article. *Int. J. Cardiol.* **40**, 104–113 (2023).

110. Bright, R. A. et al. Maternal heart failure. *J. Am. Heart Assoc.* **10**, e021019 (2021).

111. Sliwa, K. et al. The addition of pentoxyfylline to conventional therapy improves outcome in patients with peripartum cardiomyopathy. *Eur. J. Heart Fail.* **4**, 305–309 (2002).

112. Rossouw, J. E. et al. Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause. *JAMA* **297**, 1465–1477 (2007).

113. The 2022 hormone therapy position statement of The North American Menopause Society. *Menopause* **29**, 767–794 (2022).

114. Solomon, S. D. et al. Angiotensin-Neprilisatin inhibition in heart failure with preserved ejection fraction. *N. Engl. J. Med.* **381**, 1609–1620 (2019).

115. Ajam, T. et al. Effect of carvedilol vs metoprolol succinate on mortality in heart failure with reduced ejection fraction. *Am. Heart J.* **199**, 1–6 (2018).

116. Ahmad, J. et al. Women are underrepresented in cardiac resynchronization therapy trials. *J. Cardiovasc. Electrophysiol.* **33**, 2653–2657 (2022).

117. Tromp, J. et al. Global variations according to sex in patients hospitalized for heart failure in the REPORT-HF Registry. *JACC Heart Fail.* **11**, 1262–1271 (2023).

118. Wang, X. et al. Sex differences in clinical characteristics and outcomes after myocardial infarction with low ejection fraction: Insights From PARADISE-MI. *J. Am. Heart Assoc.* **12**, e028942 (2023).

119. Lam, C. et al. Age, sex, and outcomes in heart failure with reduced EF: Insights from the VICTORIA trial. *JACC Heart Fail.* **11**, 1246–1257 (2023).

120. Pabon, M. et al. Sex differences in heart failure with reduced ejection fraction in the GALACTIC-HF trial. *JACC Heart Fail.* **11**, 1729–1738 (2023).

121. Planells-Herrero, V. J. et al. Mechanistic and structural basis for activation of cardiac myosin force production by omecamtiv mecarbil. *Nat. Commun.* **8**, 190 (2017).

122. Gao, B. et al. Effects of omecamtiv mecarbil on calcium-transients and contractility in a translational canine myocyte model. *Pharmacol. Res. Perspect.* **8**, e00656 (2020).

123. Ober, C. et al. Sex-specific genetic architecture of human disease. *Nat. Rev. Genet.* **9**, 911–922 (2008).

124. Gerdts, E. & Regitz-Zagrosek, V. Sex differences in cardiometabolic disorders. *Nat. Med.* **25**, 1657–1666 (2019).

125. Campesi, I. et al. Sex-gender-related therapeutic approaches for cardiovascular complications associated with diabetes. *Pharmacol. Res.* **119**, 195–207 (2017).

126. Samuelsson, U. et al. Residual beta cell function at diagnosis of type 1 diabetes in children and adolescents varies with gender and season. *Diab. Metab. Res. Rev.* **29**, 85–89 (2013).

127. Martínez, D. et al. Oestrogen activity of the serum in adolescents with Type 1 diabetes. *Diabet. Med.* **33**, 1366–1373 (2016).

128. Ortiz-Huidobro, R. I. et al. Molecular insulin actions are sexually dimorphic in lipid metabolism. *Front Endocrinol.* **12**, 690484 (2021).

129. D'Souza, K. et al. Whey peptides stimulate differentiation and lipid metabolism in adipocytes and ameliorate lipotoxicity-induced insulin resistance in muscle cells. *Nutrients* **12**, 425 (2020).

130. Xu, G. X. et al. Activation of Kupffer cells in NAFLD and NASH: mechanisms and therapeutic interventions. *Front Cell Dev. Biol.* **11**, 1199519 (2023).

131. Oya, J. et al. Effects of age on insulin resistance and secretion in subjects without diabetes. *Intern. Med.* **53**, 941–947 (2014).

132. Liu, J. et al. Leptinemia and its association with stroke and coronary heart disease in the Jackson Heart Study. *Clin. Endocrinol.* **72**, 32–37 (2010).

133. Ai, M. et al. Adiponectin: an independent risk factor for coronary heart disease in men in the Framingham offspring Study. *Atherosclerosis* **217**, 543–548 (2011).

134. Ciarambino, T. et al. Gender differences in insulin resistance: new knowledge and perspectives. *Curr. Issues Mol. Biol.* **45**, 7845–7861 (2023).

135. Kautzky-Willer, A. et al. Sex and gender differences in risk, pathophysiology and complications of Type 2 Diabetes Mellitus. *Endocr. Rev.* **37**, 278–316 (2016).

136. De Paoli, M. et al. The role of Estrogen in insulin resistance: a review of clinical and preclinical data. *Am. J. Pathol.* **191**, 1490–1498 (2021).

137. Tiano, J. P. & Mauvais-Jarvis, F. Importance of oestrogen receptors to preserve functional β -cell mass in diabetes. *Nat. Rev. Endocrinol.* **8**, 342–351 (2012).

138. Sacharidou, A. et al. Endothelial ER α promotes glucose tolerance by enhancing endothelial insulin transport to skeletal muscle. *Nat. Commun.* **14**, 4989 (2023).

139. Bryzgalova, G. et al. Evidence that oestrogen receptor-alpha plays an important role in the regulation of glucose homeostasis in mice: insulin sensitivity in the liver. *Diabetologia* **49**, 588–597 (2006).

140. Vermeulen, A. et al. Testosterone, body composition and aging. *J. Endocrinol. Invest.* **22**, 110–116 (1999).

141. Yialamas, M. A. et al. Acute sex steroid withdrawal reduces insulin sensitivity in healthy men with idiopathic hypogonadotropic hypogonadism. *J. Clin. Endocrinol. Metab.* **92**, 4254–4259 (2007).

142. Lustig, R. H. et al. Obesity I: Overview and molecular and biochemical mechanisms. *Biochem. Pharmacol.* **199**, 115012 (2022).

143. Stanworth, R. & Jones, T. Testosterone in obesity, metabolic syndrome and type 2 diabetes. *Front Horm. Res.* **37**, 74–90 (2009).

144. Kupelian, V. et al. Inverse association of testosterone and the metabolic syndrome in men is consistent across race and ethnic groups. *J. Clin. Endocrinol. Metab.* **93**, 3403–3410 (2008).

145. Wang, C. et al. Low testosterone associated with obesity and the metabolic syndrome contributes to sexual dysfunction and cardiovascular disease risk in men with type 2 diabetes. *Diab. Care* **34**, 1669–1675 (2011).

146. Li, X. et al. Sex differences in the effect of Testosterone on Adipose tissue insulin resistance from overweight to obese adults. *J. Clin. Endocrinol. Metab.* **106**, 2252–2263 (2021).

147. Laaksonen, D. E. et al. Testosterone and sex hormone-binding globulin predict the metabolic syndrome and diabetes in middle-aged men. *Diab. Care* **27**, 1036–1041 (2004).

148. Muka, T. et al. Associations of steroid sex hormones and sex hormone-binding globulin with the risk of Type 2 diabetes in women: a population-based cohort study and meta-analysis. *Diabetes* **66**, 577–586 (2017).

149. Freire, M. B. et al. Gender-specific association of M235T polymorphism in angiotensinogen gene and diabetic nephropathy in NIDDM. *Hypertension* **31**, 896–899 (1998).

150. Möllsten, A. et al. A polymorphism in the angiotensin II type 1 receptor gene has different effects on the risk of diabetic nephropathy in men and women. *Mol. Genet. Metab.* **103**, 66–70 (2011).

151. Tien, K. J. et al. Gender-dependent effect of ACE I/D and AGT M235T polymorphisms on the progression of urinary albumin excretion in Taiwanese with type 2 diabetes. *Am. J. Nephrol.* **29**, 299–308 (2009).

152. Ziarniak, K. et al. DNA hypermethylation of Kiss1r promoter and reduction of hepatic Kiss1r in female rats with type 2 diabetes. *Epigenetics* **17**, 2332–2346 (2022).

153. Dudek, M. et al. Effects of high-fat diet-induced obesity and diabetes on Kiss1 and GPR54 expression in the hypothalamic-pituitary-gonadal (HPG) axis and peripheral organs (fat, pancreas and liver) in male rats. *Neuropeptides* **56**, 41–49 (2016).

154. Song, W. J. et al. Glucagon regulates hepatic kisspeptin to impair insulin secretion. *Cell Metab.* **19**, 667–681 (2014).

155. Ding, G. L. et al. Transgenerational glucose intolerance with Igf2/H19 epigenetic alterations in mouse islet induced by intrauterine hyperglycemia. *Diabetes* **61**, 1133–1142 (2012).

156. Ringström, C. et al. Apelin is a novel islet peptide. *Regul. Pept.* **162**, 44–51 (2010).

157. Hinoi, E. et al. An Osteoblast-dependent mechanism contributes to the leptin regulation of insulin secretion. *Ann. N. Y. Acad. Sci.* **1173**(Suppl 1), E20–E30 (2009).

158. Foti, D. et al. Lack of the architectural factor HMGA1 causes insulin resistance and diabetes in humans and mice. *Nat. Med.* **11**, 765–773 (2005).

