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Mercedes Gómez-Morales1, David Aguilar1, José Aneiros-Fernández1, Pedro Hernández-Cortés3,

Antonio Osuna4, Francesc Moreso5, Daniel Serón5, Francisco J. Oliver6, Raimundo G. Del Moral1

1 Department of Pathology and Institute of Biopathology and Regenerative Medicine (IBIMER), School of Medicine, University of Granada, Granada, Spain, 2 Department

of cell Biology, University of Granada, Granada, Spain, 3 Department of Traumatology and Orthopaedic Surgery, San cecilio University Hospital, Granada, Spain,

4 Department of Nephrology, Virgen de las Nieves University Hospital, Granada, Spain, 5 Department of Nephrology, Bellvitge University Hospital, Barcelona, Spain,

6 Institute of Parasitology and Biomedicine, CSIC, Armilla, Granada, Spain

Abstract

Cold ischemia time especially impacts on outcomes of expanded-criteria donor (ECD) transplantation. Ischemia-reperfusion
(IR) injury produces excessive poly[ADP-Ribose] Polymerase-1 (PARP-1) activation. The present study explored the hypothesis
that increased tubular expression of PARP-1 contributes to delayed renal function in suboptimal ECD kidney allografts and in
non-ECD allografts that develop posttransplant acute tubular necrosis (ATN).

Materials and Methods: Nuclear PARP-1 immunohistochemical expression was studied in 326 paraffin-embedded renal
allograft biopsies (193 with different degrees of ATN and 133 controls) and in murine Parp-1 knockout model of IR injury.

Results: PARP-1 expression showed a significant relationship with cold ischemia time (r coefficient = 0.603), time to effective
diuresis (r = 0.770), serum creatinine levels at biopsy (r = 0.649), and degree of ATN (r = 0.810) (p = 0.001, Pearson test). In the
murine IR model, western blot showed an increase in PARP-1 that was blocked by Parp-1 inhibitor. Immunohistochemical study
of PARP-1 in kidney allograft biopsies would allow early detection of possible delayed renal function, and the administration of
PARP-1 inhibitors may offer a therapeutic option to reduce damage from IR in donor kidneys by preventing or minimizing ATN.
In summary, these results suggest a pivotal role for PARP-1 in the ATN of renal transplantation. We propose the
immunohistochemical assessment of PARP-1 in kidney allograft biopsies for early detection of a possible delayed renal function.
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Introduction

Renal ischemia produced during transplantation or otherwise is a

major cause of acute kidney injury, initiating a complex and

interrelated sequence of events that result in the injury and eventual

death of renal cells [1,2]. Prolonged cold ischemia contributes to organ

damage and increases patient morbidity and mortality. Salahudeen et

al. recently studied 6,465 kidney transplant patients using United

Network for Organ Sharing (UNOS) data and concluded that

prolonged cold ischemia is a strong risk factor for delayed graft

function and a significant predictor of short-term [3] and long-term

[4] graft loss, as reported by other authors [5,6]. Nevertheless, the

pathogenic mechanism has yet to be fully elucidated.

Johnston et al. concluded that cold ischemia time has a major

impact on the outcome of transplants from aged and expanded-

criteria donors (ECDs). In non-ECD kidneys, very prolonged cold

ischemia time is associated with an increase in primary non-function.

ECD kidneys from older donors show a greater increase in delayed

graft function with longer cold ischemia time. Thus, ECD grafts with

cold ischemia time of .8 h have higher delayed graft function rates

than do non-ECD grafts with cold ischemia time of .37 h [7].

Early renal transplant dysfunction is mainly caused by ischemic

damage (acute tubular necrosis [ATN]), rejection, infection, or

cyclosporin A toxicity [8]. The prognosis is complicated by the fact

that reperfusion, although essential for the survival of ischemic

renal tissue, causes additional damage (reperfusion injury) [9,10]

that contributes to the renal dysfunction and injury associated with

ischemia/reperfusion (IR) of the kidney [1,10].

