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Abstract

MERRA/Max provides a feature selection approach to dimensionality reduction that enables

direct use of global climate model outputs in ecological niche modeling. The system accom-

plishes this reduction through a Monte Carlo optimization in which many independent Max-

Ent runs, operating on a species occurrence file and a small set of randomly selected

variables in a large collection of variables, converge on an estimate of the top contributing

predictors in the larger collection. These top predictors can be viewed as potential candi-

dates in the variable selection step of the ecological niche modeling process. MERRA/Max’s

Monte Carlo algorithm operates on files stored in the underlying filesystem, making it scal-

able to large data sets. Its software components can run as parallel processes in a high-per-

formance cloud computing environment to yield near real-time performance. In tests using

Cassin’s Sparrow (Peucaea cassinii) as the target species, MERRA/Max selected a set of

predictors from Worldclim’s Bioclim collection of 19 environmental variables that have been

shown to be important determinants of the species’ bioclimatic niche. It also selected biolog-

ically and ecologically plausible predictors from a more diverse set of 86 environmental vari-

ables derived from NASA’s Modern-Era Retrospective Analysis for Research and

Applications Version 2 (MERRA-2) reanalysis, an output product of the Goddard Earth

Observing System Version 5 (GEOS-5) modeling system. We believe these results point to

a technological approach that could expand the use global climate model outputs in ecologi-

cal niche modeling, foster exploratory experimentation with otherwise difficult-to-use climate

data sets, streamline the modeling process, and, eventually, enable automated bioclimatic

modeling as a practical, readily accessible, low-cost, commercial cloud service.

Introduction

Ecological niche modeling (ENM) consists of a set of techniques and tools that use species

occurrence records and environmental data to predict the relative suitability of habitats [1]. It

is used across a wide range of disciplines, including fields as diverse as biogeography and phy-

logeny [2], conservation biology and epidemiology [3, 4], invasion biology [5], and
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archaeology [6]. In recent years, ecological niche models have become particularly important

in understanding the influence of climate change on the geographic distribution of species [7].

This, in turn, has led to greater use of global climate model (GCM) outputs as environmental

predictors [8]. GCMs combine observations from an array of satellite, airborne, and in-situ
sensors to create global representations of the climate system, including historical simulations

and future projections for hundreds of climate variables [9]. The largest and most sophisticated

of these, however, produce complex, petabyte-scale data sets, which complicates variable selec-

tion and limits their direct use in ecological modeling [10–12].

Part of the problem lies in the fact that most ENM software tools require predictors and

observations to be memory-resident in order for the programs to work [13, 14]. This results in

run-times and space requirements that have linear or higher-order scaling properties with

respect to the size of a model’s inputs. This generally poses few difficulties. But when the num-

ber of predictors becomes large, compute times can become impractically long, models can

become overly complex, and efforts to understand any particular variable’s contribution to

model formation, either as an aspect of model analysis or as a way of selecting subsets of vari-

ables for further model refinement, can become challenging [10, 15–19]. An effective way of

dealing with large, externally-stored environmental data sets that preserves the advantages of

conventional tools while overcoming this limitation would benefit the ENM community.

In previous work, we demonstrated the potential of a MaxEnt-based Monte Carlo method

that addresses this issue by screening large data collections for viable predictors [14]. Based on

a machine learning approach to maximum entropy modeling, MaxEnt is one of the most pop-

ular software packages in use today by the ENM community [20–22]. Among its many advan-

tages, MaxEnt ranks the contribution of predictor variables in the formation of its models.

Our Monte Carlo method exploits this feature in an ensemble strategy whereby many indepen-

dent MaxEnt runs, each drawing on a small, random subset of variables stored in the filesys-

tem, converge on a global estimate of the top contributing subset of variables in the larger

collection. These top-contributing predictors can then be studied in more detailed ways, aug-

mented with other variables, and further refined prior to final model construction. We believe

a screening step, such as this, could help the ENM process, particularly when working with

large, multidimensional data sets where selection through ecological reasoning or other means

is not apparent.

In our earlier, proof-of-concept work, we implemented the Monte Carlo selection algo-

rithm as a single-threaded program running on a MacBook Pro laptop computer [14]. In the

current study, we have implemented a parallel version of the Monte Carlo method in a high-

performance cloud computing environment. Our goal this time has been to characterize the

run-time performance and scaling properties of a parallel implementation of the Monte Carlo

algorithm and demonstrate its variable selection behavior with two example use cases. We call

the prototype system MERRA/Max to reflect its reliance on MaxEnt and our interest in using

the technology to screen for bioclimatic predictors in NASA’s Modern-Era Retrospective

Analysis for Research and Applications Version 2 (MERRA-2) dataset, what we view as an

underutilized and potentially important GCM resource for the ecological modeling commu-

nity [23, 24].

A second goal for this paper is to open a discussion about the potential merits of this tech-

nology and lay the groundwork for experiments to evaluate its scientific value more fully.

Reanalyses, such as MERRA-2, simulate hundreds of low-level physical drivers of the Earth

system at extraordinarily fine temporal scale, and they do so over the entire four-decade span

of the satellite era. A technology like MERRA/Max makes this remarkable resource practically

available to the ENM community. In this paper, we begin to make the case for that. Some of

the most important conservation questions scientists hope to answer are hobbled by current
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predictor selection methods. Rare species, for example, are generally represented by sparce

occurrence records. Effective ENM, in these cases, requires a small number of high-quality

predictors to avoid overfitting. We show how MERRA/Max can help with that. As large cli-

mate data sets continue to grow in size, they become less accessible to the science community

and less usable in today’s suite of machine learning and statistical analysis tools. MERRA/Max

shows how parallelizable, external-memory algorithms can address that problem. And, while

the topic of variable selection in ENM is represented by a vast literature, most approaches in

use today are difficult or impossible to automate, do not scale well to large data sets, or provide

limited insight into the underlying biology or ecology of the organisms being studied. In the

pages that follow, we show that a technology like MERRA/Max can potentially help overcome

these limitations.

This project builds on a twenty-year history of technology research and development at

NASA focusing on applications of high-performance computing to ecological modeling [25–

29] and the big data challenges of Earth science [30–40]. It complements this body of work by

looking at ways that machine learning and high-performance cloud computing can extend

existing capabilities and open new opportunities for research. In a fully realized, operational

implementation of the technologies described here, we see MERRA/Max as one element of a

bioclimatic modeling service enabled by a suite of high-performance data subsetting and data

analytic tools of the sort becoming increasingly available to the research community through

commercial cloud services [41–46].

Materials and methods

System architecture and implementation

We implemented MERRA/Max in a 100-core testbed within the NASA Center for Climate

Simulation’s (NCCS’s) Advanced Data Analytics Platform (ADAPT). ADAPT is a managed

virtual machine (VM) environment most closely resembling a platform-as-a-service (PaaS)

cloud [47]. It features over 300 physical hypervisors that host one or more VMs, each having

access to multiple shared, centralized data repositories. The hypervisor hardware consists of

2.2 GHz 24-core Intel Xeon Broadwell E5-2650 v4 processors with 256 GB of memory. The

MERRA/Max testbed consists of a dedicated set of ten 10-core Debian Linux 9 Stretch VMs.

We used shell scripts, R Version 4.0.1 [48], ENMeval Version 0.3.1 [49, 50], and MaxEnt Ver-

sion 3.4.1 [51] to develop MERRA/Max’s software components, which collectively realize the

Monte Carlo algorithm through the interactions shown in Fig 1.

Conceptually, MERRA/Max sits atop a collection of variables stored in the underlying file-

system; when provided a species occurrence file, the system screens the collection to find the

most important predictors for the input provided (Fig 1, Steps 1–5). The Monte Carlo screen-

ing process is initiated by the mcensemble.sh script, which launches an mcsprint.sh script on

each of the 10 MERRA/Max VMs (Fig 1, Step 2). The mcsprint.sh script, in turn, creates paral-

lel sprint runs by launching an R run-time environment and an MCSprint.R program on each

of the 10 VM’s 10 processor cores (Fig 1, Steps 2.1). The MCSprint.R programs perform

repeated MaxEnt runs on random pairs of variables read from the shared filesystem until a

desired level of sampling is achieved (Fig 1, Steps 3.1). MCSprint.R maintains a tally table that

tracks the number of times each variable is used along with its accumulating permutation

importance, then writes the table to a shared directory (Fig 1, Steps 4.1). We used the operating

system’s MCSprint.R process identifiers to create unique pid.tt file names for the output tally

tables. When all the sprints have completed their work, MCSelect.R concatenates the pid.tt files

into a global tally table (Step 4), computes the average permutation importance for each vari-

able, then sorts them to reveal the top contributing variables identified by the ensemble’s runs
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(Fig 1, Step 5). While MERRA/Max relies on MaxEnt to perform selection, it is important to

note that the resulting set of selected variables can be used in any ENM application or species

distribution modeling approach.

Run-time performance and scaling properties

MERRA/Max’s run-time performance and scaling properties are affected by several factors.

The total amount of time needed for MERRA/Max to complete a screening run (T) is primar-

ily determined by the number of variables in the collection being screened (N), the average

number of random samples taken of each variable in the collection (S), the number of random

variables used in each independent MaxEnt sampling run (V), and the number of processor

cores available in the compute environment (C). To understand the interplay of these factors,

we gathered timing metrics on a series of ensembles with varying values of N, S, and C.

In a first ensemble with N = 2 and C = 10, we used 10 parallel sprints (one sprint per core)

in which each sprint performed five sequential two-variable sampling runs to achieve an aver-

age sample size for each collection variable of S = 50. We then completed the S = 50 series with

ensembles in which N and C were proportionally increased to N = 18 and C = 90. This process

was repeated using 10- and 15-run sprints respectively to create a timing series for S = 100 and

S = 150. These measurements allowed us to quantify MERRA/Max’s run-time performance,

estimated optimal performance, and its scaling properties within the constraints of a 100-core

testbed.