159. Castagné, R. et al. Influence of sex and genetic variability on expression of X-linked genes in human monocytes. *Genomics* **98**, 320–326 (2011).

160. Reinius, B. et al. Abundance of female-biased and paucity of male-biased somatically expressed genes on the mouse X-chromosome. *BMC Genomics* **13**, 607 (2012).

161. Taniwaki, M. et al. Activation of KIF4A as a prognostic biomarker and therapeutic target for lung cancer. *Clin. Cancer Res.* **13**, 6624–6631 (2007).

162. Hellman, A. & Chess, A. Gene body-specific methylation on the active X chromosome. *Science* **315**, 1141–1143 (2007).

163. Kameswaran, V. et al. Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. *Cell Metab.* **19**, 135–145 (2014).

164. Hall, E. et al. Sex differences in the genome-wide DNA methylation pattern and impact on gene expression, microRNA levels and insulin secretion in human pancreatic islets. *Genome Biol.* **15**, 522 (2014).

165. López-Grueso, R. et al. Early, but not late onset estrogen replacement therapy prevents oxidative stress and metabolic alterations caused by ovariectomy. *Antioxid. Redox Signal.* **20**, 236–246 (2014).

166. Chen, X. et al. X and Y chromosome complement influence adiposity and metabolism in mice. *Endocrinology* **154**, 1092–1104 (2013).

167. Christakis, M. K. et al. The effect of menopause on metabolic syndrome: cross-sectional results from the Canadian Longitudinal Study on Aging. *Menopause* **27**, 999–1009 (2020).

168. Inada, A. et al. Adjusting the 17 β -Estradiol-to-Androgen Ratio Ameliorates Diabetic Nephropathy. *J. Am. Soc. Nephrol.* **27**, 3035–3050 (2016).

169. Manigrasso, M. B. et al. Inhibition of estradiol synthesis attenuates renal injury in male streptozotocin-induced diabetic rats. *Am. J. Physiol. Ren. Physiol.* **301**, F634–F640 (2011).

170. La Vignera, S. et al. Testosterone therapy improves the clinical response to conventional treatment for male patients with metabolic syndrome associated to late onset hypogonadism. *Minerva Endocrinol.* **33**, 159–167 (2008).

171. Saad, F. et al. A dose-response study of testosterone on sexual dysfunction and features of the metabolic syndrome using testosterone gel and parenteral testosterone undecanoate. *J. Androl.* **29**, 102–105 (2008).

172. Kalinchenko, S. Y. et al. Effects of testosterone supplementation on markers of the metabolic syndrome and inflammation in hypogonadal men with the metabolic syndrome: the double-blinded placebo-controlled Moscow study. *Clin. Endocrinol.* **73**, 602–612 (2010).

173. Saad, F. Androgen therapy in men with testosterone deficiency: can testosterone reduce the risk of cardiovascular disease. *Diab. Metab. Res. Rev.* **28**(Suppl 2), 52–59 (2012).

174. Smith, J. C. et al. The effects of induced hypogonadism on arterial stiffness, body composition, and metabolic parameters in males with prostate cancer. *J. Clin. Endocrinol. Metab.* **86**, 4261–4267 (2001).

175. Basaria, S. et al. Hyperglycemia and insulin resistance in men with prostate carcinoma who receive androgen-deprivation therapy. *Cancer* **106**, 581–588 (2006).

176. Saylor, P. J. & Smith, M. R. Metabolic complications of androgen deprivation therapy for prostate cancer. *J. Urol.* **181**, 1998–2006 (2009). discussion 2007–2008.

177. Keating, N. L. et al. Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. *J. Clin. Oncol.* **24**, 4448–4456 (2006).

178. Gunter, J. H. et al. New players for advanced prostate cancer and the rationalisation of insulin-sensitising medication. *Int. J. Cell Biol.* **2013**, 834684 (2013).

179. Conteduca, V. et al. Metabolic syndrome as a peculiar target for management of prostate cancer patients. *Clin. Genitourin. Cancer* **11**, 211–220 (2013).

180. Aroda, V. R. et al. The effect of lifestyle intervention and metformin on preventing or delaying diabetes among women with and without gestational diabetes: the Diabetes Prevention Program outcomes study 10-year follow-up. *J. Clin. Endocrinol. Metab.* **100**, 1646–1653 (2015).

181. Raparelli, V. et al. Sex differences in cardiovascular effectiveness of newer glucose-lowering drugs added to Metformin in Type 2 Diabetes Mellitus. *J. Am. Heart Assoc.* **9**, e012940 (2020).

182. Quan, H. et al. Gender-related different effects of a combined therapy of Exenatide and Metformin on overweight or obesity patients with type 2 diabetes mellitus. *J. Diab. Complicat.* **30**, 686–692 (2016).

183. Funk, K. L. et al. Gender disparities in time-to-initiation of cardioprotective glucose-lowering drugs in patients with type 2 diabetes and cardiovascular disease: a Danish nationwide cohort study. *Cardiovasc. Diabetol.* **21**, 279 (2022).

184. Eberly, L. A. et al. Association of race/ethnicity, gender, and socioeconomic status with Sodium-Glucose Cotransporter 2 inhibitor use among patients with diabetes in the US. *JAMA Netw. Open* **4**, e216139 (2021).

185. Rådholm, K. et al. Effects of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes in women versus men. *Diab. Obes. Metab.* **22**, 263–266 (2020).

186. Butler, J. et al. Effects of Empagliflozin in women and men with heart failure and preserved ejection fraction. *Circulation* **146**, 1046–1055 (2022).

187. Solomon, S. D. et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. *N. Engl. J. Med.* **387**, 1089–1098 (2022).

188. Villa, E. Role of estrogen in liver cancer. *Women's Health* **4**, 41–50 (2008).

189. Pynnard, T. et al. Rates and risk factors of liver fibrosis progression in patients with chronic hepatitis c. *J. Hepatol.* **34**, 730–739 (2001).

190. Tschopp, J. F. & Cregg, J. M. Heterologous gene expression in methylotrophic yeast. *Biotechnology* **18**, 305–322 (1991).

191. Chandanos, E. & Lagergren, J. Oestrogen and the enigmatic male predominance of gastric cancer. *Eur. J. Cancer* **44**, 2397–2403 (2008).

192. Ye, W. et al. Sex and race-related DNA methylation changes in hepatocellular carcinoma. *Int. J. Mol. Sci.* **22**, 3820 (2021).

193. Bolf, E. L. et al. A linkage between thyroid and breast cancer: a common etiology. *Cancer Epidemiol. Biomark. Prev.* **28**, 643–649 (2019).

194. Deng, L. et al. Inhibition of MTA1 by ERα contributes to protection hepatocellular carcinoma from tumor proliferation and metastasis. *J. Exp. Clin. Cancer Res.* **34**, 128 (2015).

195. Huang, F. Y. et al. Estradiol induces apoptosis via activation of miRNA-23a and p53: implication for gender difference in liver cancer development. *Oncotarget* **6**, 34941–34952 (2015).

196. Wei, Q. et al. E2-induced activation of the NLRP3 inflammasome triggers pyroptosis and inhibits autophagy in HCC Cells. *Oncol. Res.* **27**, 827–834 (2019).

197. Pok, S. et al. Testosterone regulation of cyclin E kinase: A key factor in determining gender differences in hepatocarcinogenesis. *J. Gastroenterol. Hepatol.* **31**, 1210–1219 (2016).

198. Hou, J. et al. Estrogen-sensitive PTPRO expression represses hepatocellular carcinoma progression by control of STAT3. *Hepatology* **57**, 678–688 (2013).

199. Rothenberger, N. J. et al. The role of the estrogen pathway in the tumor microenvironment. *Int. J. Mol. Sci.* **19**, 611 (2018).

200. Yang, W. et al. Estrogen represses hepatocellular carcinoma (HCC) growth via inhibiting alternative activation of tumor-associated macrophages (TAMs). *J. Biol. Chem.* **287**, 40140–40149 (2012).

201. Lee, S. et al. 17 β -estradiol exerts anticancer effects in anoikis-resistant hepatocellular carcinoma cell lines by targeting IL-6/STAT3 signaling. *Biochem. Biophys. Res. Commun.* **473**, 1247–1254 (2016).

202. Wilkins, H. R. et al. Estrogen prevents sustained COLO-205 human colon cancer cell growth by inducing apoptosis, decreasing c-myb protein, and decreasing transcription of the anti-apoptotic protein bcl-2. *Tumour Biol.* **31**, 16–22 (2010).

203. Son, H. J. et al. Effect of Estradiol in an Azoxymethane/Dextran sulfate sodium-treated mouse model of colorectal cancer: implication for sex difference in colorectal cancer development. *Cancer Res. Treat.* **51**, 632–648 (2019).

204. Yagi, K. Female hormones act as natural antioxidants—a survey of our research. *Acta Biochim. Pol.* **44**, 701–709 (1997).

205. Lacort, M. et al. Protective effect of estrogens and catecholestrogens against peroxidative membrane damage in vitro. *Lipids* **30**, 141–146 (1995).

206. Omoya, T. et al. Effects of idoxifene and estradiol on NF- κ B activation in cultured rat hepatocytes undergoing oxidative stress. *Liver* **21**, 183–191 (2001).

