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A computational study of red 
blood cell deformability effect 
on hemodynamic alteration 
in capillary vessel networks
Saman Ebrahimi & Prosenjit Bagchi*

Capillary blood vessels, the smallest vessels in the body, form an intricate network with constantly 
bifurcating, merging and winding vessels. Red blood cells (RBCs) must navigate through such complex 
microvascular networks in order to maintain tissue perfusion and oxygenation. Normal, healthy RBCs 
are extremely deformable and able to easily flow through narrow vessels. However, RBC deformability 
is reduced in many pathological conditions and during blood storage. The influence of reduced cell 
deformability on microvascular hemodynamics is not well established. Here we use a high-fidelity, 
3D computational model of blood flow that retains exact geometric details of physiologically realistic 
microvascular networks, and deformation of every one of nearly a thousand RBCs flowing through 
the networks. We predict that reduced RBC deformability alters RBC trafficking with significant 
and heterogeneous changes in hematocrit. We quantify such changes along with RBC partitioning 
and lingering at vascular bifurcations, perfusion and vascular resistance, and wall shear stress. We 
elucidate the cellular-scale mechanisms that cause such changes. We show that such changes arise 
primarily due to the altered RBC dynamics at vascular bifurcations, as well as cross-stream migration. 
Less deformable cells tend to linger less at majority of bifurcations increasing the fraction of RBCs 
entering the higher flow branches. Changes in vascular resistance also seen to be heterogeneous 
and correlate with hematocrit changes. Furthermore, alteration in RBC dynamics is shown to 
cause localized changes in wall shear stress within vessels and near vascular bifurcations. Such 
heterogeneous and focal changes in hemodynamics may be the cause of morphological abnormalities 
in capillary vessel networks as observed in several diseases.

Microvascular networks in human body are made of the smallest blood vessels, namely, capillaries, arterioles and 
venules. The architecture of a microvascular network is complex and characterized by constantly bifurcating and 
merging vessels. The topology of networks can vary from organ to organ and differ under healthy and disease 
 conditions1–7. Moreover, these vessels are not necessarily straight, and often highly winding. The primary function 
of the microvascular network is to carry out the delivery of oxygen and other metabolites to tissues, and clearance 
of tissue waste. Red blood cells (RBC), which constitute nearly 45% of blood volume, serve as the oxygen carrier. 
RBCs also facilitate regulation of blood flow in the microcirculation by releasing adenosine triphosphate (ATP) 
which then initiates production of nitric oxide (NO), a vasodilator, by endothelial cells (EC). They also mediate 
NO bioavailability, acting as both a scavenger of vascular NO, and as a source of NO bound to  hemoglobin8,9.

An individual RBC is made of hemoglobin, which acts like a viscous fluid, and is encapsulated by a sur-
rounding viscoelastic membrane that is highly  flexible10,11. Under healthy conditions, a human RBC assumes a 
resting shape of a biconcave discoid of about 7.5–8 μm diameter. Flexibility of the membrane and fluidic nature 
of hemoglobin make RBCs extremely deformable. They can easily squeeze and flow through capillary vessels of 
significantly smaller diameter. RBC deformability, hematocrit, and cell-to-vessel diameter ratio, among other 
factors, are responsible for the diameter-dependence of apparent viscosity of blood, often referred to as the 
Fahraeus-Lindqvist  effect12,13. Under healthy conditions, arrangement of a microvascular network is optimized 
to maintain tissue perfusion and, hence, oxygen delivery. Yet, in vivo studies have shown that the distribution 
of RBCs in a network is both spatially and temporally  heterogeneous14–17. While many factors contribute to this 
heterogeneity, including dilation of individual vessel and capillary plugging by leukocytes, recent studies have 
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shown that cellular-scale phenomena also dictate RBC distribution in the network. These include, among others, 
the lingering behavior of an individual RBC at a capillary bifurcation where the cell can stretch significantly and 
reside near the stagnation-point longer than a freely flowing  cell18–23, and a radially skewed hematocrit profile 
over a vessel cross-section caused by the presence of upstream  bifurcations14,17,22–26.

Many pathological conditions, such as sickle cell disease, malaria, diabetes mellitus, and sepsis, are associated 
with a loss of RBC  deformability27–34. Cell deformability is also reduced during storage of RBC, in post-ischemic 
reperfusion and in acute  inflammation35–38. Consequently, blood viscosity increases, and shear-thinning behavior 
is reduced as shown by in vitro viscometry and microfluidic studies, as well as computer  modeling39–43. Because 
of the pathophysiological importance, many studies in the past were carried out in vivo that addressed the 
influence of RBC deformability on microvascular hemodynamics using chemically treated cells, diseased cells 
and stored cells. These studies have shown that less deformable RBCs can affect blood flow in multiple ways. 
Increased viscosity due to reduced deformability causes a higher vascular resistance and, hence, reduced tissue 
perfusion and altered oxygen  delivery36,43–48. Wall shear stress, which affects EC functioning, is also affected by 
RBC  deformability36,46. Furthermore, spatial distribution of cells across the networks was observed to become 
more heterogeneous with decreasing  deformability30,43,49. Less deformable cells tend to flow through vessels of less 
resistance resulting in a decrease in functional capillary density and capillary recruitment in response to tissue 
 hypoxia47,50. Increased capillary transit time and vessel occlusion are also reported in presence of such  cells30,49–53. 
In addition to such direct hemodynamic impact, RBC deformability can also affect flow  regulation8,9,54. Since 
ATP release is dependent on RBC deformation, the lack of ATP release can lead to a reduced NO production 
and, consequently, hindered  vasodilation8,9,46,54,55. Reduced deformability also affects oxygen release from RBCs. 
For example, diabetic RBCs have a higher  O2 affinity and less  O2 release compared to healthy  RBCs56. Hypoxia-
mediated NO release from RBC-bound hemoglobin was shown to diminish under  hyperglycemia57,58.

Concomitant with reduced RBC deformability, pathological conditions such as diabetic retinopathy and 
nephropathy, and sickle cell vasculopathy, are marked by visible morphological changes in capillary  vessels3–5,59,60. 
These changes include vessel regression, increased vessel tortuosity, and appearance of microaneurysms. These 
abnormalities appear to be spatially heterogeneous and ‘focal’. In clinical settings, they are used to determine 
the onset, progression, and severity of diseases. However, hemodynamic mechanisms, if any, underlying these 
changes remain largely unknown. We hypothesize that reduced RBC deformability causes spatially heteroge-
neous and focal changes in capillary hemodynamics, which eventually trigger vascular abnormalities that are 
also heterogeneous and focal. Although it is now clearly recognized that capillary perfusion may be attenuated 
because of diminished RBC deformability, it is generally unknown whether hemodynamic changes are focal and 
heterogeneous. Furthermore, the cellular-scale mechanisms, such as RBC flow behavior at vascular bifurcations, 
that may cause such focal and heterogeneous changes have not also been elucidated.

The objective of this study is, therefore, to quantify hemodynamic alterations in microvascular networks 
caused by reduced RBC deformability. To that end, we undertake a computational modeling approach simu-
lating flow of normal and less deformable RBCs through in silico microvascular  networks22. Previous models 
of capillary network hemodynamics have treated vessels in microvascular networks as 1D straight segments 
neglecting the geometric complexity and  details61,62. Such models also do not consider the deformation and 
flow of individual red blood cell, and instead use empirical relations to prescribe blood viscosity, as well as cell 
distribution at a vascular bifurcation. In contrast, the model used in this study is fully 3D and it retains exact 
geometric details of physiologically realistic microvascular networks, and deformation of every RBC as they 
flow through the vessels. Fully resolved computational models have been used in recent years to study RBC flow 
dynamics at vessel bifurcations. Many of such studies, however, considered single bifurcations in  isolation20,63,64. 
In contrast, the current model considers many bifurcations in sequence as they appear in vivo, as well as ves-
sel tortuosity, allowing a natural development of RBC distribution across the simulated networks resembling 
physiological distribution. Using this model, we quantify changes in RBC partitioning, heterogeneity in RBC 
distribution, perfusion and vascular resistance, and wall shear stress due to reduced deformability, and elucidate 
the cellular-scale mechanisms that cause such changes to appear in a spatially heterogeneous and focal manner.