We did not quantify non-algorithmic influences on run time, such as predictor resolution,

occurrence file size, competing system processes, filesystem performance, processor failures,

process failures (abends), or MaxEnt parameter settings, as these tend to be intrinsic properties

of the science question being studied, the compute environment, or the MaxEnt software itself.

These non-algorithmic factors either have an idiosyncratic impact on overall run time that is

constant for any particular application of MERRA/Max, or they are beyond user control.

Fig 1. MERRA/Max architecture. Conceptual diagram showing the major hardware and software components of the MERRA/Max

prototype. The study’s testbed consisted of 10 virtual machines (VMs) within NASA’s ADAPT science cloud, with each VM contributing

10 processing cores to the testbed. Numbered arrows indicate the system’s processing workflow.

https://doi.org/10.1371/journal.pone.0257502.g001
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For development testing, we used Cassin’s Sparrow (Peucaea cassinii Woodhouse, 1852) as

the target species [52] and Worldclim Version 2.1’s 19 Bioclim variables at a resolution of 5.0

arc-minutes (Table 1) as environmental predictors [53, 54]. We obtained Cassin’s Sparrow

observational records for the year 2016 from the Global Biodiversity Information Facility

(GBIF) [55]. Because of their secretive nature, Cassin’s Sparrows are generally detected in the

field by the presence of singing males that define and defend breeding territories that range in

size from 0.6 to 12.9 acres [52, 56–58]. After removing replicates, we thinned the records to

non-overlapping observations within a 16 km buffer around each point to avoid double count-

ing the same individuals. This resulted in a total of 609 observations, which were used for test-

ing throughout the study. The predictor layers were clipped to the coverage area of our

observational data, reprojected, and formatted for use by MaxEnt using rgdal Version 1.5–18

[59] following the guidelines of Hijmans et al. [60].

We adopted a standard MERRA/Max screening configuration that we used as the default in

all our timing trials and use cases. This included a MaxEnt feature class (FC) setting of LQHP

(linear, quadratic, hinge, and product), a regularization multiplier (RM) setting of 1.0, 10 repli-

cate cross-validation, and ten thousand background points from across the study area [14].

We used V = 2 random variables in all the independent MaxEnt sampling runs. Additional

detail about MERRA/Max’s default screening parameters and the rationale for their choice are

provided in S1 Appendix.

Use case scenarios and selection behavior

To demonstrate MERRA/Max’s selection behavior and show how the system might be used in

actual practice, we developed two use case scenarios in which we modeled the bioclimatic

niche of Cassin’s Sparrow, a species known to be sensitive to many of the variables used in the

study [52, 56, 58, 61]. Each use case involved three steps. The first was a Variable Screening
step, in which MERRA/Max selected the top six contributing predictors from a collection of

variables using an average sampling rate of S = 50. In previous work, we demonstrated that

Table 1. Bioclim variables.

bio01 Annual mean temperature

bio02 Mean diurnal range (mean of monthly (max temp—min temp))

bio03 Isothermality (bio2/bio7) (×100)

bio04 Temperature seasonality (standard deviation ×100)

bio05 Maximum temperature of warmest month

bio06 Minimum temperature of coldest month

bio07 Temperature annual range (bio5-bio6)

bio08 Mean temperature of wettest quarter

bio09 Mean temperature of driest quarter

bio10 Mean temperature of warmest quarter

bio11 Mean temperature of coldest quarter

bio12 Annual precipitation

bio13 Precipitation of wettest month

bio14 Precipitation of driest month

bio15 Precipitation seasonality (coefficient of variation)

bio16 Precipitation of wettest quarter

bio17 Precipitation of driest quarter

bio18 Precipitation of warmest quarter

bio19 Precipitation of coldest quarter

https://doi.org/10.1371/journal.pone.0257502.t001
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sampling at this rate converges quickly on a stable set of top predictors [14]. Here, we con-

firmed this behavior by first performing three ensemble runs. We then used the averaged

results from these three screenings to settle on the top contributors. This was followed by a

Predictor Refinement step, where we used variance inflation factor (VIF) analysis to reduce col-

linearities in the selected predictors [62]. VIF shows the degree to which standard errors are

inflated due to the levels of multicollinearities. Using ENMtools Version 1.4.4 [63], we first cal-

culated Pearson correlation coefficient (r), coefficient of determination (r2), and VIF [1� (1–

r2)] values for the selected predictors, then eliminated the least contributing variable in any

pair of variables having r> 0.8, r2 > 0.8, and VIF> 10.0 [62]. In a final Model Calibration /
Final Model Run step, we used the ENMeval R package [49, 50] to identify optimal settings for

the remaining, non-collinear predictors by performing a series of MaxEnt runs across all possi-

ble combinations of five feature classes (L, LQ, H, LQH, and LQHP) and regularization multi-

plier values ranging from 0.5 to 4.0 in increments of 0.5. The combination of settings resulting

in the lowest value for Akaike’s information criterion corrected for small sample size (AICc)

[64] was taken to be an optimal tuning configuration.

We used the same 2016 Cassin’s Sparrow occurrence data in each scenario that we used for

development testing. However, the two use cases operated on different sets of environmental pre-

dictors. In the first, we again used WorldClim’s 19 Bioclim variables. In the second use case, to

gain experience with an even larger collection and demonstrate the system’s application to a

novel set of Intergovernmental Panel on Climate Change (IPCC)-class GCM outputs [10, 65], we

used variables obtained directly from the Modern-Era Retrospective Analysis for Research and

Applications Version 2 (MERRA-2) reanalysis. In contrast to Worldclim’s Bioclim predictors,

which are derived from 30-year averages of spatially interpolated weather station temperature and

precipitation data [53, 54], the MERRA-2 reanalysis is produced by NASA’s Goddard Earth

Observing System Version 5 (GEOS-5) [23, 66, 67]. The system integrates observational data with

numerical models to produce a global temporally and spatially consistent synthesis of over 600 cli-

mate-related variables. MERRA-2’s spatial resolution is 1/2˚ latitude × 5/8˚ longitude (i.e.,

55.5 × 69.4 km at the equator) × 72 vertical levels extending through the stratosphere. Its temporal

resolution is hourly and extends from 1979 to the present, nearly the entire satellite era. The com-

plete MERRA-2 collection is about one petabyte in size.

For the current study, we created a test collection of 86 MERRA-2 variables of potential ENM

interest. These were drawn from four MERRA-2 collections and included modeled, two-dimen-

sional values for atmospheric attributes and heat, wind, radiation, and land surface attributes

(Table 2). The test collection contains weekly and monthly maximum, minimum, and average

values (or sums as appropriate) for each variable for the 40 years spanning 1980 to 2020. Impor-

tantly, the collection contains modeled values for the temperature and precipitation variables that

form the basis for Bioclim’s 19 predictors, which highlight climate conditions generally under-

stood to relate to a species’ physiology, plus an extended array of environmental attributes of

potentially more direct biological significance, such as soil moisture and evaporation, wind direc-

tion and speed, and various solar radiation fluxes (Table 2) [53, 68–72]. For our use case, we used

xarray [73] to create annual averages for the 86 variables for the year 2016, the year corresponding

to the observation year of our Cassin’s Sparrow occurrence data. We used modeled values at 850

hPa, where appropriate, to reflect surface conditions. The hPa (hectopascal) atmospheric pressure

unit is an expression of altitude. Generally, 850 hPa lies immediately above the atmospheric

boundary layer (about 1.5 km), where daily surface variations in temperature, humidity, wind

speed, etc. have little if any effect on measured or modeled values [9]. These layers were then pre-

pared for use with MaxEnt as described above.

To evaluate MERRA/Max’s selection behavior, we created initial MaxEnt models using the

top six predictors selected by the three screenings in the Variable Screening step. Then, using
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Table 2. MERRA-2 variables.

M2T1NXSLV 2D Atmospheric single-level diagnostics

M01 PS Time averaged surface pressure

M02 U850 Eastward wind at 850 hPa

M03 V850 Northward wind at 850 hPa

M04 T850 Temperature at 850 hPa

M05 Q850 Specific humidity at 850 hPa

M06 H1000 Height at 1000 hPa

M07 TS Surface skin temperature

M08 QV2M 2-meter specific humidity

M09 QV10M 10-meter specific humidity

M10 T2M 2-meter air temperature

M11 T10M 10-meter air temperature

M12 U2M 2-meter eastward wind

M13 U10M 10-meter eastward wind

M14 U50M Eastward wind at 50 meters

M15 V2M 2-meter northward wind

M16 V10M 10-meter northward wind

M17 V50M Northward wind at 50 meters

M2T1NXFLX 2D Surface turbulent flux diagnostics

M18 EFLUX Latent heat flux (positive upward)

M19 HFLUX Sensible heat flux (positive upward)