207. Inoue, H. et al. Idoxifene and estradiol enhance antiapoptotic activity through estrogen receptor-beta in cultured rat hepatocytes. *Dig. Dis. Sci.* **48**, 570–580 (2003).

208. Peired, A. J. et al. Sex and gender differences in kidney cancer: clinical and experimental evidence. *Cancers* **13**, 4588 (2021).

209. Huang, Q. et al. Androgen receptor increases hematogenous metastasis yet decreases lymphatic metastasis of renal cell carcinoma. *Nat. Commun.* **8**, 918 (2017).

210. He, D. et al. ASC-J9 suppresses renal cell carcinoma progression by targeting an androgen receptor-dependent HIF2 α /VEGF signaling pathway. *Cancer Res.* **74**, 4420–4430 (2014).

211. Zhai, W. et al. LncRNA-SARCC suppresses renal cell carcinoma (RCC) progression via altering the androgen receptor(AR)/miRNA-143-3p signals. *Cell Death Differ.* **24**, 1502–1517 (2017).

212. Wang, K. et al. Androgen receptor regulates ASS1P3/miR-34a-5p/ASS1 signaling to promote renal cell carcinoma cell growth. *Cell Death Dis.* **10**, 339 (2019).

213. Bai, J. Y. et al. HOTAIR and androgen receptor synergistically increase GLI2 transcription to promote tumor angiogenesis and cancer stemness in renal cell carcinoma. *Cancer Lett.* **498**, 70–79 (2021).

214. Gong, D. et al. Androgen receptor decreases renal cell carcinoma bone metastases via suppressing the osteolytic formation through altering a novel circEXOC7 regulatory axis. *Clin. Transl. Med.* **11**, e353 (2021).

215. Guan, X. et al. Androgen receptor activity in T cells limits checkpoint blockade efficacy. *Nature* **606**, 791–796 (2022).

216. Marks, P. et al. Female with bladder cancer: what and why is there a difference. *Transl. Androl. Urol.* **5**, 668–682 (2016).

217. Carrano, A. et al. Sex-specific differences in Glioblastoma. *Cells* **10**, 1783 (2021).

218. Yu, X. et al. Androgen receptor signaling regulates growth of glioblastoma multiforme in men. *Tumour Biol.* **36**, 967–972 (2015).

219. Bao, D. et al. Regulation of p53wt glioma cell proliferation by androgen receptor-mediated inhibition of small VCP/p97-interacting protein expression. *Oncotarget* **8**, 23142–23154 (2017).

220. Liu, B. et al. Interrogation of gender disparity uncovers androgen receptor as the transcriptional activator for oncogenic miR-125b in gastric cancer. *Cell Death Dis.* **12**, 441 (2021).

221. Antonarakis, E. S. AR signaling in human malignancies: prostate cancer and beyond. *Cancers* **10**, 22 (2018).

222. Bianchini, G. et al. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. *Nat. Rev. Clin. Oncol.* **13**, 674–690 (2016).

223. Kanda, T. et al. Androgen receptor could be a potential therapeutic target in patients with advanced hepatocellular carcinoma. *Cancers* **9**, 43 (2017).

224. Kono, M. et al. Androgen receptor function and androgen receptor-targeted therapies in breast cancer: a review. *JAMA Oncol.* **3**, 1266–1273 (2017).

225. Elattar, A. et al. Androgen receptor expression is a biological marker for androgen sensitivity in high grade serous epithelial ovarian cancer. *Gynecol. Oncol.* **124**, 142–147 (2012).

226. Dunford, A. et al. Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. *Nat. Genet.* **49**, 10–16 (2017).

227. Haupt, S. et al. Identification of cancer sex-disparity in the functional integrity of p53 and its X chromosome network. *Nat. Commun.* **10**, 5385 (2019).

228. Haupt, S. & Haupt, Y. Cancer and tumour suppressor p53 encounters at the juncture of sex disparity. *Front Genet* **12**, 632719 (2021).

229. Willis-Owen, S. et al. Y disruption, autosomal hypomethylation and poor male lung cancer survival. *Sci. Rep.* **11**, 12453 (2021).

230. Łysiak, M. et al. Deletions on Chromosome Y and downregulation of the SRY gene in tumor tissue are associated with worse survival of Glioblastoma patients. *Cancers* **13**, 1619 (2021).

231. Büscheck, F. et al. Y-chromosome loss is frequent in male renal tumors. *Ann. Transl. Med.* **9**, 209 (2021).

232. Lebedeva, M. A. et al. Loss of p53 causes mitochondrial DNA depletion and altered mitochondrial reactive oxygen species homeostasis. *Biochim. Biophys. Acta* **1787**, 328–334 (2009).

233. Liu, J. et al. Tumor suppressor p53 and metabolism. *J. Mol. Cell Biol.* **11**, 284–292 (2019).

234. Beekman, M. et al. The costs of being male: are there sex-specific effects of uniparental mitochondrial inheritance. *Philos. Trans. R. Soc. Lond. B. Biol. Sci.* **369**, 20130440 (2014).

235. Minner, S. et al. Y chromosome loss is a frequent early event in urothelial bladder cancer. *Pathology* **42**, 356–359 (2010).

236. Dumanski, J. P. et al. Mutagenesis. Smoking is associated with mosaic loss of chromosome Y. *Science* **347**, 81–83 (2015).

237. Choi, J. et al. Influence of location-dependent sex difference on PD-L1, MMR/MSI, and EGFR in colorectal carcinogenesis. *PLoS ONE* **18**, e0282017 (2023).

238. Khan, M. T. et al. Identification of gender-specific molecular differences in Glioblastoma (GBM) and Low-Grade Glioma (LGG) by the analysis of large transcriptomic and epigenomic datasets. *Front Oncol.* **11**, 699594 (2021).

239. Kaneko, S. & Li, X. Y chromosome protects against bladder cancer in females via a KDM6A-dependent epigenetic mechanism. *Sci. Adv.* **4**, eaar5598 (2018).

240. Matei, D. E. & Nephew, K. P. Epigenetic therapies for chemoresensitization of epithelial ovarian cancer. *Gynecol. Oncol.* **116**, 195–201 (2010).

241. Sheng, Q. & Liu, J. The therapeutic potential of targeting the EGFR family in epithelial ovarian cancer. *Br. J. Cancer* **104**, 1241–1245 (2011).

242. Fang, F. et al. A phase 1 and pharmacodynamic study of decitabine in combination with carboplatin in patients with recurrent, platinum-resistant, epithelial ovarian cancer. *Cancer* **116**, 4043–4053 (2010).

243. Samudio-Ruiz, S. L. & Hudson, L. G. Increased DNA methyltransferase activity and DNA methylation following Epidermal Growth Factor stimulation in ovarian cancer cells. *Epigenetics* **7**, 216–224 (2012).

244. Shen, X. et al. KDM5D inhibit epithelial-mesenchymal transition of gastric cancer through demethylation in the promoter of Cul4A in male. *J. Cell. Biochem.* **120**, 12247–12258 (2019).

245. Van der Meulen, J. et al. The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. *Blood* **125**, 13–21 (2015).

246. Xu, F. et al. Deubiquitinase OTUB1 regulates doxorubicin-induced cardiotoxicity via deubiquitinating c-MYC. *Cell. Signal.* **113**, 110937 (2024).

247. Zhao, J. et al. SIK2 enhances synthesis of fatty acid and cholesterol in ovarian cancer cells and tumor growth through PI3K/Akt signaling pathway. *Cell Death Dis.* **11**, 25 (2020).

248. Miranda, F. et al. Salt-Inducible Kinase 2 couples ovarian cancer cell metabolism with survival at the Adipocyte-Rich metastatic niche. *Cancer Cell* **30**, 273–289 (2016).

249. Sun, Z. et al. The potent roles of salt-inducible kinases (SIKs) in metabolic homeostasis and tumorigenesis. *Signal Transduct. Target Ther.* **5**, 150 (2020).

250. Li, C. L. et al. Elevated p53 promotes the processing of miR-18a to decrease estrogen receptor- α in female hepatocellular carcinoma. *Int. J. Cancer* **136**, 761–770 (2015).

251. Di Leva, G. et al. MicroRNA cluster 221-222 and estrogen receptor alpha interactions in breast cancer. *J. Natl Cancer Inst.* **102**, 706–721 (2010).

252. Iorio, M. V. et al. MicroRNA signatures in human ovarian cancer. *Cancer Res.* **67**, 8699–8707 (2007).

253. Tang, X. et al. miR-423-5p serves as a diagnostic indicator and inhibits the proliferation and invasion of ovarian cancer. *Exp. Ther. Med.* **15**, 4723–4730 (2018).

254. Liu, F. et al. Long noncoding RNA FTX inhibits hepatocellular carcinoma proliferation and metastasis by binding MCM2 and miR-374a. *Oncogene* **35**, 5422–5434 (2016).

255. Qu, Y. et al. Upregulation of circ-ASPH contributes to glioma cell proliferation and aggressiveness by targeting the miR-599/AR/SOCS2-AS1 signaling pathway. *Oncol. Lett.* **21**, 388 (2021).

256. Chmielewski-Stivers, N. et al. Sex-specific differences in toxicity following systemic paclitaxel treatment and localized cardiac radiotherapy. *Cancers* **13**, 3973 (2021).