Methodology
The computational methodology and simulation details are given in our previous  publications22,23,65. We have 
used this methodology to predict spatial and tempral heterogeneity in RBC distribution, RBC partitioning in 
bifurcations, three-dimensionality of cell-depelted layer, WSS, and WSS-gradient in physiologically realistic 
microvascular  networks66,67. We extend this method here to two new networks as shown in Fig. 1 that were 
developed following in vivo images. Specifically, network A (Fig. 1A) mimicks the capillary networks in a rec-
tangular area near the foveal avascular zone in the human retina. The corresponding in vivo image is given  in68. 
This region is the most visually acute region, and yet it is known to be greatly affected in diabetic retinopathy 
with the appearance of microaneurysms, increased vessel totuoisity and capillary vessel regression, and is, there-
fore, pathophyiologically significant. Network B (Fig. 1B) resembles an area in rat mesenteric  vasculature69. It 
should be noted that some geometric modifications, such as altering the inlets and outlets, to the in vivo images 
are needed in order to make them computaionally amenable and efficient. As evident, the in silico networks 
comprised of multiple bifurcations, mergers, and winding vessels. Multiple inlets and outlets can be present in 
the model; in addition, vessels need not lie in the same plane, as can be seen in Fig. 1A. Vessel diameters range 
from 5.5 to 24 μm. Projected tissue areas simulated are about 450× 300 µm2.

The numerical methodology is based on the immersed-boundary  methods65. The in silico networks are first 
built using a CAD software. The centerline geometry is created in 3D CAD modeling using features such as 
Spline, Line, Arc, etc. Geometric constraints are then added to achieve desired structures. Three-dimensionality 
is added to the cross-sections by extruding along the centerlines and connecting with other vessels at bifurcation 
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and merger regions. Finally, smoothness around the geometry at bifurcations and mergers is added. Vessel walls 
are discretized with a triangulated surface mesh either using the surface meshing functionality of the CAD 
software, or the open-source mesh generator Gmsh.

The network is then imported to the simulation code. A rectangular box is defined as the computational 
domain that encloses the network. The domain is discretized with rectangular Cartesian mesh of approximately 
160 million points. As is the case for immersed-boundary methods, the governing equations of the fluid motion, 
which are the continuity and unsteady Stokes equations for the present study, are solved in the entire box. The 
surface mesh on the vessel walls separates the vessel interior (lumen), which is the region of interest, from the 
exterior. Vessels are assumed to be nondeformable, and the no-slip condition is implemented at the wall using 
the sharp-interface ghost-node method. A projection method is used to obtain the fluid velocity and pressure 
in conjunction with a staggered-grid finite-volume/spectral approach.

Each RBC is modeled as a sack of fluid enclosed by a zero-thickness hyperelastic membrane, and having a 
biconcave discocyte resting shape with an end-to-end distance of 7.8 μm10,11. The RBC membrane is assumed 
to possess a resistance against shearing, area dilation, and bending. The shearing deformation and area dila-
tion are modeled using the strain energy function developed by Skalak et al.70, and the bending resistance is 
modeled following  Helfrich71. The viscosity of the hemoglobin and plasma is taken to be 0.006 and 0.0012 Pa-s, 
 respectively11. Full 3D deformation of the cells is predicted and coupled to the fluid flow via the immersed-
boundary method. The governing flow equations are solved both inside and outside the cells, taking into con-
sideration the viscosity difference of two fluids. Each RBC surface is discretized using 5120 triangular elements, 
and a finite-element method is used to compute the elastic stresses in the membrane. Multiple parameters 

Figure 1.  (A,B) Representative instantaneous visualizations showing RBC flow and distribution in networks 
A and B. Arrows indicate inlets/outlets. (C) Flow rates ( Q , black, blue) and hematocrits ( H , red, green) in two 
representative vessels are shown to indicate the flow reached a quasi-steady state.
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determining both morphological and mechanical properties of RBC may change during disease or storage. Here 
we consider one property, namely, the 2D shear elastic modulus GS of the cell membrane. For ‘normal’ healthy 
cells, we take GS = 5× 10−6  N/m10,11. For less deformable cells, hereafter termed ‘stiffer’ cells, we assume a 10 
times higher value, which agrees with a recent experimental measurement of elastic modulus of stored  RBCs35. 
Other parameters, namely, the cell volume and resting cell shape, hemoglobin viscosity, and membrane bending 
modulus are taken to be identical for normal and stiffer cells. It should be noted that our focus is not to address 
hemodynamics under any specific disease condition or stored RBCs; rather we consider a generic study by 
increasing the RBC membrane elastic modulus as a means of reducing the cell deformability.

Blood flow in the model networks is driven by specifying either a pressure or flow rate boundary condition. 
In total, six simulations are performed: Simulations with the pressure boundary condition for network A where 
a physiological pressure difference of 4.8 mmHg is specified between the inlet and outlet; simulations with the 
flow rate boundary condition for networks A and B with a physiological flow rate of 1.2–1.3 nL specified in the 
main feeding  artery10. For each of these cases, simulations are performed for normal cells and stiffer cells. RBCs 
are injected at the feeding artery with an average sustained hematocrit of 30%. They are naturally distributed by 
the flow throughout the networks. At any instant, network A contains about 750 RBCs, and network B about 
1150 RBCs. The number of RBCs is kept nearly the same for normal and stiffer cells. Hemodynamic quanti-
ties reach a quasi-steady state after the initial 0.2–0.4 s of physical flow time, after which the data collection is 
performed for about 0.8–1 s. The 3D velocity and pressure fields are stored every 5 ms, and the cell shapes are 
stored at every 0.5 ms. Resulting average blood velocity in the feeding arteriole is about 5 mm/s and predicted 
velocities in capillary vessels range ∼ 0.7–3 mm/s, in agreement with in vivo  data10,72,73. A sample flow rate and 
hematocrit versus time plot for two vessels in a network is given in Fig. 1c, to show that hemodynamic quantities 
are converged to a quasi-steady state.

It may be noted that our simulation technique and the method of analysis are similar to our previous 
 studies22,23,66,67. However, in those studies we did not address the specific question of the effect of reduced RBC 
deformability on network-scale hemodynamics. Also, the in silico networks used here are new, and geometrically 
(and numerically) more complex than those considered previously.

Quantitative validation for network hemodynamic parameters for normal RBCs has been presented in our 
previous  studies22,66. Additional comparison against in vivo or in vitro studies is noted in later sections wherever 
possible.

Results
Visualizations of instantaneous RBC distribution from the two networks are presented in Fig. 1. Large deforma-
tion of RBCs in capillary vessels, and a wide range of shapes and flow patterns as observed in vivo can also be 
observed in the simulations. These include bullet/parachute and slipper shapes, and single-file flow in capillary 
vessels and multi-file flow in larger vessels. Spatially heterogeneous distribution of RBCs which is a hallmark of 
microvascular blood flow in vivo is also observed across each simulated network as some capillary vessels are 
seen to be filled with cells, while some vessels are sparsely populated. Despite a reduction in cell deformability, 
we did not observe a complete flow blockage in any capillary vessel.