Poly[ADP-Ribose] Polymerase-1 (PARP-1) (E.C. 2.4.2.30) is a

nuclear zinc-finger DNA-binding protein with a molecular weight

of 113 kDa that specifically detects DNA-strand breaks or nicks

produced by different genotoxic agents in mammalian cells [11].

PARP-1 catalyzes the ADP ribosylation of proteins using NAD(+)

as substrate [12]. PARP activation is a consequence of ischemic

injury and results in a depletion of intracellular NAD(+) [13],

which can only be replenished via a reaction that consumes ATP.
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DNA damage produced by IR injury requires cells to consume

large amounts of ATP to support poly(ADP-ribosyl)ation. For this

reason, whereas moderate PARP activity protects cellular genome

integrity, excessive PARP activation can lead to cell death from

ATP depletion [14–16]. Our group previously demonstrated that

PARP1 expression in tubules of aged donors correlates with

functional reserve parameters (serum creatinine and time required

to achieve effective diuresis) [17].

The present study was designed to produce clinicopathological

evidence to test the hypothesis that increased tubular expression of

PARP-1 in human allograft kidneys that are suboptimal or develop

ATN posttransplant might be one of the predictive factors for a

subsequent delay in renal function.

Materials and Methods

We studied 326 paraffin-embedded renal allograft biopsies

distributed in four groups: two ECD groups, one with and one

without the presence of ATN; and two non-ECD groups, one with

and one without the presence of ATN. ECDs were selected as

specified in UNOS policies and procedures as either $60 yrs of age

or between 50 and 59 yrs of age with at least two of the following

three risk factors: a history of hypertension, a history of cerebrovas-

cular disease, and serum creatinine at any time $1.5 mg/dL) [7].

For the ECDs, 220 kidney wedge biopsies were fixed in Glyofix

(Pacisa-Giralt, Barcelona, Spain) and embedded in paraffin by

microwave-accelerated technique to determine renal lesions at 0-h

pre-transplant. Out of these 220 ECD kidneys, 95 biopsies with

some degree of ATN and 65 without ATN (serving as control group)

were selected for the study. The remaining 60 kidneys were not

transplanted due to severe vascular or glomerulo-interstitial renal

lesions, and 20 of these were maintained as whole perfused kidneys

at 4uC for 48 h in Wisconsin preservation solution. For the non-

ECDs, 98 kidney cylinder biopsies were taken between days 5 and

11 post-transplant from oligoanuric recipients, fixed in 10%

buffered formalin, and embedded in paraffin by standard procedure

to identify ATN and classify its degree as: mild (1) [,10% of tubules

with necrotic cells], moderate (2) [10 to 49%], or severe (3) [$50%].

A further 68 kidney sections (transplant protocol biopsies) from non-

ECDs with stable renal function and without morphological

evidence of ATN served as a control group. The study was

conducted according to the Helsinki declaration and approved by

the Ethics Committee of the hospital. All biopsies were taken after

written informed consent was obtained and subjects were included

in this investigation after agreeing to participate and signing the

appropriate consent form.

Nuclear expression of PARP-1 was characterized by incubating

sections for 60 min at room temperature with PARP-1 monoclonal

antibody (clone A6.4.12) (LabVision Fremont, CA, USA). The

immunochemistry study was done on an automatic immunostainer

(model autostainer480, LabVision) using the polymer peroxidase-

based method followed by development with diaminobenzidine

(Master Diagnóstica, Granada, Spain). The positivity of immuno-

staining was calculated semiquantitatively on a 4-point scale (0,

absence; 1 [1–9% of tubular nuclei positive]; 2 [10–49%]; 3

[$50%]). Renal sections incubated with isotype antibody and tonsil

sections were used as negative and positive controls, respectively.

Data were gathered on renal function parameters (serum

creatinine [mg/dL]), creatinine clearance [mL/min./1.73 m2]),

donor and recipient age and sex, cold-ischemia time, reanasto-

mosis time, time to effective diuresis (defining effective diuresis in

terms of Cockcroft-Gault calculated creatinine clearance rather

than need for posttransplantation dialysis), immunosuppression

regimens, and number of hemodialysis sessions.