257. De Courcy, L. et al. Gender-dependent radiotherapy: The next step in personalised medicine. *Crit. Rev. Oncol. Hematol.* **147**, 102881 (2020).

258. Yarnold, J. & Brotons, M. C. Pathogenetic mechanisms in radiation fibrosis. *Radiat. Oncol.* **97**, 149–161 (2010).

259. Weintraub, N. L. et al. Understanding radiation-induced vascular disease. *J. Am. Coll. Cardiol.* **55**, 1237–1239 (2010).

260. Wang, H. et al. Radiation-induced heart disease: a review of classification, mechanism and prevention. *Int. J. Biol. Sci.* **15**, 2128–2138 (2019).

261. Taunk, N. K. et al. Radiation-induced heart disease: pathologic abnormalities and putative mechanisms. *Front Oncol.* **5**, 39 (2015).

262. Saiki, H. et al. Risk of heart failure with preserved ejection fraction in older women after contemporary radiotherapy for breast cancer. *Circulation* **135**, 1388–1396 (2017).

263. Li, B. et al. Adropin improves radiation-induced myocardial injury via VEGFR2/PI3K/Akt pathway. *Oxid. Med Cell Longev.* **2022**, 8230214 (2022).

264. Zagar, T. M. et al. Breast cancer therapy-associated cardiovascular disease. *Nat. Rev. Clin. Oncol.* **13**, 172–184 (2016).

265. Sarvazyan, N. Visualization of doxorubicin-induced oxidative stress in isolated cardiac myocytes. *Am. J. Physiol.* **271**, H2079–H2085 (1996).

266. Murabito, A. et al. Mechanisms of Anthracycline-induced cardiotoxicity: is mitochondrial dysfunction the answer. *Front Cardiovasc. Med.* **7**, 35 (2020).

267. Ewer, M. S. et al. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. *J. Clin. Oncol.* **23**, 7820–7826 (2005).

268. Bergler-Klein, J. et al. Cardio-oncology in Austria: cardiotoxicity and surveillance of anti-cancer therapies: Position paper of the Heart Failure Working Group of the Austrian Society of Cardiology. *Wien. Klin. Wochenschr.* **134**, 654–674 (2022).

269. Force, T. et al. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. *Nat. Rev. Cancer* **7**, 332–344 (2007).

270. Crone, S. A. et al. ErbB2 is essential in the prevention of dilated cardiomyopathy. *Nat. Med.* **8**, 459–465 (2002).

271. Chien, K. R. Herceptin and the heart—a molecular modifier of cardiac failure. *N. Engl. J. Med.* **354**, 789–790 (2006).

272. Harbeck, N. et al. Cardiovascular complications of conventional and targeted adjuvant breast cancer therapy. *Ann. Oncol.* **22**, 1250–1258 (2011).

273. Stephanova, D. et al. Extracellular potentials of a single myelinated nerve fiber in an unbounded volume conductor. *Biol. Cybern.* **61**, 205–210 (1989).

274. Hassan, M. M. et al. Estrogen replacement reduces risk and increases survival times of women with hepatocellular carcinoma. *Clin. Gastroenterol. Hepatol.* **15**, 1791–1799 (2017).

275. Ren, J. et al. Cytochrome P450 1A2 Metabolizes 17 β -Estradiol to suppress hepatocellular carcinoma. *PLoS ONE* **11**, e0153863 (2016).

276. Méndez-Blanco, C. et al. Sorafenib resistance in hepatocarcinoma: role of hypoxia-inducible factors. *Exp. Mol. Med.* **50**, 1–9 (2018).

277. Stabile, L. P. et al. Preclinical evidence for combined use of aromatase inhibitors and NSAIDs as preventive agents of tobacco-induced lung cancer. *J. Thorac. Oncol.* **13**, 399–412 (2018).

278. Bouchardy, C. et al. Lung cancer mortality risk among breast cancer patients treated with anti-estrogens. *Cancer* **117**, 1288–1295 (2011).

279. Schwartz, A. G. et al. Reproductive factors, hormone use, estrogen receptor expression and risk of non small-cell lung cancer in women. *J. Clin. Oncol.* **25**, 5785–5792 (2007).

280. Lindblad, M. et al. Hormone replacement therapy and risks of oesophageal and gastric adenocarcinomas. *Br. J. Cancer* **94**, 136–141 (2006).

281. Jang, Y. C. et al. Association of hormone replacement therapy with risk of gastric cancer: a systematic review and meta-analysis. *Sci. Rep.* **12**, 12997 (2022).

282. Zalcman, N. et al. Androgen receptor: a potential therapeutic target for glioblastoma. *Oncotarget* **9**, 19980–19993 (2018).

283. Zhao, N. et al. Androgen receptor, although not a specific marker for, is a novel target to suppress glioma stem cells as a therapeutic strategy for Glioblastoma. *Front. Oncol.* **11**, 616625 (2021).

284. Orozco, M. et al. Dutasteride combined with androgen receptor antagonists inhibit glioblastoma U87 cell metabolism, proliferation, and invasion capacity: Androgen regulation. *Steroids* **164**, 108733 (2020).

285. Hesari, A. et al. Effect of curcumin on glioblastoma cells. *J. Cell. Physiol.* **234**, 10281–10288 (2019).

286. Chen, T. C. et al. AR ubiquitination induced by the curcumin analog suppresses growth of temozolamide-resistant glioblastoma through disrupting GPX4-Mediated redox homeostasis. *Redox Biol.* **30**, 101413 (2020).

287. Chang, K. F. et al. Cedrol suppresses glioblastoma progression by triggering DNA damage and blocking nuclear translocation of the androgen receptor. *Cancer Lett.* **495**, 180–190 (2020).

288. Mamadilov, A. M. Correlation of clinical signs with the outcome of craniocerebral trauma. *Zh. Nevropatol. Psichiatr. Im. S S Korsakova* **88**, 129–133 (1988).

289. Zalcman, N. et al. Androgen receptor activation in glioblastoma can be achieved by ligand-independent signaling through EGFR-A potential therapeutic target. *Int. J. Mol. Sci.* **22**, 10954 (2021).

290. Gupta, S. et al. Phase I Study of Seviteronel, a Selective CYP17 Lyase and Androgen receptor inhibitor, in Men With Castration-resistant Prostate Cancer. *Clin. Cancer Res.* **24**, 5225–5232 (2018).

291. Madan, R. A. et al. Phase 2 Study of Seviteronel (INO-464) in patients with metastatic castration-resistant prostate cancer after Enzalutamide Treatment. *Clin. Genitourin. Cancer* **18**, 258–267.e1 (2020).

292. Ma, J. et al. Advances in sex disparities for cancer immunotherapy: unveiling the dilemma of Yin and Yang. *Biol. Sex. Differ.* **13**, 58 (2022).

293. Conforti, F. et al. Sex-based heterogeneity in response to lung cancer immunotherapy: a systematic review and meta-analysis. *J. Natl Cancer Inst.* **111**, 772–781 (2019).

294. Li, X. R. et al. Cardiac safety analysis of first-line chemotherapy drug pegylated liposomal doxorubicin in ovarian cancer. *J. Ovarian. Res.* **15**, 96 (2022).

295. Kelm, N. Q. et al. Withaferin A attenuates ovarian cancer-induced cardiac cachexia. *PLoS ONE* **15**, e0236680 (2020).

296. Chen, S. et al. PDE10A inactivation prevents Doxorubicin-induced cardiotoxicity and tumor growth. *Circ. Res.* **133**, 138–157 (2023).

297. Raab, M. et al. The small-molecule inhibitor MRIA9 reveals novel insights into the cell cycle roles of SIK2 in ovarian cancer cells. *Cancers* **13**, 3658 (2021).

298. Jacobson, D. L. et al. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. *Clin. Immunol. Immunopathol.* **84**, 223–243 (1997).

299. Al Maini, M. et al. The global challenges and opportunities in the practice of rheumatology: white paper by the World Forum on Rheumatic and Musculoskeletal Diseases. *Clin. Rheumatol.* **34**, 819–829 (2015).

300. Walsh, S. J. & Rau, L. M. Autoimmune diseases: a leading cause of death among young and middle-aged women in the United States. *Am. J. Public Health* **90**, 1463–1466 (2000).

301. Nalbandian, G. & Kovats, S. Understanding sex biases in immunity: effects of estrogen on the differentiation and function of antigen-presenting cells. *Immunol. Res.* **31**, 91–106 (2005).

302. Manuel, R. & Liang, Y. Sexual dimorphism in immunometabolism and autoimmunity: Impact on personalized medicine. *Autoimmun. Rev.* **20**, 102775 (2021).

303. Flanagan, K. L. et al. Sex and gender differences in the outcomes of vaccination over the life course. *Annu. Rev. Cell Dev. Biol.* **33**, 577–599 (2017).

304. Howard, J. et al. Epidemiology of multiple sclerosis. *Neurol. Clin.* **34**, 919–939 (2016).

305. Gonsette, R. E. Self-tolerance in multiple sclerosis. *Acta Neurol. Belg.* **112**, 133–140 (2012).

306. Bar-Or, A. & Li, R. Cellular immunology of relapsing multiple sclerosis: interactions, checks, and balances. *Lancet Neurol.* **20**, 470–483 (2021).

307. Ysraelit, M. C. & Correale, J. Impact of sex hormones on immune function and multiple sclerosis development. *Immunology* **156**, 9–22 (2019).