Average cell length in each vessel is shown in Fig. 2a. Cell length is computed as the maximum end-to-end 
distance. In all vessels, average cell length is reduced as a result of reduced deformability. Interestingly, a non-
monotonic trend of the cell length with respect to vessel diameter is predicted for both healthy and stiffer cells. 
Average lengths are higher in vessels of diameter � 6 μm and � 12µ m. The minimum cell lengths are predicted in 
diameter range ∼ 7–11 μm. For vessel diameter less than ∼ 7 μm, cell length increases with decreasing diameter, 
and vice versa in the range � 12µ m. Figure 2 also shows deformed cells shapes in example vessels of the networks 
to explain such trends. In vessels less than ∼ 6 μm diameter, cells are significantly extended due to the geometric 
confinement resulting in higher length (Fig. 2b). In vessels of diameter � 12µ m, cells flow in double or multi-file 
manner. This causes the ones flowing near the vessel wall to be stretched due to locally higher shear rate, resulting 
in higher end-to-end cell length (Fig. 2c). In the intermediate range ( ∼ 7–11 μm diameter), cell elongation is less 
because of reduced confinement and single-file flow (Fig. 2d). Additionally, at a higher hematocrit in such vessels, 
cells flow “back-to-back”, causing a reduction in cell length (Fig. 2e). Despite the general trend as described, a 
strong heterogeneity in cell length in vessels of similar caliber can be noted. One reason for heterogeneity in cell 
length is a heterogeneity in hematocrit and flow rate in vessels of similar caliber as discussed below.

RBC distribution and partitioning. Figure  3A shows time-averaged hematocrit H predicted for each 
vessel in the two networks and for all boundary conditions for normal RBCs. As seen, H varies from less than 
0.1 to above 0.4, with the mean about 0.21–0.24, as is the case in vivo, where average hematocrit is known to be 
less than systematic  hematocrit10,14–17,24. A high degree of spatial heterogeneity is noted here, with vessels of same 
caliber having very different hematocrits. Maximum degree of heterogeneity is observed for terminal capillar-
ies. Spatial maps of H in network A for the flow rate and pressure boundary conditions are shown in Fig. 3C,D, 
respectively. Geographic heterogeneity of H is evident here which arises due to the natural distribution of cells 
in our simulations, as is the case in vivo.

To quantify the effect of RBC deformability on RBC distribution across the networks, we compute percentage 
change of time-averaged hematocrit in each vessel as �H = (Hstiffer −Hnormal)/Hnormal   ×100, and present in 
Fig. 3B. A range of ± 40% is predicted for �H with the terminal capillaries showing the highest changes. Positive 
and negative values indicate, respectively, that while H increases in some vessels, it decreases in others. A high 
degree of heterogeneity is also seen in �H , with vessels of same caliber showing different degree of changes. 
Maps of �H are given in Fig. 3E,F for network A, which shows that the changes are not localized to specific geo-
graphic regions. Note that the spatially averaged �H in our simulations is nearly zero, since the total numbers of 
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RBCs are nearly the same for both normal and stiffer cells. Therefore, a network-wide increase/decrease of H is 
not predicted, but a significant change at the level of individual vessel is predicted. Coefficient of variation of H 
across all vessels is 0.26–0.32 for normal cells and 0.29–0.39 for stiffer cells, depending on the specific network 
and boundary condition. Thus, despite several individual vessels showing a significant change in H as a result 
of reduced RBC deformability, heterogeneity of H in the entire networks in presence of stiffer cells increase by 
a smaller degree compared to normal cells. These results indicate that despite the total number of RBCs and the 
feeding hematocrit being fixed in our simulations, stiffer RBCs take different pathways as compared to normal 
RBCs.

We now investigate the cellular-scale mechanisms that cause large hematocrit changes in individual vessels 
as predicted above. For blood vessels in a network, hematocrit is determined by how cells are distributed into 
the downstream (daughter) vessels as they flow through a bifurcation. This is referred to as cell partitioning, and 
for a bifurcation it is primarily dictated by the ratio Q∗ of the flow rate in a daughter vessel to that in the mother 
(upstream)  vessel10,12,14,17–26. For vessels of diameter comparable to the size of an individual RBC, the partitioning 
in general is not proportional to the flow rates; rather it is disproportional, with the daughter vessel having the 
higher flow rate ratio getting even a higher fraction of RBCs. Previous studies and our own modeling have shown 
that while this is generally the case, under certain conditions however the opposite behavior can be observed in 
which the daughter vessel with the higher flow fraction can get a lower fraction of  cells14,19–23. Accordingly, the 
former is termed as regular partitioning and the latter as reverse partitioning.

Figure 4a shows the present results for time-averaged cell partitioning in the two networks, for both normal 
and stiffer cells. Data is presented in terms of RBC flux ratio N∗ , which is the ratio of the RBC flux in a daughter 
vessel to that in the mother vessel at a bifurcation, versus the flow rate ratio Q∗ . Note that our simulations predict 
time-dependent RBC flux ratio and flow rate ratio, from which the time averages are obtained. Each data point 
in the plot represents an individual bifurcation in the two networks for each boundary condition simulated. As 
seen for both cell types, while most bifurcations show the regular partitioning ( N∗ > Q∗ , if Q∗ > 0.5 ), a small 
number of them shows the reverse partitioning ( N∗ < Q∗ , if Q∗ > 0.5 ). Further, the data scatter is qualitatively 
similar for both types of RBCs, implying that there is no qualitative change in overall partitioning behavior at 
the network scale. However, the data points for different cell types are not overlapping, implying that differences 
exist in cell partitioning at the level of individual bifurcations.

To quantify the degree of alteration in time-average partitioning at individual bifurcations, we compute 
�N−Q = (N∗ − Q∗)stiffer − (N∗ − Q∗)normal . The quantity (N∗ − Q∗) is a measure of degree of disproportionality 
in RBC partitioning; hence, �N−Q provides a measure of change in disproportionality of RBC partitioning due 
to change in cell deformability. A positive value of �N−Q means the partitioning becomes ‘more regular’; that is, 
a bifurcation exhibiting the regular partitioning for normal RBCs becomes more disproportionate in presence 
of stiffer RBCs, and a bifurcation with the reverse partitioning either switches to the regular partitioning or 
becomes closer to proportionate. In contrast,  �N−Q < 0 implies that the partitioning becomes ‘less regular’ or 
‘more reverse’; that is, a bifurcation showing the regular partitioning in presence of normal cells moves closer to 
being proportionate or switches to the reverse partitioning for stiffer cells, while a bifurcation with the reverse 
partitioning becomes more disproportionate. Figure 4b shows that �N−Q > 0 for about 65% bifurcations, ∼ 0 
for 10%, and < 0 for 25% bifurcations, implying that for majority of the bifurcations the partitioning becomes 

Figure 2.  (a) Average cell length in each vessel as a function of vessel diameter for normal (green) and stiffer 
(red) cells. (b–e) show cell shape in vessels of different diameters. Vessels in (d,e) have same diameter but 
different hematocrit, 0.22 and 0.37, respectively.
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‘more regular’ in presence of stiffer cells. The figure also shows that the values of �N−Q are comparable to 
(N∗ − Q∗)normal , implying that the amount of change in disproportionality is similar to the degree of dispro-
portionality itself, and hence, is significant.

The partitioning at any bifurcation is determined by the dynamics and interactions of the cells as they flow 
through the bifurcation. Because this is a highly dynamic process, it causes the partitioning behavior also to be 
time-dependent. Figure 5a shows the time-dependent partitioning plotted as N∗(t) versus Q∗(t) for one bifurca-
tion. Each data point in this plot represents an average over an interval of 0.1 s. For this specific bifurcation, the 
time average partitioning is a regular partitioning. As seen, the time-dependent partitioning however fluctuates 
between the regular and reverse types. Such a fluctuating partitioning happens to be the case for most bifurca-
tions, and for both normal and stiffer cells. Figure 5b shows the fraction of the total simulated time, fnormal and 
fstiffer , that the time-dependent partitioning becomes reverse for each bifurcation, for normal and stiffer cells, 
respectively. This fraction is simply the ratio of the number of data points below the N∗ = Q∗ line to that of 
the total number of points in the time-dependent partitioning plot, since the data points are sampled at equal 
intervals. As seen, for most bifurcations a time-dependent regular partitioning occurs more frequently if the time-
average partitioning is also of the regular type ( f < 0.5 if N∗ − Q∗ > 0 ), and vice versa ( f > 0.5 if N∗ − Q∗ < 0 ). 
Exceptions are noted in a few bifurcations for which the time-average behavior is regular, but reverse partitioning 

Figure 3.  (A) Time-averaged hematocrit H for normal cells in each vessel of both networks and for all 
boundary conditions (O—network A, flow-rate condition; ∇—network A, pressure condition; �—network B, 
flow-rate condition). (B) Hematocrit change �H in each vessel caused by reduced deformability. (C,D) Map of 
H in network A for flow-rate (Q) and pressure (P) boundary conditions. (E,F) Map of �H.
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occurs more frequently ( f > 0.5 if N∗ − Q∗ > 0 ) . Interestingly, no bifurcation is observed to have a time-
averaged reverse partitioning but frequent time-dependent regular partitioning ( f < 0.5 if N∗ − Q∗ < 0).