M20 TAUX Eastward surface wind stress

M21 TAUY Northward surface wind stress

M22 RHOA Surface air density

M23 TSH Effective turbulence skin temperature

M24 QSH Effective turbulence skin humidity

M25 PGENTOT Total generation of precipitation

M26 PREVTOT Total re-evaporation of precipitation

M2T1NXRAD 2D Surface and TOA radiation fluxes

M27 EMIS Surface emissivity

M28 ALBEDO Surface albedo

M29 LWGEM Emitted longwave at the surface

M30 LWGAB Surface absorbed longwave

M31 LWGABCLR Surface absorbed longwave assuming clear sky

M32 LWGABCLRCLN Surface absorbed longwave assuming clear clean sky

M33 LWGNT Surface net downward longwave flux

M34 LWGNTCLR Surface net downward longwave flux assuming clear day

M35 LWGNTCLRCLN Surface net downward longwave flux assuming clear clean day

M36 SWGDN Surface incident shortwave flux

M37 SWGDNCLR Surface incident shortwave flux assuming clear sky

M38 SWGNT Surface net downward shortwave flux

M39 SWGNTCLR Surface net downward shortwave flux assuming clear sky

M40 SWGNTCLN Surface net downward shortwave flux assuming clean sky

M41 SWGNTCLRCLN Surface net downward shortwave flux assuming clear clean sky

M42 TAUTOT Optical thickness of all clouds

M43 CLDTOT Total cloud fraction

M2T1NXLND 2D Land surface diagnostics

M44 GRN Vegetation greenness fraction (LAI-weighted)

(Continued)
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the overall top six variables found in the Variable Screening step, we created a final MaxEnt

model in the Model Calibration / Final Model Run step that reflected any improvements gained

in the Predictor Refinement step or by Model Calibration. The potential distribution maps pro-

duced by the final models were judged for reasonableness based on first-hand knowledge of

the species, its habitat preferences, what is known about Cassin’s Sparrow’s range from the

Table 2. (Continued)

M45 LAI Leaf area index

M46 GWETPROF Total profile soil wetness

M47 GWETROOT Root zone soil wetness

M48 GWETTOP Top soil layer wetness

M49 TSURF Mean land surface temperature (incl. snow)

M50 TPSNOW Top snow layer temperature

M51 TUNST Surface temperature of unsaturated (but non-wilting) zone

M52 TSA T Surface temperature of saturated zone

M53 TWLT Surface temperature of wilting zone

M54 SNODP Snow depth

M55 RUNOFF Overland runoff

M56 BASEFLOW Baseflow

M57 QINFIL Soil water infiltration rate

M58 FRUNST Fractional unsaturated (but non-wilting) area

M59 FRSAT Fractional saturated area

M60 FRSNO Fractional snow-covered area

M61 FRWLT Fractional wilting area

M62 PARDFLAND Surface downward photosynthetically active radiation diffuse flux

M63 PARDR LAND Surface downward photosynthetically active radiation beam flux

M64 SHLAND Sensible heat flux from land

M65 LHLAND Latent heat flux from land

M66 LWLAND Net downward longwave flux over land

M67 SWLAND Net downward shortwave flux over land reservoirs

M68 GHLAND Downward heat flux into top soil layer

M69 TWLAND Total water stored in land reservoirs

M70 TELAND Energy stored in all land

M71 WCHANGE Total land water change per unit time

M72 ECHANGE Total land energy change per unit time

M73 SPLAND Spurious land energy source

M74 SPWATR Spurious land water source

M75 SPSNOW Spurious snow energy source

M76 PRMC Total profile soil moisture content

M77 RZMC Root zone soil moisture content

M78 SFMC Top soil layer soil moisture content

M79 PRECTOT Total surface precipitation

M80 SNOMAS Snow mass

M81 EVPSOIL Bare soil evaporation

M82 EVPTRNS Transpiration

M83 EVPINTR Interception loss

M84 EVPSBLN Sublimation

M85 SMLAND Snowmelt over land

M86 EVLAND Evaporation from land

https://doi.org/10.1371/journal.pone.0257502.t002
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published literature [52, 56–58, 61], and observational records from Cornell Lab’s eBird citi-

zen-scientist database [74].

We further compared these final model predictions to results obtained by replicating, in

part, the work of Salas et al. [75], in which traditional MaxEnt variable-selection techniques

were used to model the bioclimatic niche of Cassin’s Sparrow. Here, we used our 2016 Cassin’s

Sparrow occurrence data in combination with the seven Worldclim Bioclim variables used by

the Salas team: bio03, bio06, bio08, bio09, bio12, bio14, and bio18. The Salas team chose these

predictors by first removing one of each pair of highly correlated variables to avoid collinearity

among the variables. The team then chose between highly correlated variables by selecting

those that were identified in one or more species-specific studies as influencing the species’

range or population dynamics. In cases where the literature search could not differentiate

between two highly correlated variables, the team used a qualitative assessment of the distribu-

tion of values of the variable at all presence points and the relationship between the variable

and species presence or pseudo-absence [75]. We used ENMeval, as described above, to iden-

tify optimal tuning parameters for the Salas-derived model.

To gain a quantitative perspective on performance, we used AICc [64] as a measure of a

model’s relative explanatory power (lower values indicating less information loss) and area

under the receiver operating characteristic curve (AUC) [76], percent correctly classified

(PCC) [77], and the True Skill Statistic (TSS) [78, 79] as measures of model accuracy (higher

values in all cases indicating greater accuracy). Similarities between our first use case’s final

Bioclim model and the Salas-derived Bioclim model were examined using Warren’s I statistic

[80], Schoener’s D statistic [81], and Pearson’s r statistic [82]. All input data used in this study,

along with a set of example scripts are provided in S1 File.

Results

Run-time performance and scaling properties

The first ensemble of the 50-sample timing series (S = 50) required a total run time of T = 7.9

minutes to screen a two-variable collection (N = 2) using 10 processor cores (C = 10) (Fig 2A).

Fig 2. MERRA/Max run-time performance and scaling properties. Figure shows the relationship between the amount of time it takes

MERRA/Max to complete a screening run (T) (shown by the left Y axis and the colored lines labeled A, B, and C), the number of

variables in the collection being scanned (N), the average number of random samples taken of each variable in the collection during the

screening process (S), and the number of processor cores available in the compute environment (C) (shown by the colored vertical bars

and right Y axis). MERRA/Max’s parallel implementation scales linearly with respect to S, and, for any given collection of size N and

sample size S, the estimated minimum possible run time (Tmin) (shown in parentheses) can be achieved when enough cores are

available for a completely parallel screening of the collection.

https://doi.org/10.1371/journal.pone.0257502.g002
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At one sprint per core, and with each MaxEnt sampling run operating on two (V = 2) ran-

domly selected variables at a time, this first ensemble needed 50 MaxEnt runs to do its work.

The shortest achievable screening time (Tmin) is possible only when the number of cores

needed for perfect parallelism (Cmax) are actually available, in this case, 50:

Cmax ¼ ðN� SÞ � V ¼ ð2� 50Þ � 2 ¼ 50:

Because only 10 cores were available, each of the parallel sprints had to perform five sequen-

tial MaxEnt sampling runs to achieve the S = 50 sampling goal, a repeat factor (R) of 5:

R ¼ ½Cmax� C� ¼ ½50� 10� ¼ 5:

By accounting for this performance cost, we estimate that MERRA/Max’s minimum possible

run time, in a completely parallel screening of this first data set, would have been about 1.6

minutes:

Tmin ¼ T� R ¼ 7:9� 5 ¼ 1:6 minutes:

In each subsequent ensemble of the S = 50 series, we added two variables to the scanned col-

lection and 10 cores to the pool of available processors. With this proportional scaling of vari-

ables and processors, average run times remained constant across the series at T = 7.9 ± 0.3

minutes (Tmin = 1.6 ± 0.1 minutes) (Fig 2A). In the S = 100 timing series, R = 10 sequential

MaxEnt runs were used in each sprint to achieve the desired sampling level (Fig 2B), and in

the S = 150 series, R = 15 runs were used (Fig 2C). In both cases, run times scaled linearly with

sample size and remained relatively constant across the series, with T = 14.8 ± 2.5 minutes

(Tmin = 1.6 ± 0.1 minutes) for the S = 100 series and T = 22.6 ± 0.5 minutes (Tmin = 1.5. ± 0.1

minutes) for the S = 150 series.

Use case scenarios and selection behavior

The Bioclim collection consists of N = 19 variables. To achieve an average per-variable sam-

pling goal of S = 50 with C = 100 cores, each sprint in the Bioclim use case (Fig 3A) performed

R = 5 sequential MaxEnt runs in the Variable Screening step, resulting in ensembles compris-

ing a total of 500 runs. In an average of three such ensembles, MERRA/Max took T = 6.4 ± 0.5

minutes (Tmin = 1.3 ± 0.1 minutes) to identify bio18 (precipitation of the warmest quarter),

bio03 (isothermality), bio05 (maximum temperature of the warmest month), bio08 (mean

temperature of the wettest quarter), bio13 (precipitation of the wettest month), and bio16 (pre-

cipitation of the wettest quarter) as the top six contributing variables of the collection. In the

subsequent Variable Refinement step, predictor pairs bio13-bio16 and bio16-bio18 were

shown to be correlated, which led us to discard bio16 from the selection set. In the Model Cali-
bration / Final Model Run step, the remaining five non-correlated variables were used to create

a final model in which the top four contributing variables (bio18, bio03, bio05, and bio13)

accounted for approximately 98% of overall permutation importance, and the performance

metrics were AICc 12,232, AUC 0.83, PCC 0.75, and TSS 0.49.

In the MERRA-2 use case (Fig 3B), MERRA/Max screened a collection of N = 86 variables

of coarser resolution (approximately 50 km for MERRA-2 vs. 8 km for Bioclim). To achieve

the S = 50 sampling goal, each sprint performed R = 22 MaxEnt sampling runs, which resulted

in 2200-run ensembles. The average run time across three such ensembles in the Variable
Screening step increased to T = 18.0 ± 2.2 minutes; however, because of the coarser predictor

resolution, times for the MaxEnt sampling runs decreased, which resulted in an estimated the-

oretical lower bound of only Tmin = 0.8 ± 0.1 minutes. The six top contributing variables
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identified in the Variable Screening step included M05 (specific humidity), M39 (surface net

downward shortwave flux assuming a clear day), M38 (surface net downward shortwave flux),

M81 (bare soil evaporation), M03 (northward wind), and M04 (temperature). In the Predictor
Refinement step, the M38-M39 pair showed strong correlation, which led us to discard M38.