308. Orton, S. M. et al. Sex ratio of multiple sclerosis in Canada: a longitudinal study. *Lancet Neurol.* **5**, 932–936 (2006).

309. Kiriakidou, M. & Ching, C. L. Systemic Lupus Erythematosus. *Ann. Intern. Med.* **172**, 1TC81–1TC96 (2020).

310. Christou, E. et al. Sexual dimorphism in SLE: above and beyond sex hormones. *Lupus* **28**, 3–10 (2019).

311. Ortona, E. et al. Sex-based differences in autoimmune diseases. *Ann. Dell'Istituto Super. di Sanita* **52**, 205–212 (2016).

312. Verstappen, G. M. et al. T cells in primary Sjögren's syndrome: targets for early intervention. *Rheumatology* **60**, 3088–3098 (2021).

313. Kroese, F. G. et al. B-cell hyperactivity in primary Sjögren's syndrome. *Expert Rev. Clin. Immunol.* **10**, 483–499 (2014).

314. Zhan, Q. et al. Pathogenesis and treatment of Sjögren's syndrome: Review and update. *Front. Immunol.* **14**, 1127417 (2023).

315. Clocchiatti, A. et al. Sexual dimorphism in cancer. *Nat. Rev. Cancer* **16**, 330–339 (2016).

316. Bartz, D. et al. Clinical advances in sex- and gender-informed medicine to improve the health of all: a review. *JAMA Intern. Med.* **180**, 574–583 (2020).

317. Rubtsov, A. V. et al. Genetic and hormonal factors in female-biased autoimmunity. *Autoimmun. Rev.* **9**, 494–498 (2010).

318. Fish, E. N. The X-files in immunity: sex-based differences predispose immune responses. *Nat. Rev. Immunol.* **8**, 737–744 (2008).

319. Hughes, G. C. & Choube, D. Modulation of autoimmune rheumatic diseases by oestrogen and progesterone. *Nat. Rev. Rheumatol.* **10**, 740–751 (2014).

320. Deshpande, R. et al. Estradiol down-regulates LPS-induced cytokine production and NF κ B activation in murine macrophages. *Am. J. Reprod. Immunol.* **38**, 46–54 (1997).

321. Polan, M. L. et al. Gonadal steroids modulate human monocyte interleukin-1 (IL-1) activity. *Fertil. Steril.* **49**, 964–968 (1988).

322. Grimaldi, C. M. et al. Estrogen alters thresholds for B cell apoptosis and activation. *J. Clin. Invest.* **109**, 1625–1633 (2002).

323. Ma, W. T. et al. The role of monocytes and macrophages in autoimmune diseases: a comprehensive review. *Front Immunol.* **10**, 1140 (2019).

324. Laffont, S. et al. Estrogen receptor-dependent regulation of dendritic cell development and function. *Front Immunol.* **8**, 108 (2017).

325. Inui, A. et al. Estrogen receptor expression by peripheral blood mononuclear cells of patients with systemic lupus erythematosus. *Clin. Rheumatol.* **26**, 1675–1678 (2007).

326. Bynoté, K. K. et al. Estrogen receptor-alpha deficiency attenuates autoimmune disease in (NZB x NZW)F1 mice. *Genes Immun.* **9**, 137–152 (2008).

327. Svenson, J. L. et al. Impact of estrogen receptor deficiency on disease expression in the NZM2410 lupus prone mouse. *Clin. Immunol.* **128**, 259–268 (2008).

328. Qin, J. et al. Estrogen receptor β activation stimulates the development of experimental autoimmune thyroiditis through up-regulation of Th17-type responses. *Clin. Immunol.* **190**, 41–52 (2018).

329. Morales, L. B. et al. Treatment with an estrogen receptor alpha ligand is neuroprotective in experimental autoimmune encephalomyelitis. *J. Neurosci.* **26**, 6823–6833 (2006).

330. Kanda, N. et al. Estrogen enhancement of anti-double-stranded DNA antibody and immunoglobulin G production in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. *Arthritis Rheum.* **42**, 328–337 (1999).

331. Grimaldi, C. M. et al. Hormonal regulation of B cell development: 17 beta-estradiol impairs negative selection of high-affinity DNA-reactive B cells at more than one developmental checkpoint. *J. Immunol.* **176**, 2703–2710 (2006).

332. Bynoe, M. S. et al. Estrogen up-regulates Bcl-2 and blocks tolerance induction of naive B cells. *Proc. Natl. Acad. Sci. USA* **97**, 2703–2708 (2000).

333. Panchanathan, R. & Choube, D. Murine BAFF expression is up-regulated by estrogen and interferons: implications for sex bias in the development of autoimmunity. *Mol. Immunol.* **53**, 15–23 (2013).

334. Rider, V. et al. Differential expression of estrogen receptors in women with systemic lupus erythematosus. *J. Rheumatol.* **33**, 1093–1101 (2006).

335. Rider, V. et al. Molecular mechanisms involved in the estrogen-dependent regulation of calcineurin in systemic lupus erythematosus T cells. *Clin. Immunol.* **95**, 124–134 (2000).

336. Rider, V. et al. Estrogen increases CD40 ligand expression in T cells from women with systemic lupus erythematosus. *J. Rheumatol.* **28**, 2644–2649 (2001).

337. Feng, F. et al. The induction of the lupus phenotype by estrogen is via an estrogen receptor-alpha-dependent pathway. *Clin. Immunol.* **134**, 226–236 (2010).

338. Siracusa, M. C. et al. 17beta-estradiol alters the activity of conventional and IFN-producing killer dendritic cells. *J. Immunol.* **180**, 1423–1431 (2008).

339. Scott, J. L. et al. Estrogen Receptor α deficiency modulates TLR ligand-mediated PDC-TREM Expression in Plasmacytoid dendritic cells in Lupus-Prone mice. *J. Immunol.* **195**, 5561–5571 (2015).

340. Seillet, C. et al. The TLR-mediated response of plasmacytoid dendritic cells is positively regulated by estradiol in vivo through cell-intrinsic estrogen receptor α signaling. *Blood* **119**, 454–464 (2012).

341. Cunningham, M. A. et al. Estrogen receptor alpha modulates Toll-like receptor signaling in murine lupus. *Clin. Immunol.* **144**, 1–12 (2012).

342. Griesbeck, M. et al. Sex differences in plasmacytoid dendritic cell levels of IRF5 drive higher IFN- α production in women. *J. Immunol.* **195**, 5327–5336 (2015).

343. Young, N. A. et al. Estrogen-regulated STAT1 activation promotes TLR8 expression to facilitate signaling via microRNA-21 in systemic lupus erythematosus. *Clin. Immunol.* **176**, 12–22 (2017).

344. Billi, A. C. et al. Sex bias in autoimmunity. *Curr. Opin. Rheumatol.* **31**, 53–61 (2019).

345. Voskuhl, R. R. et al. Sex chromosome contributions to sex differences in multiple sclerosis susceptibility and progression. *Mult. Scler.* **24**, 22–31 (2018).

346. Smith-Bouvier, D. L. et al. A role for sex chromosome complement in the female bias in autoimmune disease. *J. Exp. Med.* **205**, 1099–1108 (2008).

347. Arnold, A. P. & Chen, X. What does the “four core genotypes” mouse model tell us about sex differences in the brain and other tissues. *Front. Neuroendocrinol.* **30**, 1–9 (2009).

348. Sasidhar, M. V. et al. The XX sex chromosome complement in mice is associated with increased spontaneous lupus compared with XY. *Ann. Rheum. Dis.* **71**, 1418–1422 (2012).

349. Jørgensen, K. T. et al. Autoimmune diseases in women with Turner’s syndrome. *Arthritis Rheum.* **62**, 658–666 (2010).

350. Harris, V. M. et al. Klinefelter’s syndrome (47,XXY) is in excess among men with Sjögren’s syndrome. *Clin. Immunol.* **168**, 25–29 (2016).

351. Seminog, O. O. et al. Associations between Klinefelter’s syndrome and autoimmune diseases: English national record linkage studies. *Autoimmunity* **48**, 125–128 (2015).

352. Ross, M. T. et al. The DNA sequence of the human X chromosome. *Nature* **434**, 325–337 (2005).

353. Skaletsky, H. et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. *Nature* **423**, 825–837 (2003).

354. Lambert, N. C. Nonendocrine mechanisms of sex bias in rheumatic diseases. *Nat. Rev. Rheumatol.* **15**, 673–686 (2019).

355. Fang, H. et al. X inactivation and escape: epigenetic and structural features. *Front Cell Dev. Biol.* **7**, 219 (2019).

356. Galupa, R. & Heard, E. X-Chromosome inactivation: a crossroads between chromosome architecture and gene regulation. *Annu. Rev. Genet.* **52**, 535–566 (2018).

357. Liu, K. et al. X Chromosome dose and sex bias in autoimmune diseases: increased prevalence of 47,XXX in Systemic Lupus Erythematosus and Sjögren’s Syndrome. *Arthritis Rheumatol.* **68**, 1290–1300 (2016).

358. Scofield, R. H. et al. 47XXX and 47XXX in Scleroderma and Myositis. *ACR Open Rheumatol.* **4**, 528–533 (2022).

359. Elgueta, R. et al. Molecular mechanism and function of CD40/CD40L engagement in the immune system. *Immunol. Rev.* **229**, 152–172 (2009).