Figure 5c shows the effect of cell deformability on frequency of time-dependent reverse partitioning, com-
puted as fstiffer − fnormal , versus the change in the time-average partitioning �N−Q . As seen, for most bifurcations, 
cell deformability affects the time-dependent and time-average partitioning in a similar manner. If the time-
average partitioning becomes more regular ( �N−Q > 0 ) in presence of stiffer cells, the frequency with which 
the time-dependent partitioning becomes reverse decreases ( fstiffer − fnormal < 0 ), and vice versa. Exceptions 
are noted for a few bifurcations for which the time-average partitioning can be more regular ( �N−Q > 0 ), while 
the frequency of the time-dependent reverse partitioning also increases ( fstiffer − fnormal > 0).

We now seek to establish a link between the time-dependent partitioning alternating between regular and 
reverse types and the dynamics of individual RBCs as they flow through a bifurcation. For both normal and stiffer 
cells, one mechanism by which the partitioning behavior is altered is the cell ‘lingering’. Under this mechanism 
as an RBC approaches the apex of a bifurcation, it deforms significantly and straddles around the apex where 
the flow resembles a stagnation point/extensional  flow18,20–23. The cell can remain at this location for some time 
as other cells flow around it. Depending on the geometry of the bifurcation, flow rates and hematocrits in the 
daughter vessels, and the shape of the lingering cell, various situations can arise as follows. The lingering cell can 
momentarily block the higher flow rate branch causing more cells upstream to enter the lower flow rate branch as 
shown in Fig. 6a–e. At times, the lingering cell itself can enter the lower flow rate branch if an increasing number 

Figure 4.  (a) RBC partitioning at each bifurcation in the two networks for both boundary conditions. Green 
and red circles represent normal and stiffer cells, respectively. (b) Change in RBC partitioning defined as 
�N−Q = (N∗ − Q∗)stiffer − (N∗ − Q∗)normal . Inset shows % of total bifurcations for which �N−Q < 0,∼ 0, or 
> 0.

Figure 5.  (a) Time-dependent partitioning at one selected bifurcation in a simulated network. Each data 
point represents an average over 0.1 s time window. (b) Fraction of time that the time-dependent partition is 
reverse at a bifurcation for normal ( fnormal , green symbols) and stiffer ( fstiffer , red symbols) cells. (c) Effect of 
cell deformability on frequency of time-dependent reverse partitioning, computed as fstiffer − fnormal , versus the 
change in time-average partitioning �N−Q.
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of cells enter the higher flow rate branch raising the flow resistance and decreasing the flow rate. Both situations 
cause the lower flow rate branch to intermittently receive a higher fraction of cells, leading to a time-dependent 
reverse partitioning. Conversely, a lingering cell can block the entrance to the lower flow rate branch, thereby 
increasing the number of cells entering the higher flow rate branch and causing a time-dependent regular parti-
tioning, as shown in Fig. 6f–j. Both of these opposite effects of lingering are observed for normal and stiffer cells. 
However, lingering causing a time-dependent reverse partitioning is generally seen to occur less in presence of 
stiffer cells, while lingering causing a time-dependent regular partitioning is observed to occur more.

We now quantify the effect of RBC deformability on the lingering. From the simulation data, we compute the 
fraction of the total number of flowing cells at any bifurcation that linger, namely,  γnormal and γstiffer , for normal 
and stiffer RBCs, respectively. The difference �γ = γstiffer − γnormal gives the change in the fraction of lingering 
RBCs due to deformability change which is shown in Fig. 7a. As seen, �γ < 0 for more than half of the bifurca-
tions, implying a reduction in the number of lingering cells as a result of reduced deformability. This generally 
happens at Y-shaped bifurcations where a more deformable cell as it approaches the bifurcation can significantly 
stretch so that two ends of the cell extend into both daughter vessels, before it can eventually enter one. This 
causes a greater number of deformable cells lingering at these bifurcations. As deformability decreases, RBCs do 
not significantly stretch thereby reducing the number of lingering cells at Y-shaped bifurcations. In contrast, for 
about 28% bifurcations �γ > 0 , implying a greater number of cells lingering as deformability decreases. This 
second situation generally happens when a capillary vessel with a relatively smaller diameter comes off the side 
of a larger arteriole, and stiffer cells tend to get ‘stuck’ at the bifurcation due to the geometric constraint before 
eventually entering the side branch.

To investigate how the change in the lingering dynamics caused by RBC deformability affects the cell parti-
tioning, we plot �N−Q versus �γ in Fig. 7a. As seen, for about half of the bifurcations �N−Q > 0 and �γ < 0 , 
meaning that partitioning becomes more regular for the stiffer RBCs because of the reduced lingering events. 
That is, a reduced degree of lingering of the stiffer RBCs causes the higher flow rate branch to receive an even 
higher fraction of RBCs compared to the normal cells. Under the same mechanism, an increased lingering of 
stiffer cells can lead to more reverse partitioning ( �N−Q < 0 and �γ > 0 ) which however happens for a very 
few bifurcations. This situation can arise when a stiffer lingering cell partly blocks the higher flow branch so that 
the RBC flux ratio to that branch is reduced more than the flow rate ratio in presence of stiffer cells. Conversely, 
for about 25% bifurcations, �N−Q > 0 and �γ > 0 , implying that partitioning becomes more regular due to 
increased lingering of stiffer cells. This situation is observed when a small capillary vessel comes off the side of 
a larger arteriole, as noted above. A stiffer lingering cell at such bifurcations can partly block the smaller side 
branch which allows no cell but only plasma to enter the side branch, causing the RBC flux ratio for the higher 
flow branch to increase more than the flow rate ratio.

Next, we seek to establish a link between the hematocrit change in individual vessel with the change in the 
lingering dynamics caused by RBC deformability. For this, we compute hematocrit change in the higher flow rate 
branch at any bifurcation, defined as �HHF = HHF

stiffer −HHF
normal , and consider its dependence on �γ as 

Figure 6.  Alteration of time-dependent partitioning by cell lingering at a bifurcation. (a–e): A time-dependent 
reverse partitioning is caused by a cell momentarily blocking the higher flow rate branch of a bifurcation 
(right branch), causing a drop in N∗(t) below Q∗(t) in the time window marked by shading. (f–j) A lingering 
cell (yellow) blocking the lower flow rate branch (left branch) causing a time-dependent regular partitioning 
(shaded region).
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shown in Fig. 7b. For about half of the bifurcations, the data shows that �HHF > 0 and �γ < 0 , implying that the 
reduced degree of lingering of stiffer RBCs causes an increase in hematocrit in the higher flow rate branch. This 
mechanism is observed to be the dominant one in many vessels where large changes in hematocrit are predicted. 
Under the same mechanism, an increased degree of lingering of stiffer RBCs causes a decrease in hematocrit 
( �HHF < 0 and �γ > 0 ) in the higher flow rate branch; this however happens only for a few bifurcations. For 
about 20% bifurcations, we predict �HHF > 0 and �γ > 0 , implying that a greater degree of lingering of stiffer 
RBCs causes an increase in hematocrit in the higher flow rate branch. As noted before, this situation occurs 
when a capillary vessel of small diameter emanates from the side of a larger arteriole, and a stiffer lingering cell 
blocks the passage of RBCs but allows plasma flow into the side branch.