In the Model Calibration / Final Model Run step, the remaining five non-correlated variables

were used to create a final model in which the top four contributing variables (M39, M05,

M04, and M81) accounted for approximately 97% of over overall permutation importance,

and the performance metrics were AICc 7,023, AUC 0.83, PCC 0.72, and TSS 0.44.

In the Salas-derived Cassin’s Sparrow model (Fig 4A), where a traditional approach to vari-

able selection was used to identify the seven predictors used in MaxEnt, the top four contribut-

ing variables (bio18, bio06, bio14, and bio09) accounted for approximately 83% of overall

permutation importance, and the model’s performance metrics were AICc 12,169, AUC 0.83,

PCC 0.76, and TSS 0.50.

Discussion

Climate change research is giving rise to new technology requirements at the intersection of

big data, machine learning, and high-performance computing [84]. There are few places

where this is more clearly seen than with studies focusing on the climate’s impact on species

distribution and abundance [85]. For nearly twenty years, the ecological modeling commu-

nity’s tool-of-choice for this work has been MaxEnt [22]. Few, if any, machine learning pro-

grams have been more widely used or more carefully studied [16, 18, 84, 86–92]. Today,

Fig 3. MERRA/Max use case scenarios. Figure shows the results of two use cases involving Cassin’s Sparrow observational data and

predictor data sets of contrasting size and complexity: the Bioclim collection with N = 19 variables (A) and a MERRA-2 reanalysis test

collection comprising N = 86 variables (B). A Variable Screening step was used in each scenario to select the top six contributing

variables in the underlying collection. Correlated variables (indicated with red text and yellow highlight) were identified in a Predictor
Refinement step and thinned to reduce collinearities. In a third step, Model Calibration and a Final Model Run were performed with the

remaining non-correlated variables (green highlight). AICc is Akaike’s information criterion corrected for small sample size, AUC is

area under the receiver operating characteristic curve, PCC is percent correctly classified, TSS is True Skill Statistic, Parameters is

MaxEnt’s measure of model complexity, r is Pearson’s correlation coefficient, r2 is the coefficient of determination, and VIF is variable

inflation factor. The estimated minimum run time (Tmin) for a completely parallel screening is shown in parentheses. Maps created by

the authors show MaxEnt logistic output, which can be interpreted as an estimate of habitat suitability between 0 and 1 with warmer

colors indicating better predicted conditions for the species.

https://doi.org/10.1371/journal.pone.0257502.g003
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however, there is increasing interest in using GCM outputs as predictors in ENM [10–12],

which has brought into focus one of the more challenging problems with existing machine

learning systems: how to make them work with large, complex, feature-rich, high-dimensional

data sets [93–99].

This study reflects our efforts to address this problem. Our approach to dimensionality

reduction involves a parallel, out-of-core Monte Carlo selection method implemented in a

high-performance, cloud computing setting. Monte Carlo optimizations are a way of finding

approximate answers to problems that are solvable in principle but lack a practical means of

solution [100]. Out-of-core (or external memory) algorithms process data sets that are too

large to fit into a computer’s main memory [101, 102]. They are currently a major focus of

research in the machine learning community [102–104]. With MERRA/Max, we bring these

concepts together to find a useful subset of predictors in a large collection of environmental

variables in a reasonable amount of time. Early results are encouraging and suggest that the

approach holds promise from both a technological and scientific perspective.

Run-time performance and scaling properties

To begin, we have shown that MERRA/Max’s parallel implementation of the Monte Carlo

selection algorithm scales linearly with respect to the average number of samples taken of each

variable in the collection being screened. It can recruit additional processor cores to maintain

a constant run time regardless of the size of the collection. In a best case, where sufficient pro-

cessors are available for complete parallelism, MERRA/Max can screen a predictor data set of

any size in the time it takes for a single MaxEnt run using only two predictors in the target col-

lection. Collectively, these results confirm that near real-time performance and, in the vernac-

ular of high-performance cloud computing, “infinite scalability” are achievable [105–107].

Use case scenarios and selection behavior

MERRA/Max’s run-time performance and scaling properties are consistent with what one

would expect of an “embarrassingly parallel” workload, where subtasks are completely inde-

pendent and able to run concurrently. The more important question is: Does this approach

actually benefit science? We try to assess MERRA/Max’s potential value to science by address-

ing three interrelated questions:

Fig 4. Cassin’s Sparrow baseline model and maps. Figure shows results from a MaxEnt run that builds on the Cassin’s Sparrow

bioclimatic modeling work of Salas et al. [75] and reflects a more traditional approach to ENM (A) and Cassin’s Sparrow’s range map

based on observational data (B). Highlighted variables indicate those that were also selected by MERRA/Max in the Bioclim use case.

Range map provided by eBird (www.ebird.org), created 28 July 2020, and reprinted from [83] under a CC BY license, with permission

from the Cornell Lab of Ornithology.

https://doi.org/10.1371/journal.pone.0257502.g004
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(1) Is MERRA/Max making useful, ecologically plausible selections?. It is difficult to

know how best to evaluate selection success in this work, given that we are proposing the

Monte Carlo method as a preliminary screening step, which, presumably, would be followed

by further refinements to the set of selected predictors based on the biology and ecology of the

species, collinearity, or the other considerations that have traditionally guided ENM variable

selection. Depending on the circumstances, post-selection refinement might mean additional

winnowing, substitution or augmentation of the screened predictors with other variables, or

that the selected variables are discarded altogether. That being said, the Bioclim use case seems

to confirm that MERRA/Max’s selections are both valid and useful.

In the most general, qualitative sense, the habitat suitability map produced by the final

model in the Bioclim use case is consistent with what is known about Cassin’s Sparrow’s range

from observational records [83] (Figs 3A and 4B). Likewise, the set of selected variables are

consistent with what is known of the species’ natural history. Cassin’s Sparrow is a desert-

adapted, ground-dwelling (and, notably, ground-nesting) species, whose breeding biology is

exquisitely linked to conditions of temperature and precipitation and their consequent influ-

ence on vegetation availability, insect abundance, and terrestrial microclimates [52, 56, 58, 61,

108–110]. In fact, field studies over the past century suggest that Cassin’s Sparrow is an itiner-

ant breeder, so responsive to temperature and precipitation that they make seasonal, inter-

clutch moves within their range to find optimal conditions for breeding [52, 109, 111].

The Bioclim scenario’s ordered selection of bio18 (precipitation of the warmest quarter),

bio03 (isothermality, i.e., temperature evenness, or how large the daily temperature variation is

compared to its annual variation), bio05 (maximum temperature of the warmest month),

bio13 (precipitation of the wettest month), and bio08 (mean temperature of the wettest quar-

ter) is entirely consistent with this picture. It is also largely consistent with the variables assem-

bled by the Salas team using a more traditional approach to variable selection [75]. Both sets

have bio18 and bio03 in common, both of these variables are highly influential, and both are

known to be important determinants of range in arid-adapted birds, especially in desert and

grassland species of conservation concern [75, 85, 112–118]. Where the two predictor data sets

differ, for example, bio05 (maximum temperature of the warmest month) in the Bioclim use

case vs. bio06 (minimum temperature of the coldest month) in the Salas-derived model, bio13

(precipitation of the wettest month) vs. bio12 (annual precipitation) and bio 14 (precipitation

of the driest month), an argument could be made, in light of Cassin’s Sparrows distinctive sea-

sonal breeding dynamics, which is likely influenced by the North American Monsoon, that

MERRA/Max found the more relevant predictors [119–121].

From a quantitative perspective, the final model in MERRA/Max’s Bioclim scenario (Fig

3A) demonstrated strong evaluation metrics (AUC, PCC, TSS of 0.83, 0.75, 0.49 respectively)

that were almost identical to those obtained in the Salas-derived model (0.83, 0.76, 0.50) (Fig

4A) [122]. A high degree of similarity between the Bioclim use case and Salas-derived model is

further confirmed by their AICc values (12,232 and 12,169 respectively) and the results we

obtained for the D, I, and r statistics (0.974, 0.999, and 0.997 respectively) [80]. The top four

predictors in the Bioclim scenario accounted for 98% of overall permutation importance in the

final model; the top four predictors in the Salas-derived model accounted for 83%.

While these results reflect an admittedly limited trial at this point, taken together, they sug-

gest that MERRA/Max’s use in the Bioclim scenario produced a bioclimatic niche model for

Cassin’s Sparrow that, within its training range, is ecologically reasonable, statistically robust,

and at least as good (if not better) than what might be obtained in a traditional application of

MaxEnt. This gives us confidence that the Monte Carlo method is, in fact, finding a useful sub-

set of predictors in a larger pool of possible predictors.
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(2) Does MERRA/Max create new research opportunities?. Another measure of MERRA/

Max’s potential value to science is to consider whether new avenues of research are opened up

with this technology. We believe they are, and the MERRA-2 use case helps explain why. Here

we have a situation where the size and complexity of the target collection, as well as the obscure

nature of the data, make a priori variable selection difficult. We have no immediate basis for

distinguishing which variables in the MERRA-2 test collection might be the most important

contributors to a final model. With 86 variables in play, even something as straightforward as

correlation analysis provides little help, requiring nearly 3700 pair-wise comparisons in this

case. Yet, going into this with no pre-vetting of the test collection whatsoever, we are struck by

the ecological and biological relevance of the predictors selected by MERRA/Max in the

MERRA-2 use case scenario.