360. Dimitriou, I. D. et al. CD40 on salivary gland epithelial cells: high constitutive expression by cultured cells from Sjögren’s syndrome patients indicating their intrinsic activation. *Clin. Exp. Immunol.* **127**, 386–392 (2002).

361. Lu, Q. et al. Demethylation of CD40LG on the inactive X in T cells from women with lupus. *J. Immunol.* **179**, 6352–6358 (2007).

362. Wang, J. et al. Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X. *Proc. Natl Acad. Sci. USA.* **113**, E2029–E2038 (2016).

363. Lian, X. et al. DNA demethylation of CD40L in CD4+ T cells from women with systemic sclerosis: a possible explanation for female susceptibility. *Arthritis Rheum.* **64**, 2338–2345 (2012).

364. Clegg, C. H. et al. Thymus dysfunction and chronic inflammatory disease in gp39 transgenic mice. *Int. Immunol.* **9**, 1111–1122 (1997).

365. Le Coz, C. et al. CD40LG duplication-associated autoimmune disease is silenced by nonrandom X-chromosome inactivation. *J. Allergy Clin. Immunol.* **141**, 2308–2311.e7 (2018).

366. Goules, A. et al. Elevated levels of soluble CD40 ligand (sCD40L) in serum of patients with systemic autoimmune diseases. *J. Autoimmun.* **26**, 165–171 (2006).

367. Sakata, K. et al. Up-regulation of TLR7-mediated IFN- α production by Plasmacytoid dendritic cells in patients with systemic Lupus Erythematosus. *Front. Immunol.* **9**, 1957 (2018).

368. Wang, T. et al. High TLR7 Expression drives the expansion of CD19(+)CD24(hi) CD38(hi) transitional B cells and autoantibody production in SLE Patients. *Front Immunol.* **10**, 1243 (2019).

369. Wang, Y. et al. TLR7 signaling drives the development of Sjögren’s Syndrome. *Front Immunol.* **12**, 676010 (2021).

370. Fillatreau, S. et al. Toll-like receptor signalling in B cells during systemic lupus erythematosus. *Nat. Rev. Rheumatol.* **17**, 98–108 (2021).

371. Swiecki, M. & Colonna, M. The multifaceted biology of plasmacytoid dendritic cells. *Nat. Rev. Immunol.* **15**, 471–485 (2015).

372. Ah Koon, M. D. et al. Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8. *Sci. Transl. Med.* **10**, eaam8458 (2018).

373. Pisitkun, P. et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. *Science* **312**, 1669–1672 (2006).

374. Subramanian, S. et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. *Proc. Natl Acad. Sci. USA.* **103**, 9970–9975 (2006).

375. Deane, J. A. et al. Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. *Immunity* **27**, 801–810 (2007).

376. Hagen, S. H. et al. Heterogeneous escape from X Chromosome inactivation results in sex differences in Type I IFN responses at the single human pDC Level. *Cell Rep.* **33**, 108485 (2020).

377. Souyris, M. et al. TLR7 escapes X chromosome inactivation in immune cells. *Sci. Immunol.* **3**, eaap8855 (2018).

378. Balaton, B. P. et al. Derivation of consensus inactivation status for X-linked genes from genome-wide studies. *Biol. Sex. Differ.* **6**, 35 (2015).

379. Tukiainen, T. et al. Landscape of X chromosome inactivation across human tissues. *Nature* **550**, 244–248 (2017).

380. Odhams, C. A. et al. Interferon inducible X-linked gene CXorf21 may contribute to sexual dimorphism in Systemic Lupus Erythematosus. *Nat. Commun.* **10**, 2164 (2019).

381. Harris, V. M. et al. Characterization of cxorf21 provides molecular insight into female-biased immune response in SLE Pathogenesis. *Front. Immunol.* **10**, 2160 (2019).

382. Bentham, J. et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. *Nat. Genet.* **47**, 1457–1464 (2015).

383. Miceli-Richard, C. et al. Overlap between differentially methylated DNA regions in blood B lymphocytes and genetic at-risk loci in primary Sjögren’s syndrome. *Ann. Rheum. Dis.* **75**, 933–940 (2016).

384. Mackay, M. et al. Molecular signatures in systemic lupus erythematosus: distinction between disease flare and infection. *Lupus Sci. Med.* **3**, e000159 (2016).

385. Harris, V. M. et al. Lysosomal pH is regulated in a sex dependent manner in immune cells expressing CXorf21. *Front. Immunol.* **10**, 578 (2019).

386. Heinz, L. X. et al. TASL is the SLC15A4-associated adaptor for IRF5 activation by TLR7-9. *Nature* **581**, 316–322 (2020).

387. Groom, J. R. & Luster, A. D. CXCR3 in T cell function. *Exp. Cell Res.* **317**, 620–631 (2011).

388. Oghumu, S. et al. Cutting Edge: CXCR3 Escapes X Chromosome inactivation in T cells during infection: potential implications for sex differences in immune responses. *J. Immunol.* **203**, 789–794 (2019).

389. Hewagama, A. et al. Overexpression of X-linked genes in T cells from women with lupus. *J. Autoimmun.* **41**, 60–71 (2013).

390. Enghard, P. et al. CXCR3+CD4+ T cells are enriched in inflamed kidneys and urine and provide a new biomarker for acute nephritis flares in systemic lupus erythematosus patients. *Arthritis Rheum.* **60**, 199–206 (2009).

391. Ogawa, N. et al. Involvement of the interferon-gamma-induced 10-kd protein (CXCL10) and monokine induced by interferon-gamma (CXCL9), in the salivary gland lesions of patients with Sjögren’s syndrome. *Arthritis Rheum.* **46**, 2730–2741 (2002).

392. Yoon, K. C. et al. Expression of CXCL9, -10, -11, and CXCR3 in the tear film and ocular surface of patients with dry eye syndrome. *Invest. Ophthalmol. Vis. Sci.* **51**, 643–650 (2010).

393. Liu, H. W. et al. Demethylation within the proximal promoter region of human estrogen receptor alpha gene correlates with its enhanced expression: Implications for female bias in lupus. *Mol. Immunol.* **61**, 28–37 (2014).

394. Wu, Z. et al. 17 β -oestradiol enhances global DNA hypomethylation in CD4-positive T cells from female patients with lupus, through overexpression of oestrogen receptor- α -mediated downregulation of DNMT1. *Clin. Exp. Dermatol.* **39**, 525–532 (2014).

395. Pinheiro, I. et al. X-chromosome-located microRNAs in immunity: might they explain male/female differences? The X chromosome-genomic context may affect X-located miRNAs and downstream signaling, thereby contributing to the enhanced immune response of females. *Bioessays* **33**, 791–802 (2011).

396. Taneja, V. Sex hormones determine immune response. *Front Immunol.* **9**, 1931 (2018).

397. Guo, X. et al. Rapid evolution of mammalian X-linked testis microRNAs. *BMC Genomics* **10**, 97 (2009).

398. Ventura, A. et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. *Cell* **132**, 875–886 (2008).

399. Xiao, C. et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. *Nat. Immunol.* **9**, 405–414 (2008).

400. Dong, G. et al. 17 β -Estradiol enhances the activation of IFN- α signaling in B cells by down-regulating the expression of let-7e-5p, miR-98-5p and miR-145a-5p that target IKK ϵ . *Biochim. Biophys. Acta* **1852**, 1585–1598 (2015).

401. Ramanujan, S. A. et al. Estrogen-induced hsa-miR-10b-5p is elevated in T cells from patients with systemic Lupus Erythematosus and down-regulates serine/Arginine-Rich Splicing Factor 1. *Arthritis Rheumatol.* **73**, 2052–2058 (2021).

402. Fu, J. et al. Differences between serum polar lipid profiles of male and female rheumatoid arthritis patients in response to glucocorticoid treatment. *Inflammopharmacology* **24**, 397–402 (2016).

403. Brahmer, J. R. et al. Sex differences in outcome with bevacizumab therapy: analysis of patients with advanced-stage non-small cell lung cancer treated with or without bevacizumab in combination with paclitaxel and carboplatin in the Eastern Cooperative Oncology Group Trial 4599. *J. Thorac. Oncol.* **6**, 103–108 (2011).

404. Benagiano, G. et al. Contraception in autoimmune diseases. *Best. Pract. Res. Clin. Obstet. Gynaecol.* **60**, 111–123 (2019).

405. Petri, M. Exogenous estrogen in systemic lupus erythematosus: oral contraceptives and hormone replacement therapy. *Lupus* **10**, 222–226 (2001).

406. Feldman, C. H. et al. Sex differences in health care utilization, end-stage renal disease, and mortality among medicaid beneficiaries with incident Lupus Nephritis. *Arthritis Rheumatol.* **70**, 417–426 (2018).

407. Peng, W. et al. Clinicopathological study of male and female patients with lupus nephritis: a retrospective study. *Int. Urol. Nephrol.* **50**, 313–320 (2018).

408. Birru Talabi, M. et al. Optimizing reproductive health management in lupus and Sjogren's syndrome. *Curr. Opin. Rheumatol.* **33**, 570–578 (2021).