Ischemia-reperfusion (IR) mouse model
We used 20 male Parp1+/+ wild-type and 20 male Parp12/2

knockout C57BL/6 mice (24 wks old and 20–30 g). Knockout

mice were obtained according to a previously reported procedure

[18]. The mice were kept under stable conditions at the Institute of

Parasitology and Biomedicine in Granada with ad libitum access to

food and water. All experiments were performed according to

European Union and Spanish Government guidelines for the

ethical care of animals (EU Directive 86/609, RD 223/1988).

Mice were anesthetized by intraperitoneal inoculation of

equitensin (2 IU/20 g) and maintained at 37uC on a thermal

plate. The left kidney was accessed by anterolateral abdominal

horizontal incision of 1.5 cm, and the vascular pedicle was

clamped with a model 2A S&T metallic clip (S&T Microlab AG,

Rheinfall, Switzerland), maintaining the kidneys within the

abdominal cavity under University of Wisconsin solution flow at

4uC. After 45 min of clamping, the clip was removed and the

peritoneum and skin were sutured. After 6 and 48 h of

reperfusion, the animals were killed with an overdose of sodium

pentothal. There were no deaths during postoperative or

reperfusion periods.

Administration of PARP inhibitor to mice
PARP-1 inhibitor 3-aminobenzamide (3-ABA) was purchased

from Sigma Chemicals (St Louis, MO) and dissolved in saline at a

concentration of 5 mg/mL 3-ABA (10 mg/kg) was administered

intraperitoneally at 1 h before ischemic injury. Vehicle-treated

mice received the saline injection without 3-ABA. In preliminary

control experiments, it was determined that administration of

3-ABA to sham-operated mice had no morphological effect.

Renal samples and processing
Two groups of kidneys from C57BL/6 Parp1+/+ mice and two

groups from C57BL/6 Parp12/2 mice were formed, divided

between kidneys with 6 h or 48 h of reperfusion (n = 10 for each

time and mouse type) and kidneys with 6 h of reperfusion plus

PARP-1 inhibitor 3-ABA (n = 10 for each group); two groups of

control kidneys for each reperfusion time were also studied (n = 20

for each group). In all animals, the left kidney was subjected to

ischemia-reperfusion by clamping the complete renal vascular

pedicle, using the right kidney as control. After extraction, each

kidney sample was divided longitudinally into two halves. One

half, with separated cortex and medulla, was rapidly frozen in

isopentane at 250uC and submerged in liquid nitrogen for 10 s to

develop western-blotting. The other half was immediately fixed in

10% buffered formalin for 24 h and then paraffin-embedded for

morphological study using hematoxylin-eosin and PAS staining.

Western blot analysis
Tissues extracted from the human and mouse kidney cortex

samples were washed with PBS and resuspended in 100 ml lysis

buffer (50 mM Tris-HCl pH 8, 0.1 mM EDTA, 0.5% Triton

X-100, 12.5 mM b-mercaptoethanol) for 30 min on ice. Pellet was

eliminated and sample buffer (50 mM Tris-HCl pH 6.8, 6 M

urea, 6% b-mercaptoethanol, 3% SDS, 0.003% bromophenol

blue) was added to the supernatant. Proteins were resolved on

SDS- 12% polyacrylamide gels and transferred onto Immun-Blot

PVDF Membrane (Bio-Rad, Laboratories Irvine, CA, USA). The

blot was blocked with 5% milk powder in PBS with 0.1%

Tween-20 for 30 min, washed with PBS/Tween, and incubated

overnight with anti-poly[ADPribose] (PAR) (TREVIGEN, Gai-

thersburg, MD), anti-PARP1 (clone C2-10) (Alexis, San Diego,

CA, USA), and anti-a-tubulin (Sigma, St Louis MO, USA)
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antibodies and for 2 h with appropriate secondary antibodies.

Bands were visualized by ECL-PLUS (Amersham Biosciences,

Piscataways, NJ, USA), and photographs were taken using the

ChemiDoc XRS imaging system (Bio-Rad). Positive control: Poly-

ADP-ribosylated-PARP protein control for Western Blot (TREVI-

GEN, Gaithersburg, MD).