In the same way that the Earth’s climate is ultimately driven by a balance between incoming

and outgoing energy, so too is the natural history of Cassin’s Sparrow linked to the energetics

of the species’ diurnal and seasonal activities and the locations where those activities occur

[58]. Viewed this way, it makes ecological sense to see that MERRA/Max identified M39 (sur-

face net downward shortwave flux assuming a clear day) as the most important variable for

modeling Cassin’s Sparrow potential habitat in the MERRA-2 test collection. Likewise, a

unique aspect of Cassin’s Sparrow’s breeding biology is an energetically demanding skylark

display in which males define and defend territories and secure mates by aerial flight songs.

Wind has a pronounced impact on this behavior [58]. While its effectiveness as a proxy for

surface conditions in this setting is unknown, it is notable that MERRA/Max identified a low-

level zonal wind component, M03 (northward wind), as a top contributor. Finally, given Cas-

sin’s Sparrow’s ground-dwelling habit and the importance of low-level environmental condi-

tions to almost all aspects of the species’ life, it is not surprising to see M05 (specific humidity),

M04 (temperature), and M81 (bare soil evaporation) in MERRA/Max’s selection set.

These results must be interpreted with caution. After all, even models based on meaningless

variables can be classified as excellent according to widely used evaluation metrics [123], and

high predictive accuracy does not necessarily connote robust inferential capacity [17]. What is

more, MERRA-2 variables represent the low-level physical drivers of many of the Earth sys-

tem’s biological processes [10, 124]: an interpretation of ecological plausibility could be made

for almost any of the MERRA-2 variables. That being said, studies have shown that MaxEnt’s

ranking of variable importance can capture biologically realistic assessments of factors govern-

ing range boundaries when models are built using best-practice procedures and variables are

ranked based on permutation importance [7, 17]. And, with Cassin’s Sparrow, we have a spe-

cies whose behavioral and energetic ecology has been studied in significant detail [58]. Of the

many potential contributors in the MERRA-2 collection, the types of variables selected by

MERRA/Max are known to be particularly important environmental influences for the species

and are notably consistent with our mechanistic, process-based understanding of the bird’s

natural history [52, 56, 58, 61, 125]. Further, in the use case scenario’s final MaxEnt model, we

see a reasonable habitat suitability map based on our understanding of Cassin’s Sparrow’s cur-

rent range (Fig 4B), a relatively robust set of metrics (AUC 0.83, PCC 0.72, TSS 0.44), and the

top four contributing variables accounting for a significant proportion (i.e., 97%) of overall

permutation importance (Fig 3B). While an interpretation of causality between selected vari-

ables and species occurrence may not be supported by the data currently at hand, it does

appear that MERRA/Max and the Monte Carlo selection method have detected a signal in the

MERRA-2 data that has both biological and statistical significance for Cassin’s Sparrow [126,

127].

What about the larger question regarding new research opportunities? A particular type of

question that might be better addressed with MERRA/Max’s combination of data and
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technology concerns the conservation status of arid-adapted birds. Accurate assessments are

often difficult with these species [85, 112–118, 128]. With Cassin’s Sparrow, for example,

numerous studies over the past half-century have painted a confusing picture. Some find evi-

dence for a retraction of viable habitat and declining regional populations [61], others find

mixed results and too little data to establish with confidence an overall conservation status

[56], and many sources identify the species as stable and of little immediate worry [129–132].

In recent work, of nine grassland birds of conservation concern, Cassin’s Sparrow was the only

species to project gains in suitable habitat over the next fifty years [75]. This ambiguous picture

is not unique to Cassin’s Sparrow; however, in this case, the species’ itinerant breeding habit

no doubt contributes to the confusion: it is simply impossible to know what part of the bird’s

population one is seeing at any given time.

Understanding the conservation status of a bird like Cassin’s Sparrow means being able to

tease apart the species’ physiological capacity for seasonal response to weather from the spe-

cies’ longer-term, adaptive response to a changing climate’s effect on the landscape [116]. Ulti-

mately, one would like to distinguish short-term transformations in the bird’s bioclimatic

niche within a coherent, long-running temporal framework. Historical and multi-temporal

scale modeling are not new [133–136]; however, with four decades of climate attributes mod-

eled on an hourly basis, reanalyses, such as MERRA-2, are uniquely able to provide the high-

temporal resolution, longitudinal environmental data for this. A technology like MERRA/Max

transforms MERRA-2 into a viable experimental sandbox. And, thanks to long-running citi-

zen-scientist efforts, such as the U.S. Geological Survey’s North American Breeding Bird Sur-

vey (BBS) [137, 138]; Cornell University’s eBird, Great Backyard Bird Count Surveys, and

other projects [74, 139, 140]; Audubon’s Christmas Bird Counts [141, 142]; and the wealth of

online museum specimen records in resources like the Global Biodiversity Information Facil-

ity (GBIF) [143], the NSF-funded VertNet databases [144], and the U.S. Geological Survey’s

BISON species occurrence database [145], there now exists widespread availability of avian

observations that provide good coverage for the MERRA-2 time span, making multi-temporal

scale investigations like this possible [146].

Another dimension of conservation research that could potentially be advanced with a tech-

nology like MERA/Max is the modeling of rare or endangered species. Rare species are among

the most in need of predictive distribution modeling but are often the most difficult to model.

Known as the “rare species modeling paradox” [147], these species generally have a low num-

ber of occurrence records, which can lead to model over-parameterization and overfitting if

too many predictors are used [11, 148, 149]. A new strategy using ensembles of small models

(ESMs) was recently developed to overcome this limitation. It involves fitting many two-vari-

able models, filtering the results against a weighted AUC-based performance threshold, then

averaging the remaining models to produce an ensemble average model. The approach is par-

ticularly useful when applied to rare species, because it simultaneously winnows the starting

pool of predictors while generating a final model in which the number of predictors has been

kept low in each of the ensemble’s contributing models [150, 151].

MERRA/Max also uses bivariate ensembles in its Monte Carlo approach to variable selec-

tion. In contrast to the ESM method, however, MERRA/Max discards its ensemble models

after tallying the permutation importance of each model’s two variables, producing in the end

a small selection of top contributing variables for further consideration. By separating variable

selection from final model construction, MERRA/Max provides the modeler with greater lati-

tude in the overall ENM process, offering, in a sense, a supervised approach that could enable

more carefully crafted results.

Finally, spatiotemporal projection is a critical element of conservation research that could

also potentially benefit from MERRA/Max. ENMs are commonly used to predict the impact of
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climate change on biodiversity. The reliability of those predictions, however, depends on a

model’s transferability in space and time, which, in turn, is influenced by variable selection

[152–154]. While the work presented here has focused exclusively on performance evaluations

within the calibration range, it is important to note that MERRA-2’s selected variables, along

with similar GCM outputs, form the basis for the IPCC’s research activities. As a consequence,

models using MERRA/Max-selected variables are particularly well-suited for extrapolative

studies using data from IPCC’s Global Projection scenarios [155–159].

We close this section by considering briefly the most apparent technical shortcoming in the

MERRA-2 use case: the inherently coarse spatial resolution of reanalysis data. Given that spe-

cies’ responses to the environment are scale dependent, there is a recognized need within the

ecological research community for higher resolution reanalysis products, to which various

efforts are now responding [158, 160–162]. Increasing evidence, however, shows that both

coarse and fine resolution variables are important across scales [163]. In the context of rapid

prescreening, in particular, we feel that MERRA-2’s coarse resolution data serves an important

purpose. Selection times are fast with coarse-resolution data, MERRA/Max-selected variables

are relevant, and many resolution shortcomings in the selected variables can be addressed in

the refinement step, either by downscaling variables of interest or going to an alternative

source for a higher resolution product, such as remote sensing data [164, 165] or NatureServe’s

high-resolution data sets [166].

(3) Can MERRA/Max improve the ecological niche modeling process?. Finally, in evalu-

ating potential benefits to science, we can consider whether a tool like MERRA/Max could

improve the work practices of ecological modeling. Here again, we think it can. There is

heightened awareness of the significance of dimensionality in understanding environmental

spaces and the importance of variable selection in modeling those spaces [15, 18, 167]. This

awareness is accompanied by a recognition that logistic difficulties often preclude examining

large numbers of variables, which has led to a search for alternative means of variable selection

and calls for process automation [10, 17, 18, 88, 168]. A comprehensive review of these

approaches is beyond the scope of this paper. In general, however, they include greater use of

biological insight and expert knowledge in the selection of predictor variables; reliance on

manual or statistical analysis of the published literature to identify predictors; use of statistical

algorithms for variable prescreening based on cluster analysis, collinearity reduction, or cali-

bration-/projection-range analogue analysis; and various types of classical principal compo-

nent analysis (PCA) [153].

To understand where a technology fits within this conceptual framework, it is important to

note that any selection process that involves human intervention is difficult or impossible to

automate; the use of in-core statistical software tools are inherently unscalable to large data

sets; whether implemented as in-core or out-of-core, compute-intensive, exponential time

algorithms, such as PCA, are likewise not scalable; and mathematical approaches to feature

reduction that operate on predictors in isolation from the feature of interest, i.e., the depen-

dent variable, are not directly influenced by the underlying biology or ecology of the species

being studied, which may limit the insights one might otherwise gain in the modeling process.

MERRA/Max attempts to overcome all these limitations.

Finally, Cobos et al. [92] provide a helpful framework for understanding where a technol-

ogy like MERRA/Max could fit in the overall ENM workflow (Fig 5). The work of ENM can be

thought of as a multi-step process ranging from initial data preparation and cleaning, to model

calibration, final model construction, model evaluation, and the assessment of extrapolation

risk. Among the tasks associated with data cleaning, the selection of viable predictors is crucial,

time-consuming, and the place where a means for rapid, automatic, preselection could
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improve the overall workflow, especially if it enabled exploration of a large universe of

predictors.