This analysis shows that in most vessels the hematocrit change is directly caused by the change in the linger-
ing dynamics as result of the loss of cell deformability which also causes the partitioning behavior to change.

Additional mechanisms of hematocrit change. Apart from the cell lingering, two additional mecha-
nisms are identified that affect partitioning behavior at a bifurcation and hematocrit in a daughter vessel, as 
discussed below.

The first mechanism is related to the skewness of hematocrit distribution over the cross-section of a vessel, 
in conjunction with the deformability-induced cross-stream migration of cells, and is shown in Fig. 8a,b. Here 
the hematocrit profile at the beginning of the feeding vessel is skewed to the left side due to cell lingering at the 
upstream bifurcation. As the cells flow through the feeding vessel, the hematocrit skewness decreases because 
of center-ward cross-stream migration of deformable cells. This migration is faster for more deformable cells 
than stiffer  cells74. As such, the hematocrit profile at the entrance to the downstream bifurcation remains more 
skewed toward the left daughter vessel for the stiffer cells compared to the normal cells. This leads to an increase 
of hematocrit ( ∼ 30%) in this daughter vessel in presence of stiffer cells.

The second mechanism is related to vessel curvature effect. It was shown in our prior studies that deform-
able cells in a curved vessel migrate toward the side with higher curvature (i.e., the inner side), and the rate of 
such curvature-induced migration decreases with reduced  deformability67,75. As a result, stiffer cells tend to flow 
further away from the inner side of a curved vessel than the normal cells. This can cause a hematocrit reduction 
for the stiffer cells in the daughter vessel that branches off from the inner side of the feeding vessel, as shown 
in Fig. 8c.

Time-dependent behavior. Alteration to the time-dependent partitioning due to reduced deformability 
also affects the flow and hematocrit variations in each vessel over time. As noted before, data scatter in N∗(t)
—Q∗(t) plot represents the time-dependent partitioning. Figure 9a compares the time-dependent partitioning 
in two bifurcations with different feeding vessel diameters ( Dfeed ). Significant scatter is predicted for Y-shaped 
bifurcations for which the feeder vessels have relatively smaller diameters, and the two daughter vessels are of 
similar diameters. In contrast, the scatter is much less for a feeder vessel of larger diameter from which a smaller 
side branch emanates. This implies that partitioning undergoes a higher degree of fluctuations in time, and devi-
ates more from the average for smaller feeder vessels than larger ones. This happens because a higher degree 
of cell lingering occurs for the former case than the latter. This trend is observed for both normal and stiffer 
cells. To quantify the degree of scatter in the time-dependent partitioning, we compute the standard deviation 

Figure 7.  (a) Change in RBC partitioning �N−Q versus change in the fraction of lingering RBCs �γ . (b) 
Change in hematocrit �HHF = HHF

stiffer −HHF
normal in the higher flow rate daughter vessel of a bifurcation 

versus �γ.
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as σN ,Q =

√

∑M
i=1

{

(N∗(t)−N∗)2+(Q∗(t)−Q∗)2
}

M  , where M is the total number of data points in the N∗(t)—Q∗(t) 
plot. This quantity is plotted in Fig. 9b as a function of feeder vessel diameter for both cell types. As seen, σN ,Q 
decreases with increasing Dfeed , consistent with the discussion above.

Furthermore, Fig. 9b shows that in most vessels, σN ,Q is predicted to be higher for the stiffer cells. At first this 
result may seem contradictory to the previous observation that the stiffer cells exhibit less lingering; however, 
these two are consistent. Because of reduced lingering of the stiffer cells and increased regular partitioning, a 
small increase in Q∗ in a daughter vessel can cause a larger change in N∗ since the cells would enter this vessel 
without lingering. Similarly, for a daughter vessel getting the smaller fraction of Q∗ and N∗ , a small reduction in 
Q∗ would cause a larger reduction in N∗ for the stiffer cells than for the normal cells. Both scenarios are consistent 
also with the previous observation that the partitioning becomes more regular with the stiffer cells.

Such time-dependent partitioning affects the flow rate and hematocrit fluctuations in daughter vessels. We 
compute coefficients of variation of flow rate and hematocrit fluctuations ( Q′ and H ′ , respectively), and plot 
them in Fig. 9c,d as functions of vessel diameter, and for both cell types. We find that the trends of Q′ and H ′ 
with respect to vessel diameter and cell deformability follow that of σN ,Q ; that is, fluctuations in flow rate and 
hematocrit increase with decreasing vessel diameter and cell deformability. Therefore, such fluctuations are 
consequence of the time-dependent partitioning and alteration of the lingering behavior at bifurcations.

Perfusion. Next, we consider the time-average flow rate. Figure 10a,b shows maps of % change in vessel flow 
rate defined as ΔQ =  (Qstiffer—Qnormal)/Qnormal for network 1 obtained for simulations using flow rate boundary 
condition and pressure boundary condition. Figure 10c shows the data as a function of vessel diameter for both 
networks. For the pressure boundary condition, perfusion decreases in all vessels due to an increase in flow 
resistance caused by the stiffer cells. Although a reduction in perfusion throughout the network is observed, the 
change is heterogeneous, as can be seen from the map. The maximum decrease which is about 30% is observed in 
some capillary vessels located farthest from the inlet. For the flow rate boundary condition, the mean flow at the 
network scale does not change since the flow rate at the feeding artery is kept same for both cell types. However, 
individual vessels exhibit spatially heterogeneous changes, with some vessels showing a reduction in flow rate 
while others showing an increase. For both boundary conditions, the spatial heterogeneity in perfusion is higher 
in the vessels with smaller diameter.

Two possible mechanisms can cause the predicted heterogeneity in the perfusion change: (i) The alteration of 
RBC distribution due to the change in their deformability as predicted by our model can result in altering the flow 
resistance at individual vessel, and hence its perfusion; (ii) even if there is no alteration of the RBC distribution, 
the network-wide heterogeneity of hematocrit itself can cause different degree of changes in the flow resistance, 
and hence, vessel perfusion. For example, a vessel with a higher hematocrit would see a greater increase in the 
flow resistance due to the loss of RBC deformability than a vessel with a lower hematocrit. To further explore 
these two mechanisms, we plot % change in flow resistance ( �R ) in each vessel against % change in hematocrit 
( �H ) in Fig. 11a. Predicted �R ranges from about ‒10% to 70% as �H varies from about ‒40% to 20%. As seen 
in the plot, when �H ∼ 0 , �R is predicted to be about 20‒50%. This accounts for the effect of RBC deformability 
only. For nearly 1/3rd of vessels, �R is less than this range due to a decrease in hematocrit, while a significant 

Figure 8.  Additional mechanisms of hematocrit change. (a,b) Deformability causes a center-ward migration 
of RBCs, reducing the skewness of hematocrit profile more for normal cells than for stiffer cells. Hematocrit 
profiles at locations 1 (solid lines) and 2 (dash-dot lines) are shown in (b) for normal (green) and stiffer (red) 
RBCs. Nearly 30% increase in H occurs by this mechanism in the vessel marked by*. (c) Vessel curvature effect. 
Trajectories of normal (green) and stiffer (red) RBCs are shown. Curvature effect causes a faster migration of 
more deformation cells toward the inner side of the vessel with the higher curvature. For the bifurcation selected 
here, this causes a smaller number of stiffer cells entering the vessel marked by *. Arrows indicate flow direction.
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number of vessels exhibit higher �R due to an increase in hematocrit. Figure 11b presents �R as a function of 
vessel diameter. The scatter of the data implies a strong heterogeneity of �R across the network, with vessels 
of similar caliber showing large differences in �R . Generally, the smaller capillaries show more heterogeneity, 
since the hematocrit change is also more heterogeneous in such vessels as shown previously. Figure 11c shows a 
spatial map of �R across the network. This illustrates geographically heterogeneous nature of �R . Some of the 
peripheral capillary vessels exhibit the highest increase in the flow resistance. When compared to the map of 
�H , a spatial correlation can be observed between the distribution of  �R and �H.