Statistical analysis
The Kolmogorov-Smirnov test was used to assess the normality

of the variables. A descriptive analysis was performed, and the

Student’s t-test, one way ANOVA with post hoc Bonferroni test, chi

square test, and Pearson’s correlation were applied to determine

statistical significances. We constructed ROC curves for PARP-1

and calculated the area under the curve. The statistical analysis

was performed using the SPSS-Windows 15.0 program (SPSS Inc,

Chicago, IL, USA). The confidence interval was 95% (p,0.05).

Results

Overall PARP-1 expression in the 326 paraffin-embedded renal

allograft biopsies studied was scored as follows: 0 (38.9%); 1 (19.2%);

2 (18.9%); and 3 (23.0%). A score of 0 was only detected in renal

Figure 1. PARP-1 expression in human kidneys using polymer peroxidase-based method. A) Absence of PARP-1 expression in tubular cell
nuclei in transplant protocol biopsy of kidney with stable renal function and without ATN (6100). B) Moderate PARP-1 expression in tubular cells of
ECD kidney biopsy with ATN (6200). C) Moderate PARP-1 expression in necrotic tubuli of posttransplant kidney biopsy with ATN (6200). D, E, F):
Intense PARP-1 expression in various biopsies with severe ATN (D x200, and E, F 6400). G) Glomerular immunostaining in a case of severe ATN. Note
nuclear immunostaining in capillary and Bowman’s capsule (6400). H) Negative isotype control (x200).
doi:10.1371/journal.pone.0007138.g001
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biopsies without ATN. The mean age of non-ECDs with ATN

was 40.7610.47. The cold ischemia time was 23.2465.31 h [range

1–31 h]. The group formed by 98 allograft kidneys with ATN of

degree 1 (30.6%), 2 (44.9%), or 3 (24.5%) showed more intense

PARP-1 expression (score 2 [45%], score 3 [25%]) at 5–11 days

post-transplant versus transplant protocol biopsies with stable renal

function (Figure 1). The mean age of ECDs with ATN was

63.6367.01 yrs and the cold ischemia time was 19.3264.48 h

[range, 8–36 h]. The group formed by 95 pre-transplantation

kidney biopsies with ATN of degree 1 (86%), 2 (14%), or 3 (0%)

showed a mild nuclear tubular expression of PARP-1.

Table 1 compares the mean values of the four groups of renal

biopsies studied and shows the statistical significance of differences

found. At time of biopsy, transplanted kidneys with ATN from

younger kidney donors (non-ECDs) had higher creatinine serum

levels compared with kidneys from ECDs (1.7260.09 vs.

1.0960.15, p = 0.0001 Bonferroni test), which had a lower degree

of ATN. The group of non-ECD transplanted kidneys with clinical

evidence of ATN had longer cold ischemia time and time-to-

effective diuresis versus the other groups, including the preimplant

ECD kidneys with ATN (one-way ANOVA test, p = 0.0001 for

both variables). Degree of ATN was significantly correlated with

PARP-1 expression (r coefficient = 0.810, p = 0.0001, Pearson

test), with a mean expression of 2.8360.48 in severe ATN versus

1.5360.96 in mild cases and 0.3360.56 in absence of ATN

(p = 0.0001, one-way ANOVA test). A significant difference in

kidney PARP-1 expression was found between recipients of non-

ECD kidneys, which largely showed moderate or intense ATN,

and ECD biopsy specimens, which showed only mild or moderate

ATN (2.3360.85 vs. 1.6960.91, p = 0.0001 Bonferroni test).

Degree of ATN was also related to time to recovery of effective

diuresis (p = 0.0001, one-way ANOVA test). Cold ischemia time

(# or .20 h) had a major effect on time to recovery of effective

diuresis (4.3965.3 days vs. 12.4167.4 days, p = 0.0001, Student’s

Table 1. Comparative data among control kidneys (from expanded-criteria donors [ECD] and patients with stable renal function),
preimplant kidneys from ECDs, and transplanted kidneys from patients with ATN.