Future work

Our plans for future work are being shaped by a vision where the technical complexities

described here are abstracted away from the end-users, and low cost, easy access, and simplic-

ity make MERRA/Max a practical and useful tool for the conservation research community.

On the technology front, our next steps will focus on developing a “cloud bursting” capability

that will allow MERRA/Max ensembles to migrate from NASA’s private ADAPT science cloud

to a public commercial cloud in response to resource demands that outstrip local capacity.

This will allow us to scale MERRA/Max to larger data sets and more demanding science ques-

tions. For example, we would like to make better use of our experimental MERRA-2 test col-

lection, which spans 40 years and includes monthly and weekly maximum, minimum, and

average values for each of the collection’s 86 variables, a total of N = 660,480 files. Beyond that,

expanding MERRA/Max to accommodate all of MERRA-2’s 600-plus variables is a more chal-

lenging long-term goal that could open interesting new research opportunities for the ENM

community. Other technical improvements on the horizon include the use of refined selection

criteria and automatic stopping rules that would enable true convergence in the selection pro-

cess. Finally, given that each step in our use case scenarios is carried out by a program that

could readily participate in an orchestrated workflow, we would like to know whether a practi-

cal level of automation for the entire MaxEnt-enabled ENM process might be possible.

On the science front, we plan to pursue two distinct threads of development. First, we want

to follow up on the example posed in the previous section and see if MERRA/Max and the

MERRA-2 test collection could provide a better understanding of the true conservation status

of Cassin’s Sparrow by temporally filtering occurrence data and environmental predictors to

the breeding season and evaluating fine-grained changes in the species’ bioclimatic niche over

Fig 5. Ecological niche modeling (ENM) process. Schematic description of the ENM process. Color bars under each step reflect an

approximate amount of time that may be needed, ranging from low (blue) to high (red). The use of MERRA/Max to prescreen a large

collection of predictors could support variable selection in the data cleaning step. Image provided by [92] and adapted for use here under

a CC-BY license.

https://doi.org/10.1371/journal.pone.0257502.g005
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the past four decades. Pursuing that question for Cassin’s Sparrow alongside other grassland

birds of conservation concern, such as those studied by Salas et al. [75], would provide the

additional benefit of extending our experiences to other species and would allow us to test the

ecological and conservation applicability of this technology, which we view as an important

next step.

The second thread of science development will examine the extensibility of this approach to

other types of problems. For example, we have used MERRA/Max and MaxEnt to study the

hydrological cycle in NASA’s Arctic-Boreal Vulnerability Experiment (ABoVE) [169].

Changes to the hydrological cycle in the Arctic are particularly complex, because observed and

projected warming directly impacts permafrost and leads to variable responses in surface

water extent [170]. In preliminary work, using the locations of observed increases and

decreases in surface water extent as dependent variables (in essence, treating them as “pseudo”

species occurrences), the technologies and techniques described here successfully replicated

observed patterns of surface water change [171]. If these findings are validated by further

experimentation, the view of how MERRA/Max, the MERRA-2 reanalysis, and MaxEnt might

be applied to studies of climate change and its impact on the Earth system becomes signifi-

cantly broadened.

Conclusions

In this paper, we have described a prototype system called MERRA/Max that implements a

feature selection approach to dimensionality reduction that is specifically intended to enable

direct use of GCM outputs in ENM. The system accomplishes this reduction through a Monte

Carlo optimization in which many independent MaxEnt runs operating on a species occur-

rence file and a small set of variables randomly selected from a large collection of variables

converges on an estimate of the top contributing predictors in the larger collection. These top

predictors become candidates for consideration in the variable selection step of the ENM pro-

cess. MERRA/Max’s Monte Carlo algorithm operates on files stored in the underlying filesys-

tem and is thus scalable to large data sets. We implemented its program components using

open-source and commercial off-the-shelf software. These components can run independently

as parallel processes in a high-performance cloud computing environment to yield near real-

time performance.

Within this framework, variable selection is guided by the indirect biological influences

injected into MERRA/Max’s feature reduction process by the species occurrence files. We find

evidence for this tailoring of results in our use case scenarios. In preliminary tests using a sin-

gle bird species and observations from a single year, MERRA/Max selected reasonable and

familiar climatological predictors from the classic Bioclim collection of environmental vari-

ables. MERRA/Max also selected biologically and ecologically plausible predictors from a

larger and much more diverse set of environmental variables derived from NASA’s MERRA-2

reanalysis. Our experience is limited at this point, but we feel that these results point to a tech-

nological approach that could expand the use of GCM outputs in ENM, foster exploratory

experimentation with otherwise difficult-to-use climate data sets, streamline the modeling pro-

cess, and, eventually, enable automated bioclimatic modeling as a cloud service.

Supporting information

S1 Appendix. MERRA/Max parameterization. Overview of MERRA/Max’s default screening

parameters and supporting documentation.
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15. Araújo MB, Guisan A. Five (or so) challenges for species distribution modelling. Journal of Biogeogra-

phy. 2006; 33: 1677–1688. https://doi.org/10.1111/j.1365-2699.2006.01584.x
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19. Peterson AT, Cobos ME, Jiménez-Garcı́a D. Major challenges for correlational ecological niche model

projections to future climate conditions: Climate change, ecological niche models, and uncertainty.

Annals of the New York Academy of Sciences. 2018; 1429: 66–77. https://doi.org/10.1111/nyas.

13873 PMID: 29923606

20. Elith J, Phillips SJ, Hastie T, Dudı́k M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecol-

ogists. Diversity and distributions. 2011; 17: 43–57.

21. Phillips SJ, Anderson RP, Dudı́k M, Schapire RE, Blair ME. Opening the black box: An open-source

release of Maxent. Ecography. 2017; 40: 887–893.

22. Phillips SJ. A Brief Tutorial on Maxent. AT&T Research. 2005; 190: 231–259.

23. Gelaro R, Mccarty W, Su MJ, Todling R, Molod A, Takacs L, et al. The Modern-Era Retrospective

Analysis for Research and Applications, Version 2 (MERRA-2). JOURNAL OF CLIMATE. 2017; 30:

36. https://doi.org/10.1175/JCLI-D-16-0758.1 PMID: 32020988

24. Reanalyses.org Home Page. 2021 [cited 12 Mar 2021]. Available: https://reanalyses.org/

25. Schnase JL, Smith JA, Stohlgren TJ, Graves S, Trees C. Biological Invasions: a Challenge in Ecologi-

cal Forecasting. IEEE International Geoscience and Remote Sensing Symposium. 2002. https://doi.

org/10.1109/igarss.2002.1024961

26. Beauchamp VB, Koontz SM, Suss C, Hawkins C, Kyde KL, Schnase JL. An Introduction to Oplisme-

nus Undulatifolius (Ard.) Roem. & Schult (Wavyleaf Basketgrass), a Recent Invader in Mid-Atlantic

Forest Understories 1,2. The Journal of the Torrey Botanical Society. 2013; 140: 391–413. https://doi.

org/10.3159/torrey-d-13-00033.1

27. Morisette JT, Jarnevich CS, Ullah A, Cai W, Pedelty JA, Gentle JE, et al. A Tamarisk Habitat Suitability

Map for the Continental United States. Frontiers in Ecology and the Environment. 2006; 4: 11–17.

https://doi.org/10.1890/1540-9295(2006)004

28. Schnase JL, Carroll ML, Weber KT, Brown ME, Gill RL, Wooten M, et al. RECOVER: An Automated,

Cloud-Based Decision Support System for Post-Fire Rehabilitation Planning. ISPRS—International

Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-1. 2014. pp.

363–70. https://doi.org/10.5194/isprsarchives-xl-1-363-2014

29. Schnase JL, Most N, Gill R, Ma P. The Invasive Species Forecasting System. 2009 17th International

Conference on Geoinformatics. 2009. https://doi.org/10.1109/geoinformatics.2009.5293333

30. Hu F, Yang C, Schnase JL, Duffy DQ, Xu M, Bowen MK, et al. ClimateSpark: An in-memory distributed

computing framework for big climate data analytics. Computers & Geosciences. 2018; 115: 154–166.

https://doi.org/10.1016/j.cageo.2018.03.011

PLOS ONE Automatic variable selection in ecological niche modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0257502 January 21, 2022 20 / 27

https://doi.org/10.3389/fmars.2017.00308
https://doi.org/10.1111/jbi.12227
https://doi.org/10.1111/jbi.12227
https://doi.org/10.1002/bimj.201700067
http://www.ncbi.nlm.nih.gov/pubmed/29292533
https://doi.org/10.1016/j.ijinfomgt.2019.01.021
https://doi.org/10.1371/journal.pone.0237208
https://doi.org/10.1371/journal.pone.0237208
http://www.ncbi.nlm.nih.gov/pubmed/33657125
https://doi.org/10.1111/j.1365-2699.2006.01584.x
https://doi.org/10.1126/sciadv.aat4858
https://doi.org/10.1126/sciadv.aat4858
http://www.ncbi.nlm.nih.gov/pubmed/30746437
https://doi.org/10.1111/ecog.05317
https://doi.org/10.1016/j.ecoinf.2019.100983
https://doi.org/10.1111/nyas.13873
https://doi.org/10.1111/nyas.13873
http://www.ncbi.nlm.nih.gov/pubmed/29923606
https://doi.org/10.1175/JCLI-D-16-0758.1
http://www.ncbi.nlm.nih.gov/pubmed/32020988
https://reanalyses.org/
https://doi.org/10.1109/igarss.2002.1024961
https://doi.org/10.1109/igarss.2002.1024961
https://doi.org/10.3159/torrey-d-13-00033.1
https://doi.org/10.3159/torrey-d-13-00033.1
https://doi.org/10.1890/1540-9295%282006%29004
https://doi.org/10.5194/isprsarchives-xl-1-363-2014
https://doi.org/10.1109/geoinformatics.2009.5293333
https://doi.org/10.1016/j.cageo.2018.03.011
https://doi.org/10.1371/journal.pone.0257502