Generally, the flow resistance in a vessel, which can be expressed as effective blood viscosity, depends on vessel 
diameter, shear rate and hematocrit. It can also be related to the cell-free layer which is developed primarily due 
to center-ward hydrodynamic force acting on a cell and dispersion effect due to cell–cell interaction. The cell-
free layer (CFL) near the wall provides a region of low resistance, while the RBC-rich region provides a higher 
resistance. In Refs.81,82 it is shown that for vessel diameter d ≈ 10—100 µ m, a vessel length of 25 d is required 
to reach a converged CFL. Most vessels considered in the current in silico networks have lengths less than this, 
in agreement with in vivo  data10,83. Furthermore, Ref.81 also noted that RBC dispersion effect would be small for 
d � 20 μm, which is also the case for most vessels in our networks. Additionally, most vessels are not straight. 
Therefore, CFL is not expected to be converged as shown also in our previous  work67, and the flow resistance 

Figure 9.  (a) Scatter of time-dependent partitioning for two different bifurcations: (i) smaller feeding capillary 
vessel ( Dfeed = 8.5 µ m) bifurcating to nearly similar daughter vessels (6.5 µ m) in Y-shape. (ii) larger feeder 
vessel ( Dfeed = 17.5 µ m) having a smaller side branch (6 µ m). Green and red indicate normal and stiffer cells, 
respectively. (b) Standard deviation σN ,Q of time-dependent partitioning w.r.t. the average as a function of feeder 
diameter. (c,d) Coefficient of variation of time-dependent hematocrit and flow rate, respectively, in each vessel 
as a function vessel diameter.
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predicted here may be higher than a long straight vessel. In our simulations, we kept the hemoglobin to plasma 
viscosity ratio as 5 for both normal and stiffer cells. Ref.82 observed that the influence of hemoglobin viscosity 
in this range has only a weak effect on CFL and flow resistance.

Wall shear stress. Next, we consider how the wall shear stress (WSS) is altered in the networks due to RBC 
deformability. Because of the unsteady nature of the RBC flow, the actual WSS varies in space and time. However, 
our focus here is on the time-averaged WSS. It is determined from the time-averaged velocity field by computing 
the traction vector t = τ • n at the wall, where τ is the stress tensor, and n is the unit normal vector. We find that 
the axial component ts = µ∂us/∂r of t  is the dominant one, and hence refer to it as the WSS and denote by τ . 
Here s and r represent the axial and radial directions, respectively, at any location on a vessel surface. Due to the 
presence of the plasma layer in the vicinity of the vessel wall, the plasma viscosity (which is the same for stiffer 
and normal cells) is used in the above expression for ts.

Because of the geometric complexity of the microvascular networks, the time-averaged WSS distribution 
is 3D in nature varying in both axial and circumferential directions, even within a single vessel. The complete 
3D distribution is given in Fig. 12a as predicted for the network A for normal RBCs. In agreement with in vivo 
observations, WSS is seen to be higher in vessels on the arterial side than the venous side and is the highest in 
capillaries (see Ref.66 for comparison of predicted WSS with in vivo data). Additionally, WSS is predicted to be 
higher at capillary bifurcations. Further, a wide variability in WSS is observed from one vessel to another within 
the same group. Though the in vivo measurements and theoretical predictions based on 1D networks models of 
capillary blood flow provide a constant value of WSS per  vessel62,76,77, our results reveal that WSS within a vessel 
has a strong 3D spatial variation which causes large spatial gradients in axial and circumferential directions. We 

Figure 10.  (a,b), Change is perfusion ΔQ =  (Qstiffer—Qnormal)/Qnormal in network 1 obtained from simulations 
with pressure (P-BC) and flow rate boundary conditions (Q-BC). (c) ΔQ as a function of vessel diameter from 
all simulations.

Figure 11.  (a) Percentage change in flow resistance per vessel against percentage change in hematocrit. (b) 
Percentage change in flow resistance against vessel diameter. (c) Distribution of �R across the network.
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also compute spatially averaged WSS for each vessel as 
∫∫

τdA/A where A is the vascular surface area. This is 
presented in Fig. 12b as a function of vessel diameter for all simulations with normal RBCs. The predicted WSS 
in capillary vessels range from about 10 to 90 dyn/cm2 which agrees with in vivo  data76,77. Also, WSS increases 
with decreasing diameter, in agreement with in vivo observations and theoretical prediction, but unlike Mur-
ray’s  law62,66,76,77. Similar variability of WSS and 3D distribution are observed when stiffer RBCs are considered.

We now consider the influence of cell deformability on WSS alteration. The relative change in WSS in pres-
ence of stiffer cells, defined as �τ = (τstiffer − τnormal)/τnormal , is presented in Fig. 12c,d. As seen,  �τ is in the 
range ±25% . These changes are highly localized in some vessels or in regions within a specific vessel where they 
can vary from large positive to negative values. No definitive correlation is found between �τ and τ . However, 
three generic patterns can be inferred from the spatial distribution of �τ as follows: (i) A large positive �τ may 
occur around the apex of a bifurcation, which can extend further downstream in a daughter vessel along the 
side that is closer to the apex. (ii) For a curved vessel, a large positive �τ may also occur along the exterior side 
(i.e., the side with the higher radius of curvature). (iii) A negative �τ occurs around capillary bifurcations in 
regions upstream and away from the apex. Next, we investigate the cellular mechanisms underlying such local-
ized changes in WSS. It may be noted that because of such strongly varying �τ , spatially averaged �τ over an 
entire vessel has a smaller range.

The mechanism that causes the first of the above three patterns of localized large change in WSS is illustrated 
in Fig. 13a–c. If the average flow rate is kept fixed, the presence of RBCs can increase WSS in comparison to that 
in the presence of pure plasma flow by causing a blunt velocity profile. An increased proximity of the cells to the 
vessel wall causes a further increase in WSS by increasing the velocity gradient. For the bifurcations and vessels 
where the first mechanism is manifested, stiffer cells are observed to flow at closer proximity to the apex of the 
bifurcations and to the sides of the daughter vessels that are closer to the apex. Additionally, these bifurcations 
show a very small degree of lingering ( γ � 0.1 ) for both types of cells. Together, these causes the velocity profile 
in presence of stiffer cells to be more skewed toward the side of the vessel that is closer to the apex, resulting in 
a higher WSS.

The mechanism by which a large positive �τ appears in a curved vessel is illustrated in Fig. 13d–f. The vessel 
curvature causes a cross-streamline migration of deformable cells toward the interior side of the vessel (i.e., side 
with higher curvature) as discussed before. The migration rate decreases with a reduction of cell deformability. 
As a result, the stiffer cells tend to flow closer to the outer side of the vessel than the normal cells. This causes the 
velocity profile near the outer side to be more blunt, resulting a higher WSS with the stiffer cells.

The third pattern characterized by a large negative �τ is observed at bifurcations where significant cell lin-
gering is observed for both types of cells, and a higher degree of lingering for normal cells. Continued lingering 
causes a partial blockage around the apex displacing the freely flowing cells further toward the opposite walls, 
and causing a higher WSS in these regions. Since stiffer cells linger less at these bifurcations, this mechanism 
leads to a reduced WSS in these regions in presence of such cells.