Variable
ECD without ATN
(n = 65)

ECD with ATN
(n = 95)

P values
Bonferroni test

Non-ECD without
ATN (n = 68){

Non-ECD with
ATN (n = 98)

P values
Bonferroni test

Age of donor (years)* 58.4611.9 63.6367.01 NS 38.70615.5 38.2066.33 NS

PARP-1 Score [0–3]* 1.0560.54 1.6660.32 P = 0.0001 0.3460.59 2.3360.85 P = 0.0001

Age receptor (years)* 50.8613.2 54.32611.02 NS 48.4612.8 40.57610.47 NS

Cold ischemia time (hours)* 18.3964.31 19.3264.48 P = 0.307 19.765.09 23.2465.31 P = 0.112

Anastomosis time (min) 44.4611.4 44.2869.54 NS 43.6612.4 42.0668.21 NS

Time to efficient diuresis (days)* 2.0663.33 7.9465.42 P = 0.0001 0.6962.67 14.1064.60 P = 0.0001

Nu of hemodialysis* 1.8262.87 2.6364.63 P = 0.0001 0.460.25 2.0663.36 P = 0.0001

Creatinine at biopsy (mg/dL)* 1.0260.10 1.0960.15 NS 1.3260.07 1.7260.09 P = 0.001

Creatinine at one month (mg/dL)* 1.8860.65 2.3561.11 P = 0.003 1.5160.23 3.2561.37 P = 0.0001

Creatinine at six months (mg/dL)* 1.9761.05 1.8660.49 P = 0.55 1.3860.42 2.9460.85 P = 0.0001

Creatinine at twelve months (mg/dL)* 1.4560.50 1.8560.55 P = 0.001 1.1560.43 2.9060.96 P = 0.0001

Creatinine ,1.7 (mg/dL) (days)* 22.15613.8 34.30627.4 P = 0.001 15.4569.38 32.3629.3 P = 0.0001

Cr Clearance at one month* 44.70619.04 40.52618.43 NS 55.38618.5 46.75612.12 P = 0.001

Cr Clearance at six months* 46.89618.20 46.05619.78 NS 59.16617.8 52.01619.21 P = 0.01

Cr Clearance at one year* 47.62613.25 46.75614.22 NS 59.34618.7 44.77619.04 P = 0.005

ECD: Expanded-criteria donor with ATN; ATN: Acute tubular necrosis. Values are expressed as mean 6 standard deviation.
*P = 0.0001 one-way ANOVA test and post hoc with Bonferroni test.
{Transplant protocol biopsies with stable renal function; NS: Non-significant.
doi:10.1371/journal.pone.0007138.t001

Table 2. Clinical variables according to nuclear immunohistochemical expression of PARP-1 in human kidney biopsies.

Variables PARP-1 negative PARP-1 positive P Values*

Age of donor (years) 49.06617.1 45. 95614.6 NS

Cold ischemia time (hours) 18.3465.37 22.1264.74 P = 0.0001

Time to efficient diuresis (days) 1.6561.97 10.3566.75 P = 0.0001

Creatinine at one month (mg/dL) 1.9362.71 2.7161.31 P = 0.0001

Creatinine at six months (mg/dL) 1.7060.76 2.4361.07 P = 0.0001

Creatinine at twelve months (mg/dL) 1.4960.78 2.1861.04 P = 0.0001

Creatinine ,1.7 (mg/dL) (days) 5.10613.55 13.15618.11 P = 0.0024

Values are expressed as mean 6 standard deviation; NS: Non-significant.
*Student’s t- test.
doi:10.1371/journal.pone.0007138.t002
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t-test), and a duration of .20 h was associated with more than

two-fold higher tubular expression of PARP-1 (0.8660.94 vs.

2.1061.23, p = 0.0001, Student’s t-test). Among the 178 kidneys

with #20 h of cold ischemia, 105 did not have ATN, twenty-three

had moderate ATN, and only three had severe ATN (p = 0.0001,

chi-square test).

PARP-1 appears to have played an important role in early

kidney allogaft function (Table 2), with a statistically significant

relationship between its expression and cold ischemia time (r

coefficient = 0.603, p = 0.0001, Pearson test), time to effective

diuresis (r = 0.770, p = 0.0001, Pearson test), and serum creatinine

levels at time of biopsy (r = 0.649) and at three months (r = 0.403,

p = 0.0001, Pearson test) but not at six months or one year.