409. Miller, M. H. Pulmonary hypertension, systemic lupus erythematosus, and the contraceptive pill: another report. *Ann. Rheum. Dis.* **46**, 159–161 (1987).

410. Sánchez-Guerrero, J. et al. A trial of contraceptive methods in women with systemic lupus erythematosus. *N. Engl. J. Med.* **353**, 2539–2549 (2005).

411. Petri, M. et al. Combined oral contraceptives in women with systemic lupus erythematosus. *N. Engl. J. Med.* **353**, 2550–2558 (2005).

412. Duarte, C. & Inés, L. Oral contraceptives and systemic lupus erythematosus: what should we advise to our patients. *Acta Reumatol. Port.* **35**, 133–140 (2010).

413. Rojas-Villarraga, A. et al. Safety of hormonal replacement therapy and oral contraceptives in systemic lupus erythematosus: a systematic review and meta-analysis. *PLoS ONE* **9**, e104303 (2014).

414. Lobo, R. A. Hormone-replacement therapy: current thinking. *Nat. Rev. Endocrinol.* **13**, 220–231 (2017).

415. Sánchez-Guerrero, J. et al. Postmenopausal estrogen therapy and the risk for developing systemic lupus erythematosus. *Ann. Intern. Med.* **122**, 430–433 (1995).

416. Meier, C. R. et al. Postmenopausal estrogen replacement therapy and the risk of developing systemic lupus erythematosus or discoid lupus. *J. Rheumatol.* **25**, 1515–1519 (1998).

417. Cooper, G. S. et al. Hormonal and reproductive risk factors for development of systemic lupus erythematosus: results of a population-based, case-control study. *Arthritis Rheum.* **46**, 1830–1839 (2002).

418. Hochman, J. et al. Hormone replacement therapy in women with systemic lupus erythematosus and risk of cardiovascular disease. *Lupus* **18**, 313–317 (2009).

419. Kreidstein, S. et al. Hormone replacement therapy in systemic lupus erythematosus. *J. Rheumatol.* **24**, 2149–2152 (1997).

420. Sánchez-Guerrero, J. et al. Menopause hormonal therapy in women with systemic lupus erythematosus. *Arthritis Rheum.* **56**, 3070–3079 (2007).

421. Dugger, B. N. & Dickson, D. W. Pathology of neurodegenerative diseases. *Cold Spring Harb. Perspect. Biol.* **9**, a028035 (2017).

422. Annerbo, S. et al. The relation between homocysteine levels and development of Alzheimer's disease in mild cognitive impairment patients. *Dement. Geriatr. Cogn. Disord.* **20**, 209–214 (2005).

423. Du, H. et al. Early deficits in synaptic mitochondria in an Alzheimer's disease mouse model. *Proc. Natl Acad. Sci. USA* **107**, 18670–18675 (2010).

424. Scheltens, P. et al. Alzheimer's disease. *Lancet* **397**, 1577–1590 (2021).

425. Mendez, M. F. Early-onset Alzheimer disease. *Neurol. Clin.* **35**, 263–281 (2017).

426. Robinson, M. et al. Recent progress in Alzheimer's Disease Research, Part 2: Genetics and Epidemiology. *J. Alzheimers Dis.* **57**, 317–330 (2017).

427. Pai, S. K. Why women may be more prone to Alzheimer's disease. *Aging brain* **6**, 100121 (2024).

428. Kalia, L. V. & Lang, A. E. Parkinson's disease. *Lancet* **386**, 896–912 (2015).

429. Rizek, P. et al. An update on the diagnosis and treatment of Parkinson disease. *CMAJ* **188**, 1157–1165 (2016).

430. Poewe, W. et al. Parkinson disease. *Nat. Rev. Dis. Prim.* **3**, 17013 (2017).

431. Nussbaum, R. L. & Ellis, C. E. Alzheimer's disease and Parkinson's disease. *N. Engl. J. Med.* **348**, 1356–1364 (2003).

432. DeMaagd, G. & Philip, A. Parkinson's disease and its MANagement: Part 1: Disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. *P T* **40**, 504–532 (2015).

433. Hirsch, L. et al. The incidence of Parkinson's disease: a systematic review and meta-analysis. *Neuroepidemiology* **46**, 292–300 (2016).

434. Xu, L. et al. Global variation in prevalence and incidence of amyotrophic lateral sclerosis: a systematic review and meta-analysis. *J. Neurol.* **267**, 944–953 (2020).

435. Fontana, A. et al. Time-trend evolution and determinants of sex ratio in Amyotrophic Lateral Sclerosis: a dose-response meta-analysis. *J. Neurol.* **268**, 2973–2984 (2021).

436. Gur, R. C. et al. Sex differences in temporo-limbic and frontal brain volumes of healthy adults. *Cereb. Cortex* **12**, 998–1003 (2002).

437. Gur, R. C. et al. Gender differences in age effect on brain atrophy measured by magnetic resonance imaging. *Proc. Natl Acad. Sci. USA* **88**, 2845–2849 (1991).

438. Feng, B. et al. Gender-related differences in regional cerebral glucose metabolism in normal aging brain. *Front Aging Neurosci.* **14**, 809767 (2022).

439. Jang, H. et al. Differential effects of completed and incomplete pregnancies on the risk of Alzheimer disease. *Neurology* **91**, e643–e651 (2018).

440. Gilsanz, P. et al. Reproductive period and risk of dementia in a diverse cohort of health care members. *Neurology* **92**, e2005–e2014 (2019).

441. Yue, X. et al. Brain estrogen deficiency accelerates Abeta plaque formation in an Alzheimer's disease animal model. *Proc. Natl Acad. Sci. USA* **102**, 19198–19203 (2005).

442. Alvarez-de-la-Rosa, M. et al. Estradiol prevents neural tau hyperphosphorylation characteristic of Alzheimer's disease. *Ann. N. Y. Acad. Sci.* **1052**, 210–224 (2005).

443. Wang, R. et al. Inhibition of MLK3-MKK4/7-JNK1/2 pathway by Akt1 in exogenous estrogen-induced neuroprotection against transient global cerebral ischemia by a non-genomic mechanism in male rats. *J. Neurochem.* **99**, 1543–1554 (2006).

444. Goodenough, S. et al. Glycogen synthase kinase 3beta links neuroprotection by 17beta-estradiol to key Alzheimer processes. *Neuroscience* **132**, 581–589 (2005).

445. Znamensky, V. et al. Estrogen levels regulate the subcellular distribution of phosphorylated Akt in hippocampal CA1 dendrites. *J. Neurochem.* **23**, 2340–2347 (2003).

446. Chen, S. et al. Dose and temporal pattern of estrogen exposure determines neuroprotective outcome in hippocampal neurons: therapeutic implications. *Endocrinology* **147**, 5303–5313 (2006).

447. Du, B. et al. Both estrogen and raloxifene protect against beta-amyloid-induced neurotoxicity in estrogen receptor alpha-transfected PC12 cells by activation of telomerase activity via Akt cascade. *J. Endocrinol.* **183**, 605–615 (2004).

448. Biewenga, E. et al. Estradiol and raloxifene protect cultured SN4741 neurons against oxidative stress. *Neurosci. Lett.* **373**, 179–183 (2005).

449. Angoa-Pérez, M. et al. Estrogen counteracts ozone-induced oxidative stress and nigral neuronal death. *Neuroreport* **17**, 629–633 (2006).

450. Wallace, D. R. et al. Estrogen attenuates gp120- and tat1-72-induced oxidative stress and prevents loss of dopamine transporter function. *Synapse* **59**, 51–60 (2006).

451. Singer, C. A. et al. The mitogen-activated protein kinase pathway mediates estrogen neuroprotection after glutamate toxicity in primary cortical neurons. *J. Neurochem.* **19**, 2455–2463 (1999).

452. Weaver, C. E. Jr et al. 17beta-Estradiol protects against NMDA-induced excitotoxicity by direct inhibition of NMDA receptors. *Brain Res.* **761**, 338–341 (1997).

453. Ilivonen, S. et al. Polymorphisms in the CYP19 gene confer increased risk for Alzheimer disease. *Neurology* **62**, 1170–1176 (2004).

454. Ishunina, T. A. et al. Estrogen receptor alpha and its splice variants in the hippocampus in aging and Alzheimer's disease. *Neurobiol. Aging* **28**, 1670–1681 (2007).

455. Ragonese, P. et al. Risk of Parkinson disease in women: effect of reproductive characteristics. *Neurology* **62**, 2010–2014 (2004).

456. Currie, L. J. et al. Postmenopausal estrogen use affects risk for Parkinson disease. *Arch. Neurol.* **61**, 886–888 (2004).

457. Westberg, L. et al. Association between the estrogen receptor beta gene and age of onset of Parkinson's disease. *Psychoneuroendocrinology* **29**, 993–998 (2004).

458. Shughrue, P. J. Estrogen attenuates the MPTP-induced loss of dopamine neurons from the mouse SNc despite a lack of estrogen receptors (ERalpha and ERbeta). *Exp. Neurol.* **190**, 468–477 (2004).

459. D'Astous, M. et al. Implication of the phosphatidylinositol-3 kinase/protein kinase B signaling pathway in the neuroprotective effect of estradiol in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice. *Mol. Pharmacol.* **69**, 1492–1498 (2006).

460. Tripanichkul, W. et al. Estrogen down-regulates glial activation in male mice following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication. *Brain Res.* **1084**, 28–37 (2006).