Figure 12.  (a) 3D distribution of time-averaged WSS for normal RBCs. (b) Spatially averaged WSS per vessel in 
all simulations with normal RBCs. (c,d) relative change of WSS with stiffer cells. Regions showing local change 
in WSS are marked; (i) WSS increased at bifurcations, (ii) WSS increased in curved vessels, (iii) WSS decreased 
near bifurcations.
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Discussion and conclusion
To predict blood flow in microvascular networks, previous theoretical models have often used 1D network flow 
 models61,62,69. While such models allow consideration of large microvascular networks comprised of many blood 
vessels, they treat individual vessel as 1D segments. As such, these models cannot predict variation of hemody-
namic parameters, such as velocity and hematocrit profiles over the vessel cross-section and variation of wall 
shear stress over the vessel surface and around vascular bifurcations. Such 3D variations cause local gradients in 
hemodynamic forces that can be sensed by the endothelial cells lining the vessel lumen and cause EC response 
that may be ‘focal’ in nature. Additionally, such 1D network models do not explicitly model deformation and 
flow of RBCs through the vessels, and therefore, may have limitations to study hemodynamic alteration caused by 
reduced RBC deformability as in sickle cell disease, diabetes, sepsis, and during transfusion of stored  blood27–38. 
To overcome such limitations, here we have used a high-fidelity computational model of network blood flow 
that retains complete 3D geometric details of blood vessels and vascular bifurcations as observed in vivo, and 
accurately predicts 3D deformation of each of nearly a thousand flowing red blood cells. The in silico networks 
considered in our model span over tissue areas that are comparable to that of in vivo measurements in which 
multiple capillary vessels and flowing RBCs are simultaneously  imaged73. Our ‘bottom-up’ approach allows vary-
ing the mechanical properties of individual cells and predicts the distribution and flow of the cells throughout 
the networks as develop naturally. The model predicts full 3D and time-dependent variations of hemodynamic 
parameters across the network and within individual vessels and connect them to behavior of individual cells 
with normal and abnormal properties.

Under normal healthy conditions, deformability of RBCs allows them to easily flow through vessels of diam-
eter less than the cell diameter to ensure adequate tissue perfusion and oxygen delivery. RBC deformability is 
dictated by its hemorheological characteristics that include membrane viscoelasticity, hemoglobin viscosity 
and cell shape and surface are to volume  ratio11,27–38. Depending on specific conditions, one or multiple of these 
parameters can change. While several studies have considered measuring such properties of diseased cells, the 
role of deformability on microvascular blood flow alteration is not completely established. Previous in vivo studies 
used chemically hardened cells or stored cells, and demonstrated loss of perfusion, which is generally explained 
by an increased blood  viscosity39–49. Here we hypothesized that beyond such large-scale hemodynamic alteration 
there exists strong local changes that are directly linked to dynamics of individual RBCs. Our hypothesis is based 
on previous studies that reported focal alteration in microvascular network topology in aforementioned diseases, 
such as the appearance of microaneurysms, increased vessel tortuosity and capillary  regression3–5,59,60. Studies 
that connect the alteration of individual RBC behavior due to reduced deformability with the local changes in 
hemodynamic parameters (e.g., 3D WSS) are lacking, which was the focus of this study.

Figure 13.  (a–c) Cellular-scale mechanism by which WSS increased near the apex of a bifurcation in presence 
of stiffer cells. (d–f) Mechanism by which WSS increased along the side of the vessel that has the higher radius 
of curvature. For (a,d) the color range is same as that in Fig. 12d.
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One key finding of this study is that reduced RBC deformability significantly alters their trafficking as evi-
denced by the predicted change in hematocrit distribution. Microvascular distribution of RBCs is known to be 
spatially  heterogeneous10,14–17,24, which is correctly predicted by our model. The coefficient of variation (CV) of 
the spatial heterogeneity predicted by our model ( ∼ 29 %) is in the range reported in a previous in vivo  study16. 
Although we predicted CV increased by a small amount ( ∼ 17 %) when stiffer cells are considered, hematocrit 
change at the level of individual capillary was predicted to be significant. While some capillaries show a large 
increase in hematocrit, others show a decrease. The change in hematocrit is also spatially heterogeneous with the 
terminal capillaries generally showing the greatest change. The increased heterogeneity due to reduced deform-
ability predicted here agrees with in vitro studies of RBC flow in artificial microfluidic  networks43, as well as 
in vivo studies with parasitized RBCs in  malaria30.

We then investigated the cellular-scale mechanisms that cause large hematocrit changes in individual vessels, 
and found that for majority of vessels such changes are caused by the behavior of individual RBCs at the upstream 
bifurcations. Previous studies have demonstrated that when RBCs flow through a bifurcation, they generally 
partition in a disproportionate manner in the daughter vessels  downstream10,12,14,17–26. In most situations, the 
vessel receiving a higher fraction of the flow receives an even higher fraction of cells. In some bifurcations, the 
opposite behavior occurs. The former is termed as the regular partitioning, and the latter as the reverse partition-
ing. Here we found that for majority of vessels, reduced RBC deformability augmented the regular partitioning 
and attenuated the degree of reverse partitioning.

We established a link between altered cell partitioning and dynamics of individual RBCs at a bifurcation. 
Previous studies by other investigators and our works have demonstrated that the transit of an RBC may slow 
down near the apex of a bifurcation where a stagnation flow  exists18,20–23. The cell can linger at this location for 
some time and stretch on both sides of the apex before eventually entering one of the daughter vessels. The 
lingering cell can temporarily block the higher flow branch, thereby directing the upstream cells into the lower 
flow branch and causing a time-dependent reverse partitioning. We found that reduced deformability resulted 
in a reduction of the number of lingering cells in most bifurcations. Therefore, the higher flow branches receive 
an even higher fraction of RBCs compared to the normal cells. This causes a hematocrit increase in the higher 
flow rate branch in presence of stiffer cells.

The above mechanism is, however, not the only mechanism by which hematocrit change occurs for the stiffer 
cells. Since the in silico networks considered here contains many asymmetric bifurcations and winding vessels, 
other mechanisms also dictate hematocrit changes. For example, we found that a stiffer cell can partly block the 
higher flow branch in a bifurcation in a way such that the RBC flux ratio to that branch is reduced more than the 
flow rate ratio, thereby attenuating the degree of regular partitioning and causing a decrease in hematocrit in 
the higher flow branch, as opposed to what is noted above for majority of bifurcations. Conversely, a stiffer cell 
can partly block the lower flow branch causing the RBC flux ratio for the higher flow branch to increase more 
than the flow rate ratio, thereby augmenting the regular partitioning and causing an increase in hematocrit in 
the higher flow branch. In both situations, the stiffer cells linger more than the normal cells, unlike what was 
noted above for majority of bifurcations.

Additional mechanisms related to RBC dynamics that alter partitioning and vessel hematocrit are also found. 
One mechanism involves the cross-stream migration of RBCs and how that affects hematocrit skewness. Gener-
ally, the hematocrit distribution over the cross-section of a vessel is not axisymmetric, but rather skewed to one 
 side17,19,23–36. This may be caused by the partitioning of cells at an upstream bifurcation where they tend to flow 
along the sides of the vessels that are closer to the bifurcation apex. It is well known that RBCs being highly flex-
ible migrate across the flow streamline toward the center of the  vessel74. Such cross-stream migration reduces 
the hematocrit skewness. The rate of migration decreases with reduced cell deformability, resulting a higher 
skewness for stiffer cells, and an increase in hematocrit in the daughter vessel of a downstream bifurcation that 
is favored by such skewed hematocrit profile. Additionally, we found that vessel curvature also affects partition-
ing. We previously reported that in a curved vessel, deformable cells migrate cross-stream toward the side of 
the vessel with higher  curvature67,75. The rate of such curvature-induced migration also decreases with reduced 
deformability. As such, partitioning of normal cells may favor the branch that is closer to the higher curvature 
side while the reverse is the case for stiffer cells.

We further showed that due to reduced lingering, the time-dependent partitioning fluctuates more for the 
stiffer cells. This causes a higher degree of temporal oscillations in flow rate and hematocrit in presence of stiffer 
cells, as also reported previously in a study using microfluidic  networks43. One possible implication of this result 
is that the spatial and temporal heterogeneity are not separate but coupled.