Likewise, the degree of ATN showed a significant correlation with

the same parameters (cold ischemia time r = 0.456; time to

effective diuresis r = 0.696; and creatinine levels at time of biopsy

r = 0.520, one month r = 0.455, and six months r = 0.508,

p = 0.0001, Pearson test). There was an even greater difference

in PARP-1 expression intensity between kidneys from ATN

patients who did not reduce serum creatinine levels to below

1.7 mg/dL after transplantation and those from ATN patients

who did (creatinine ,1.7, PARP-1 1.7960.62 vs. creatinine .1.7,

PARP-1 2.3361.04, p = 0.0001, Student’s t-test). Figure 2 and

Table 3 represent and summarize the statistical results of the ROC

curve analyses, showing the high values of the area under curve for

the variables ATN, cold ischemia time, time to effective diuresis,

and serum creatinine level at biopsy.

In all 20 kidneys ruled out for transplantation but preserved as

whole perfused kidneys, immunohistochemistry study revealed a

marked increase in PARP-1 expression between the biopsy at 0 h

and the renal cortex after 48 h of cold ischemia in Wisconsin

preserved solution (Figure 3A), and western blot study showed a

mild activation of PARP-1 after the 48 h of cold ischemia

(Figure 3B).

In a Parp1 knockout mouse IR model, we used western-blot to

demonstrate induction of PARP-1 expression in kidney cortex of

Table 3. Area under the ROC curve, statistical significance and p-values using dichotomous PARP-1 expression in human kidney
biopsies as state variable.

Variables Area Typ. error P-values Superior limit* Lower limit*

Acute tubular necrosis 0.799 0.039 0.0001 0.721 0.876

Cold ischemia time (hours) 0.882 0.031 0.0001 0.821 0.942

Time to effective diuresis (days) 0.860 0.036 0.0001 0.789 0.930

Serum creatinine levels at biopsy 0.719 0.046 0.0001 0.629 0.809

*95% Confidence Interval.
doi:10.1371/journal.pone.0007138.t003

Figure 2. Representation of ROC curves using PARP-1 expression as state variable.
doi:10.1371/journal.pone.0007138.g002

PARP-1 Kidney Transplant

PLoS ONE | www.plosone.org 5 September 2009 | Volume 4 | Issue 9 | e7138



C57BL/6 Parp1+/+, which was more evident at 48 h (Figure 4A).

After 6 h of reperfusion, 3-ABA-treated Parp1+/+ mice showed

decreased PARP-1 expression and reduced polymer activity

(Figure 4B), and no PARP-1 protein was detected by western-

blot in Parp12/2 knockout mice (Figure 4A); renal injury

appeared to be reduced in these two groups (data not shown).

Discussion

Increased PARP-1 expression was observed in nuclei of human

renal tubular cells after a variable period of cold ischemia and in

the same nuclei of patients who developed ATN. PARP-1

expression was inversely correlated with the time to recovery of

renal function. PARP-1 induction in tubular cells was previously

found in different experimental models of ischemic renal injury

[19–22], and our group recently demonstrated PARP-1 expression

in tubules of aged donors [17]. However, the present study of a

large series of kidney transplant patients supports aclose

relationship between delayed renal function and tubular nuclear

PARP-1 expression. According to our results, PARP-1 protein up-

regulation may be a possible and previously unconsidered pathway

for delayed graft function (DGF) [23,24].

A prolonged cold ischemia time is a strong risk factor for DGF,

graft loss [4,6], and long-term changes after kidney transplantation

[25]. Donor kidneys inevitably undergo a period of cold ischemia.