31. Schnase JL, Lee TJ, Mattmann CA, Lynnes CS, Cinquini L, Ramirez P. M., et al. Big Data Challenges

in Climate Science: Improving the next-generation cyberinfrastructure. IEEE Geoscience and Remote

Sensing Magazine. 2016; 4: 10–22. https://doi.org/10.1109/MGRS.2015.2514192 PMID: 31709380

32. Schnase JL. Climate Analytics as a Service. Cloud Computing in Ocean and Atmospheric Sciences.

2016. pp. 187–219. https://doi.org/10.1016/b978-0-12-803192-6.00011–6

33. Schnase JL, Cushing J, Frame M, Frondorf A, Landis E, Maier D, et al. Information technology chal-

lenges of biodiversity and ecosystems informatics. Information Systems. 2003; 28: 339–345. https://

doi.org/10.1016/S0306-4379(02)00070-4

34. Schnase JL, Duffy DQ, McInerney MA, Webster WP, Lee TJ. Climate Analytics as a Service. Proceed-

ings of the 2014 Conference on Big Data from Space (BiDS. Frascati: European Space Agency

(ESA; 2014. pp. 90–94. https://doi.org/10.2788/1823

35. Schnase JL, Duffy DQ, Tamkin GS, Nadeau D, Thompson JH, Grieg CM, et al. MERRA Analytic Ser-

vices: Meeting the Big Data Challenges of Climate Science through Cloud-Enabled Climate Analytics-

as-a-Service. Computers, Environment and Urban Systems. 2017; 61: 198–211. https://doi.org/10.

1016/j.compenvurbsys.2013.12.003

36. Carriere L, Potter GL, Hertz J, Peters J, Maxwell TP, Strong S, et al. CREATE-IP and CREATE-V:

Data and Services Update. AGU Fall Meeting Abstracts. 2017. pp. IN21D-0064.

37. Cinquini L, Crichton D, Mattmann C, Harney J, Shipman G, Wang F, et al. The Earth System Grid Fed-

eration: An open infrastructure for access to distributed geospatial data. Future Generation Computer

Systems. 2014; 36: 400–417.

38. Maxwell TP, Potter GL, Carriere L, Duffy D. The Earth Data Analytic Services Framework. AGU Fall

Meeting Abstracts. 2019. pp. IN13B-0720.

39. Tamkin G, Schnase JL, Duffy D, Li J, Strong S, Thompson JH. The NASA Reanalysis Ensemble Ser-

vice-Advanced Capabilities for Integrated Reanalysis Access and Intercomparison. AGU Fall Meeting

Abstracts. 2017. pp. IN21D-0065.

40. GES DISC—Goddard Earth Science Data and Information Services Center. [cited 26 May 2021].

Available: https://disc.gsfc.nasa.gov/

41. NASA Case Study–Amazon Web Services (AWS). In: Amazon Web Services, Inc. [Internet]. 2021

[cited 26 May 2021]. Available: https://aws.amazon.com/partners/success/nasa-image-library/

42. Research and Technical Computing on Amazon Web Services (AWS). In: Amazon Web Services, Inc.

[Internet]. 2021 [cited 26 May 2021]. Available: https://aws.amazon.com/government-education/

research-and-technical-computing/

43. Google Cloud offers global support for academic research. In: Google [Internet]. 2019 [cited 26 May

2021]. Available: https://blog.google/products/google-cloud/google-cloud-offers-global-support-for-

academic-research/

44. Our head’s in the cloud, but we’re keeping the earth in mind. In: Google Cloud Blog [Internet]. 2019

[cited 26 May 2021]. Available: https://cloud.google.com/blog/topics/google-cloud-next/our-heads-in-

the-cloud-but-were-keeping-the-earth-in-mind/

45. Cloud Computing Services | Microsoft Azure. 2021 [cited 26 May 2021]. Available: https://azure.

microsoft.com/en-us/

46. Data Science Virtual Machines | Microsoft Azure. 2021 [cited 26 May 2021]. Available: https://azure.

microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/

47. ADAPT. In: ADAPT | NASA Center for Climate Simulation [Internet]. [cited 15 Mar 2021]. Available:

https://www.nccs.nasa.gov/systems/ADAPT

48. R: The R Project for Statistical Computing. [cited 22 May 2020]. Available: https://www.r-project.org/

49. Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Anderson MU and RP. ENMeval:

Automated Runs and Evaluations of Ecological Niche Models. 2020. Available: https://CRAN.R-

project.org/package=ENMeval

50. Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, et al. ENMeval: An R

package for conducting spatially independent evaluations and estimating optimal model complexity for

Maxent ecological niche models. Methods in Ecology and Evolution. 2014; 5: 1198–1205. https://doi.

org/10.1111/2041-210X.12261

51. Maxent Version 3.4.1 Download Site. In: Maxent Version 3.4.1 Download Site [Internet]. [cited 22 May

2020]. Available: https://biodiversityinformatics.amnh.org/open_source/maxent/

52. Dunning, Jr. JB, Bowers, Jr. RK, Suter SJ, Bock CE. Cassin’s Sparrow (Peucaea cassinii), Version

1.0. In: Birds of the World (P. G. Rodewald, Editor) [Internet]. 2020 [cited 22 May 2020]. Available:

https://doi.org/10.2173/bow.casspa.01

PLOS ONE Automatic variable selection in ecological niche modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0257502 January 21, 2022 21 / 27

https://doi.org/10.1109/MGRS.2015.2514192
http://www.ncbi.nlm.nih.gov/pubmed/31709380
https://doi.org/10.1016/b978-0-12-803192-6.00011%26%23x2013%3B6
https://doi.org/10.1016/S0306-4379%2802%2900070-4
https://doi.org/10.1016/S0306-4379%2802%2900070-4
https://doi.org/10.2788/1823
https://doi.org/10.1016/j.compenvurbsys.2013.12.003
https://doi.org/10.1016/j.compenvurbsys.2013.12.003
https://disc.gsfc.nasa.gov/
https://aws.amazon.com/partners/success/nasa-image-library/
https://aws.amazon.com/government-education/research-and-technical-computing/
https://aws.amazon.com/government-education/research-and-technical-computing/
https://blog.google/products/google-cloud/google-cloud-offers-global-support-for-academic-research/
https://blog.google/products/google-cloud/google-cloud-offers-global-support-for-academic-research/
https://cloud.google.com/blog/topics/google-cloud-next/our-heads-in-the-cloud-but-were-keeping-the-earth-in-mind/
https://cloud.google.com/blog/topics/google-cloud-next/our-heads-in-the-cloud-but-were-keeping-the-earth-in-mind/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://azure.microsoft.com/en-us/services/virtual-machines/data-science-virtual-machines/
https://www.nccs.nasa.gov/systems/ADAPT
https://www.r-project.org/
https://CRAN.R-project.org/package=ENMeval
https://CRAN.R-project.org/package=ENMeval
https://doi.org/10.1111/2041-210X.12261
https://doi.org/10.1111/2041-210X.12261
https://biodiversityinformatics.amnh.org/open_source/maxent/
https://doi.org/10.2173/bow.casspa.01
https://doi.org/10.1371/journal.pone.0257502


53. Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas.

International Journal of Climatology. 2017; 37: 4302–4315. https://doi.org/10.1002/joc.5086

54. Worldclim bioclimatic variables. 2020 [cited 22 May 2020]. Available: https://worldclim.org/data/

worldclim21.html

55. GBIF.org (21 February 2019) GBIF Occurrence Download https://doi.org/10.15468/dl.0s8yak.

56. Ruth JM. Cassin’s Sparrow Status Assessment and Conservation Plan. Biological Technical Publica-

tion BTP-R6002-2000. Denver, CO: U.S. Department of the Interior, Fish and Wildlife Service; 2000.

57. Schnase JL, Maxwell TC. Use of song patterns to identify individual male Cassin’s Sparrows. Journal

of Field Ornithology. 1989; 60: 12–19.

58. Schnase JL, Grant WE, Maxwell TC, Leggett JJ. Time and energy budgets of Cassin’s sparrow (Aimo-

phila cassinii) during the breeding season: evaluation through modelling. Ecological Modelling. 1991;

55: 285–319.

59. GDAL/OGR Geospatial Data Abstraction Software Library. Open Source Geospatial Foundation;

2020. Available: https://gdal.org/

60. Hijmans RJ, Phillips S, Elith J, Leathwick J. dismo: Species Distribution Modeling. 2017. Available:

https://CRAN.R-project.org/package=dismo

61. Lynn J. Cassin’s Sparrow (Aimophila cassinii): A Technical Conservation Assessment. USDA Forest

Service, Species Conservation Project. Rocky Mountain Region. 2006; 46.

62. Pradhan P. Strengthening MaxEnt modelling through screening of redundant explanatory bioclimatic

variables with variance inflation factor analysis. Researcher. 2016; 8: 29–34.

63. Warren DL, Glor RE, Turelli M. ENMTools: a toolbox for comparative studies of environmental niche

models. Ecography. 2010 [cited 27 Mar 2020]. https://doi.org/10.1111/j.1600-0587.2009.06142.x

64. Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control.

1974; 19: 716–723. https://doi.org/10.1109/TAC.1974.1100705

65. Intergovernmental Panel on Climate Change (IPCC). 2021 [cited 14 Mar 2021]. Available: https://

www.ipcc.ch/

66. Bosilovich MG, Lucchesi R, Suarez M. MERRA-2: File Specification. GMAO Office Note. 2016; 9: 1–

73.