461. D'Astous, M. et al. Effect of estrogen receptor agonists treatment in MPTP mice: evidence of neuroprotection by an ER alpha agonist. *Neuropharmacology* **47**, 1180–1188 (2004).

462. Gomez-Mancilla, B. & Bédard, P. J. Effect of estrogen and progesterone on L-dopa induced dyskinesia in MPTP-treated monkeys. *Neurosci. Lett.* **135**, 129–132 (1992).

463. Quesada, A. & Micevych, P. E. Estrogen interacts with the IGF-1 system to protect nigrostriatal dopamine and maintain motoric behavior after 6-hydroxydopamine lesions. *J. Neurosci. Res.* **75**, 107–116 (2004).

464. Gardiner, S. A. et al. Pilot study on the effect of estrogen replacement therapy on brain dopamine transporter availability in healthy, postmenopausal women. *Am. J. Geriatr. Psychiatry* **12**, 621–630 (2004).

465. Nguyen, D. K. & Disteche, C. M. High expression of the mammalian X chromosome in brain. *Brain Res.* **1126**, 46–49 (2006).

466. Chomky, A. M. et al. DNA methylation in demyelinated multiple sclerosis hippocampus. *Sci. Rep.* **7**, 8696 (2017).

467. Trapp, B. D. et al. Evidence for synaptic stripping by cortical microglia. *Glia* **55**, 360–368 (2007).

468. Du, S. et al. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis. *Proc. Natl Acad. Sci. USA* **111**, 2806–2811 (2014).

469. Ribbons, K. A. et al. Male sex is independently associated with faster disability accumulation in relapse-onset MS but not in primary progressive MS. *PLoS ONE* **10**, e0122686 (2015).

470. Voskuhl, R. R. et al. Sex differences in brain atrophy in multiple sclerosis. *Biol. Sex. Differ.* **11**, 49 (2020).

471. Davis, E. J. et al. A second X chromosome contributes to resilience in a mouse model of Alzheimer's disease. *Sci. Transl. Med.* **12**, eaaz5677 (2020).

472. Absinta, M. et al. A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. *Nature* **597**, 709–714 (2021).

473. Hui, C. W. et al. Sex differences of Microglia and Synapses in the Hippocampal Dentate Gyrus of adult mouse offspring exposed to maternal immune activation. *Front Cell Neurosci.* **14**, 558181 (2020).

474. Schirmer, L. et al. Diversity and function of glial cell types in multiple sclerosis. *Trends Immunol.* **42**, 228–247 (2021).

475. Mishra, A. & Brinton, R. D. Inflammation: Bridging age, menopause and APOE ϵ 4 genotype to Alzheimer's disease. *Front Aging Neurosci.* **10**, 312 (2018).

476. Pan, J. et al. Transcriptomic profiling of microglia and astrocytes throughout aging. *J. Neuroinflamm.* **17**, 97 (2020).

477. B. T. et al. Sex-specific differences in rim appearance of multiple sclerosis lesions on quantitative susceptibility mapping. *Mult. Scler. Relat. Disord.* **45**, 102317 (2020).

478. Hammond, T. R. et al. Immune signaling in neurodegeneration. *Immunity* **50**, 955–974 (2019).

479. Stevens, B. & Schafer, D. P. Roles of microglia in nervous system development, plasticity, and disease. *Dev. Neurobiol.* **78**, 559–560 (2018).

480. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer's disease. *Cell* **169**, 1276–1290.e17 (2017).

481. Stephen, T. L. et al. APOE genotype and sex affect microglial interactions with plaques in Alzheimer's disease mice. *Acta Neuropathol. Commun.* **7**, 82 (2019).

482. Werneburg, S. et al. Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease. *Immunity* **52**, 167–182.e7 (2020).

483. Riedel, B. C. et al. Age, APOE and sex: Triad of risk of Alzheimer's disease. *J. Steroid Biochem. Mol. Biol.* **160**, 134–147 (2016).

484. Shi, Y. & Holtzman, D. M. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. *Nat. Rev. Immunol.* **18**, 759–772 (2018).

485. Krasemann, S. et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. *Immunity* **47**, 566–581.e9 (2017).

486. Feretti, M. T. et al. Sex and gender differences in Alzheimer's disease: current challenges and implications for clinical practice: Position paper of the Dementia and Cognitive Disorders Panel of the European Academy of Neurology. *Eur. J. Neurol.* **27**, 928–943 (2020).

487. Fillit, H. et al. Observations in a preliminary open trial of estradiol therapy for senile dementia-Alzheimer's type. *Psychoneuroendocrinology* **11**, 337–345 (1986).

488. Kawas, C. et al. A prospective study of estrogen replacement therapy and the risk of developing Alzheimer's disease: the Baltimore Longitudinal Study of Aging. *Neurology* **48**, 1517–1521 (1997).

489. Paganini-Hill, A. & Henderson, V. W. Estrogen replacement therapy and risk of Alzheimer disease. *Arch. Intern. Med.* **156**, 2213–2217 (1996).

490. Yaffe, K. et al. Estrogen therapy in postmenopausal women: effects on cognitive function and dementia. *JAMA* **279**, 688–695 (1998).

491. Hogervorst, E. et al. The nature of the effect of female gonadal hormone replacement therapy on cognitive function in post-menopausal women: a meta-analysis. *Neuroscience* **101**, 485–512 (2000).

492. Sundermann, E. et al. Estrogen and performance in recognition memory for olfactory and visual stimuli in females diagnosed with Alzheimer's disease. *J. Int. Neuropsychol. Soc.* **12**, 400–404 (2006).

493. Henderson, V. W. Estrogen-containing hormone therapy and Alzheimer's disease risk: understanding discrepant inferences from observational and experimental research. *Neuroscience* **138**, 1031–1039 (2006).

494. Lawlor, B. et al. Nilvadipine in mild to moderate Alzheimer disease: A randomised controlled trial. *PLoS Med.* **15**, e1002660 (2018).

495. Zissimopoulos, J. M. et al. Sex and race differences in the association between statin use and the incidence of Alzheimer disease. *JAMA Neurol.* **74**, 225–232 (2017).

496. Avgerinos, K. I. et al. Effects of monoclonal antibodies against amyloid- β on clinical and biomarker outcomes and adverse event risks: A systematic review and meta-analysis of phase III RCTs in Alzheimer's disease. *Ageing Res. Rev.* **68**, 101339 (2021).

497. Andrieu, S. et al. Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): a randomised, placebo-controlled trial. *Lancet Neurol.* **16**, 377–389 (2017).

498. Ngandu, T. et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. *Lancet* **385**, 2255–2263 (2015).

499. Ferreira, J. J. et al. Summary of the recommendations of the EFNS/MDS-ES review on therapeutic management of Parkinson's disease. *Eur. J. Neurol.* **20**, 5–15 (2013).

500. Conti, V. et al. Gender differences in Levodopa Pharmacokinetics in Levodopa-Naïve patients with Parkinson's disease. *Front Med.* **9**, 909936 (2022).

501. Contin, M. et al. Sex is the main determinant of levodopa clinical pharmacokinetics: evidence from a large series of levodopa therapeutic monitoring. *J. Parkinsons Dis.* **12**, 2519–2530 (2022).

502. Russillo, M. C. et al. Sex differences in Parkinson's disease: From Bench to Bedside. *Brain. Sci.* **12**, 917 (2022).

503. Sampaio, T. F. et al. MAO-B and COMT genetic variations associated with Levodopa treatment response in patients with Parkinson's disease. *J. Clin. Pharmacol.* **58**, 920–926 (2018).

504. Deuschl, G. et al. European Academy of Neurology/Movement Disorder Society-European Section Guideline on the Treatment of Parkinson's Disease: I. Invasive Therapies. *Mov. Disord.* **37**, 1360–1374 (2022).

505. Hariz, G. M. et al. Gender differences in quality of life following subthalamic stimulation for Parkinson's disease. *Acta Neurol. Scand.* **128**, 281–285 (2013).

506. Accolla, E. et al. Gender differences in patients with Parkinson's disease treated with subthalamic deep brain stimulation. *Mov. Disord.* **22**, 1150–1156 (2007).

507. Jurado-Coronel, J. C. et al. Sex differences in Parkinson's disease: Features on clinical symptoms, treatment outcome, sexual hormones and genetics. *Front. Neuroendocrinol.* **50**, 18–30 (2018).

508. Goutman, S. A. et al. Recent advances in the diagnosis and prognosis of amyotrophic lateral sclerosis. *Lancet Neurol.* **21**, 480–493 (2022).

509. Miller, T. M. et al. Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. *N. Engl. J. Med.* **387**, 1099–1110 (2022).

510. Pfeiffer, R. M. et al. Identifying potential targets for prevention and treatment of amyotrophic lateral sclerosis based on a screen of Medicare prescription drugs. *Amyotroph. Lateral Scler. Frontotemporal Degener.* **21**, 235–245 (2020).

511. Vegeto, E. et al. The role of sex and sex hormones in neurodegenerative diseases. *Endocr. Rev.* **41**, 273–319 (2020).

512. Nefussy, B. et al. Gender-based effect of statins on functional decline in amyotrophic lateral sclerosis. *J. Neurol. Sci.* **300**, 23–27 (2011).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.