Spatially heterogeneous changes are also predicted for time-averaged flow rate and vessel resistance, with the 
peripheral vessels showing a greater amount of heterogeneity. A strong correlation is observed between change 
in resistance and that in hematocrit, implying that hematocrit redistribution due to reduced deformability plays 
a significant role in altering vessel perfusion. Such heterogeneous changes have physiological implications as 
they can trigger vascular adaptation to meet tissue metabolic  demand69. Sustained reduction in vessel perfu-
sion may also lead to vessel  regression59,60. Our results therefore suggest that RBC rheology may contribute to 
morphological changes in capillary networks as observed in diabetic retinopathy and sickle cell  vasculopathy3–5. 
This connection between cell dynamics and vascular geometry dictating cell partitioning is also predicted in a 
recent computational study that modeled 3D flow of cell suspension through Y-shaped bifurcations with part 
of the feeder vessel  compressed84. There it was shown that upstream vessel compression results in focusing of 
RBCs, thereby altering their partitioning behavior.

Our model predicted strong 3D spatial variation of WSS over a network as well as within a vessel, unlike in 
previous in vivo data and theoretical prediction using 1D network models which predicted constant WSS per 
 vessel61,62,76,77. This further enabled us to predict highly focal changes in WSS within each vessel as well as in 
bifurcation regions caused by reduced RBC deformability. We showed that WSS can either increase or decrease 
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in a bifurcation depending on how RBCs are flowing through it. The former is the case in absence of a significant 
linger, while the latter is the case when normal cells linger more than stiffer cells. Additionally, a reduced cross-
stream migration of stiffer cells in a curved vessel is shown to cause higher WSS on the side of the vessel with 
lower curvature. These results are also physiologically significant since WSS is known to trigger EC response. 
Furthermore, such focal changes in WSS caused by stiffer cells lead to large changes in WSS spatial gradient which 
is also known to trigger EC  response78,79. It may be noted that high-resolution tomography images of large-vessel 
systems often yield a noisy reconstruction of the vascular surface and pose a problem for predicting WSS. As 
shown in Ref.80, the image should be smoothed to remove to avoid WSS artifacts which could be more severe 
near bifurcations. The current in silico networks, however, are not built in this way. The vessels are smooth, and 
do not pose such challenges.

Taken together, our results show how geometric complexity and RBCs dynamics simultaneously induce local 
changes in microvascular hemodynamics as a result of reduced RBC deformability. Although a specific RBC 
disease condition is not considered here, the computational model can be used for such purposes, such as sickle 
cell disease, diabetes mellitus and stored cells, each of which is characterized by an alteration in RBC mechanical 
properties. Additionally, vascular malformation and adaptation that are often associated with these and other 
disease conditions can be incorporated in the model allowing to simultaneously study the coupling of red blood 
cells’ altered rheology and alteration in vascular topology in disease initiation and progression.

One important issue is how the predicted results is affected as many aspects of the heterogeneity of the 
networks simulated here that depend on the distribution of vessel diameters, vessel lengths, branching ratios, 
network topology, etc. Because of this we have been very careful in building our in silico networks. First: To 
incorporate the heterogeneity to the extent possible, we build our models based directly on in vivo images and 
data on vessel diameters, lengths, branching angles, and topology. Second: to the extent allowed for reasonable 
computation times, we include as large tissue area as possible. This allows us to consider large numbers of ves-
sels, bifurcations, and mergers (for the current paper, we have in total about 120 vessels, 42 bifurcations, and 42 
mergers). Third: we further confirm that the distribution of diameter, lengths etc. follows the average distribu-
tion over the vessel generation/order as observed in vivo (e.g., discussed  in10), e.g., Horton’s law for capillary 
diameter distribution over vessel generation  (see22, Supplementary Materials). We are confident that these three 
considerations remove any “artificial heterogeneity” caused by the in silico geometry. Instead, the heterogeneity 
in hemodynamic quantities that is predicted by our model are “natural” as they agree with in vivo measurement 
as noted above. Further, the hemodynamic quantities predicted have been validated against in vivo measure-
ments (e.g.,22, and the Supplement therein). Therefore, we believe that the conclusions drawn here are generic. 
As a further support to our point, the two networks considered here are from retinal and mesenteric microvas-
culature are topologically different. Yet, the predicted hemodynamic data (e.g., in Figs. 2–4, 10 etc.) are in the 
similar range. This further suggests that the results are generic. Furthermore, the heterogeneity of microvascular 
network topology varies from organ to organ (e.g., kidney glomerulus versus mesenteric versus cerebral) and 
under disease conditions (normal versus tumor). It would be very valuable to establish relationship between such 
topological heterogeneity and the resulting hemodynamic heterogeneity. While such issues can be addressed by 
our model, this is left for future studies.

The second issue is whether the current large-scale network model should be used to address microscale phe-
nomena (e.g., RBC partitioning etc.), or such phenomena is better addressed in detail by “small-scale” geometry, 
e.g., single bifurcation. We note that n realistic physiological scenario, vessels are geometrically complex (e.g., 
winding) and multiple bifurcations and mergers occur sequentially. On one hand, such globally “connected” 
geometry affects the microscale phenomena; while on the other hand, the “affected” microscale phenomena 
further alter the global hemodynamics. The present approach allows us to study evolution of hemodynamic 
quantities in a “natural” way as they evolve in physiological conditions. We believe such advantages are not there 
in “smaller-scale” models such as one or two bifurcations in isolations.

It may be noted, as evident from our results, that the difference between normal and stiffer RBCs is manifested 
more in some specific hemodynamic quantities, but relatively less in others. For cell partitioning, it is known 
that even fully rigid spherical particles exhibit disproportionate partitioning. Thus, it is not surprising that stiffer 
RBCs exhibit disproportionate partitioning as so normal cells as predicted here. Further, the aggregate data—
considering all bifurcations of networks appear to look relatively unchanged. But changes may be significant at 
the level of individual vessel. For other quantities, e.g., cell deformation, time-dependent fluctuations and perfu-
sion, significant difference can be noted. We think that the origin of relatively small change in some vessels is as 
follows: The stiffer RBCs as considered here are still deformable, unlike hardened RBCs as considered in vivo/
in vitro. The cells are able to squeeze through the smallest capillary, and there is no vessel where flow completely 
stopped. We think this is due to the same biconcave shape that provides the excess area needed for deformation 
of even the stiffer cells, as evident from Fig. 1a. As the cells are able to flow smoothly through all vessels, the 
distribution of flow and RBCs is naturally adjusted throughout the network so that perfusion is maintained.

Another important issue is how the current results can be used to develop correlations or phenomenological 
models that can allow the results to be applicable to different conditions. For this, there are two levels of com-
plexity involved in the current approach—the geometric complexity of physiologically realistic microvascular 
networks and the fully resolved deformation of each cell out of nearly a thousand flowing. The heterogeneity of 
the network in terms of vessel diameter, length, branching angle and topology also poses another challenge. One 
needs a large number of such in silico networks to build some correlations, which is beyond the scope of this 
study. However, the conclusions derived in the present study should remain valid because they are drawn using 
known properties of cells (normal and stiffer) and physiological network geometry. Developing correlations or 
useful phenomenological models for different RBC disease conditions, such as sickle cell or malaria, or differ-
ent microvascular abnormalities such as vasculopathy, would require each of such conditions to be considered 
separately and generate data for diverse networks topology using disease-specific RBC properties.
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In conclusion, using a high-fidelity, 3D computational model that considers deformation of each RBC flow-
ing through physiologically realistic microvascular networks, we investigated hemodynamic alteration due to 
reduced RBC deformability. We connected such hemodynamic changes to individual RBC dynamics. We showed 
that RBC trafficking is significantly but heterogeneously altered as a result of primarily the alteration of their 
behavior at vascular bifurcations, as well as in their cross-stream migration. Stiffer cells tend to linger less at 
majority of bifurcations augmenting the regular partitioning and attenuating the reverse partitioning. Changes 
in vascular resistance also correlate with hematocrit changes. Furthermore, alteration in RBC dynamics causes 
localized changes in WSS within vessel and in bifurcations.
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