In our series, the periods of cold ischemia ranged from one to

thirty-six hours, with significantly longer times for non-ECDs

biopsied for suspicion of ATN (see Table 1). A gradual increase in

Figure 3. Immunohistochemistry and Western-blot PARP-1 expression in kidneys ruled out for transplantation. A) Representative
kidneys ruled out for transplantation but preserved as whole perfused kidneys, immunohistochemistry method revealed a marked increase in PARP-1
nuclear expression between the biopsy at 0 h and the renal cortex after 48 h of cold ischemia in Wisconsin preserved solution. B) Western-blot
analysis to detect PARP-1 activation in human kidneys after 48 h cold ischemia (lines 1 to 4). C+ is a pool of Poly-ADP-ribosylated-PARP proteins used
as positive control for Western-blot.
doi:10.1371/journal.pone.0007138.g003
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DGF was significantly correlated with longer cold ischemia time (r

coefficient: 0.666, p = 0.01, Pearson test). DGF varied according to

cold ischemia time and donor age. It has been reported that ECD

transplant performed with a short cold ischemia time (0–8 h) has a

DGF rate equivalent to a non-ECD transplant performed with a

20-h cold ischemia time [7].

The present study revealed a significant difference in the

intensity of PARP-1 immunohistochemical expression in renal

tubular cells between kidneys from transplant protocol biopsies

with stable renal function or ECDs without ATN and those from

non-ECD transplant patients with ATN or from ECDs with ATN

(see Table 1). Results also suggested that a decreased tubular

expression of PARP-1 was related to an earlier recovery of renal

function. In addition, transplanted kidneys in patients with serum

creatinine levels that did not fall below 1.7 mg/dL showed double

the intensity of PARP-1 expression. DGF after kidney transplan-

tation may be due to various factors [25], such as the condition of

the transplanted kidney and the compliance of the vascular system

in the renal graft or recipient. Nevertheless, these findings indicate

that the degree of PARP-1 activation may be related to the extent of

human renal tubular injury and to renal function, suggesting a

role for this enzyme in the pathogenic mechanism of ATN due to

IR. In a previous study of patients with ATN, our group found that

the kidneys tolerating a long period of cold ischemia had the highest

levels of PARP-1 (cold ischemia ,24 h, PARP-1 = 1.7160.62 vs.

cold ischemia $24 h, PARP-1 = 2.8660.35). In fact, the lowest

PARP-1 expression level (1–9% of tubular nuclei positive) was only

observed in kidneys with less than 20 h of cold ischemia (mean,

16.36 h; range, 12–20 h) [26].

The functional capacity of renal tubular cells significantly

contributes to an adequate renal function. Hence, measures taken

to ameliorate the condition of these cells may also improve the

outcome of kidney transplantation [27]. Although the chronic

inhibition of PARP activity is likely to be harmful to the cell, it has

been proposed that its transient inhibition after IR injury may

prevent cell death [15].

Identification of a specific histological biomarker for the early

diagnosis of tubular injury in renal biopsies is a current research

challenge. Zhang et al. [28] recently used immunohistochemistry

to characterize the expression of kidney injury molecule-1 (KIM-1)

in renal transplant biopsies, finding a significant correlation

between renal functional indices and KIM-1 staining intensity.

They suggested that evaluation of KIM-1 staining may serve to

optimize the diagnosis of tubular injury in allograft biopsies,

similar to our proposal for PARP-1.

In summary, these results suggest a pivotal role for PARP-1 in

the ATN of renal transplantation. We propose the immunohisto-

chemical assessment of PARP-1 in kidney allograft biopsies as a

risk marker for early detection of a possible delayed renal function.
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Figure 4. Western-blot analysis of PARP-1 expression in kidney of C57BL/6 mice. A) Presence of PARP-1 expression in kidney of C57BL/6 Parp1+/+

mice absence of PARP-1 in knockout mice; and evident increase in PARP-1 expression at 48 h of reperfusion. Note partial inhibition of PARP-1 after
inoculation with 3-ABA at 6 h of reperfusion. B) Induction of protein poly(ADP-ribosyl)ation after renal IR and its total inhibition by PARP-1 with 3-ABA. +/+:
C57BL/6 wild-type mouse; 2/2: C57BL/6 Parp-1 knockout mouse; 3-ABA: 3-aminobenzamide; C: Control; IR: Ischemia-Reperfusion; R: Reperfusion.
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