67. MERRA-2. 2020 [cited 19 Mar 2020]. Available: https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/

68. Beaumont LJ, Hughes L, Poulsen M. Predicting species distributions: use of climatic parameters in

BIOCLIM and its impact on predictions of species’ current and future distributions. Ecological Model-

ling. 2005; 186: 251–270. https://doi.org/10.1016/j.ecolmodel.2005.01.030

69. Booth TH, Nix HA, Busby JR, Hutchinson MF. BIOCLIM: the first species distribution modelling pack-

age, its early applications and relevance to most current MaxEnt studies. Franklin J, editor. Diversity

Distrib. 14AD; 20: 1–9. https://doi.org/10.1111/ddi.12144

70. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate sur-

faces for global land areas. International Journal of Climatology. 2005; 25: 1965–1978. https://doi.org/

10.1002/joc.1276

71. O’Donnell MS, Ignizio D a. Bioclimatic Predictors for Supporting Ecological Applications in the Conter-

minous United States. Reston, VA: US Geological Survey; 2012 p. 10. Report No.: 691. Available:

https://pubs.usgs.gov/ds/691/
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87. Morales NS, Fernández IC, Baca-González V. MaxEnt’s parameter configuration and small samples:

are we paying attention to recommendations? A systematic review. PeerJ. 2017; 5: e3093. https://doi.

org/10.7717/peerj.3093 PMID: 28316894

88. Zeng Y, Low BW, Yeo DCJ. Novel methods to select environmental variables in MaxEnt: A case study

using invasive crayfish. Ecological Modelling. 2016; 341: 5–13. https://doi.org/10.1016/j.ecolmodel.

2016.09.019

89. Qiao H, Soberón J, Peterson AT. No silver bullets in correlative ecological niche modelling: insights

from testing among many potential algorithms for niche estimation. Kriticos D, editor. Methods in Ecol-

ogy and Evolution. 2015; 6: 1126–1136. https://doi.org/10.1111/2041-210X.12397

90. Ashraf U, Peterson AT, Chaudhry MN, Ashraf I, Saqib Z, Rashid Ahmad S, et al. Ecological niche

model comparison under different climate scenarios: a case study of Olea spp. in Asia. Ecosphere.

2017; 8: e01825. https://doi.org/10.1002/ecs2.1825

91. Guisan A, Zimmermann NE. Predictive habitat distribution models in ecology. Ecological modelling.

2000; 135: 147–186.

92. Cobos ME, Peterson AT, Barve N, Osorio-Olvera L. kuenm: an R package for detailed development of

ecological niche models using Maxent. PeerJ. 2019; 7: e6281. https://doi.org/10.7717/peerj.6281

PMID: 30755826

93. Qiu J, Wu Q, Ding G, Xu Y, Feng S. A survey of machine learning for big data processing. EURASIP J

Adv Signal Process. 2016; 2016: 67. https://doi.org/10.1186/s13634-016-0355-x

94. Obermeyer Z, Emanuel EJ. Predicting the Future—Big Data, Machine Learning, and Clinical Medi-

cine. N Engl J Med. 2016; 375: 1216–1219. https://doi.org/10.1056/NEJMp1606181 PMID: 27682033

95. Bailly S, Meyfroidt G, Timsit J-F. What’s new in ICU in 2050: big data and machine learning. Intensive

Care Medicine. 2018; 44: 1524–1527. https://doi.org/10.1007/s00134-017-5034-3 PMID: 29279970

96. van der Maaten L, Postma E, van den Herik J. Dimensionality Reduction: A Comparative Review. The

Netherlands: Tilburg University; 2009 p. 36. Report No.: TiCC TR 2009–005. Available: https://

members.loria.fr/moberger/Enseignement/AVR/Exposes/TR_Dimensiereductie.pdf

97. Guyon I, Elisseeff A. An Introduction to Variable and Feature Selection. Journal of Machine Learning

Research. 2003; 3: 1157–1182.

98. Espadoto M., Martins R. M., Kerren A., Hirata N. S. T., Telea A. C. Towards a Quantitative Survey of

Dimension Reduction Techniques. IEEE Transactions on Visualization and Computer Graphics. 2019;

1–1. https://doi.org/10.1109/TVCG.2019.2944182 PMID: 31567092

PLOS ONE Automatic variable selection in ecological niche modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0257502 January 21, 2022 23 / 27

https://doi.org/10.1890/10-1171.1
https://doi.org/10.1890/10-1171.1
http://www.ncbi.nlm.nih.gov/pubmed/21563566
https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.1111/j.1558-5646.2008.00482.x
https://doi.org/10.1111/j.1558-5646.2008.00482.x
http://www.ncbi.nlm.nih.gov/pubmed/18752605
https://doi.org/10.2307/1935534
https://doi.org/10.2307/2685263
https://ebird.org/ebird/science/status-and-trends/casspa/abundance-map
https://ebird.org/ebird/science/status-and-trends/casspa/abundance-map
https://doi.org/10.1016/j.tree.2006.09.010
http://www.ncbi.nlm.nih.gov/pubmed/17011070
https://doi.org/10.1111/j.1600-0587.2009.06023.x
https://doi.org/10.1038/s41559-019-0972-5
https://doi.org/10.1038/s41559-019-0972-5
http://www.ncbi.nlm.nih.gov/pubmed/31548646
https://doi.org/10.7717/peerj.3093
https://doi.org/10.7717/peerj.3093
http://www.ncbi.nlm.nih.gov/pubmed/28316894
https://doi.org/10.1016/j.ecolmodel.2016.09.019
https://doi.org/10.1016/j.ecolmodel.2016.09.019
https://doi.org/10.1111/2041-210X.12397
https://doi.org/10.1002/ecs2.1825
https://doi.org/10.7717/peerj.6281
http://www.ncbi.nlm.nih.gov/pubmed/30755826
https://doi.org/10.1186/s13634-016-0355-x
https://doi.org/10.1056/NEJMp1606181
http://www.ncbi.nlm.nih.gov/pubmed/27682033
https://doi.org/10.1007/s00134-017-5034-3
http://www.ncbi.nlm.nih.gov/pubmed/29279970
https://members.loria.fr/moberger/Enseignement/AVR/Exposes/TR_Dimensiereductie.pdf
https://members.loria.fr/moberger/Enseignement/AVR/Exposes/TR_Dimensiereductie.pdf
https://doi.org/10.1109/TVCG.2019.2944182
http://www.ncbi.nlm.nih.gov/pubmed/31567092
https://doi.org/10.1371/journal.pone.0257502


99. Feng X, Park DS, Liang Y, Pandey R, PapeşM. Collinearity in ecological niche modeling: Confusions

and challenges. Ecology and Evolution. 2019; 9: 10365–10376. https://doi.org/10.1002/ece3.5555

PMID: 31624555

100. Kroese DP, Brereton T, Taimre T, Botev ZI. Why the Monte Carlo method is so important today: Why

the MCM is so important today. Wiley Interdisciplinary Reviews: Computational Statistics. 2014; 6:

386–392. https://doi.org/10.1002/wics.1314

101. Ito Y, Imai H, Duc TL, Negishi Y, Kawachiya K, Matsumiya R, et al. Profiling based Out-of-core Hybrid

Method for Large Neural Networks. arXiv:190705013 [cs]. 2019 [cited 11 Jan 2021]. Available: http://

arxiv.org/abs/1907.05013

102. Chen T, Xu B, Zhang C, Guestrin C. Training Deep Nets with Sublinear Memory Cost.

arXiv:160406174 [cs]. 2016 [cited 11 Jan 2021]. Available: http://arxiv.org/abs/1604.06174

103. Hanlon J. How To Solve The Memory Challenges Of Deep Neural Networks. In: TOPBOTS [Internet].

2017 [cited 13 May 2021]. Available: https://www.topbots.com/how-solve-memory-challenges-deep-

learning-neural-networks-graphcore/

104. Zhang B. A Solution to the Memory Limit Challenge in Big Data Machine Learning. In: Medium [Inter-

net]. 2018 [cited 13 May 2021]. Available: https://petuum.medium.com/a-solution-to-the-memory-limit-

challenge-in-big-data-machine-learning-49783a72088b

105. Bicer T, Chiu D, Agrawal G. A Framework for Data-Intensive Computing with Cloud Bursting. 2011

IEEE International Conference on Cluster Computing. 2011. pp. 169–177. https://doi.org/10.1109/

CLUSTER.2011.21

106. Pham B, Jones RC, Shalaan M. Analysis of Cloud Bursting from the Openstack Infrastructure to AWS.

2020 IEEE Cloud Summit. 2020. pp. 114–118. https://doi.org/10.1109/IEEECloudSummit48914.

2020.00037

107. Guo T, Sharma U, Shenoy P, Wood T, Sahu S. Cost-Aware Cloud Bursting for Enterprise Applica-

tions. ACM Trans Internet Technol. 2014;13. https://doi.org/10.1145/2602571

108. Oberholser HC. Cassin’s Sparrow, “Aimophila cassinii” (Woodhouse). 1st ed. In: Kincaid EB Jr., edi-

tor. Bird Life of Texas. 1st ed. Austin: University of Texas Press; 1974. pp. 920–921.

109. Williams FC, LeSassier AL. Cassin’s Sparrow. In: Austin OL, editor. Life Histories of North American

Cardinals, Grosbeaks, Buntings, Towhees, Finches, Sparrows, and Allies, Order Passeriformes, Fam-

ily Fringillidae: (in 3vols) Part 2, Genera Pipilo (part) Through Spizella. New York: Dover; 1968. pp.

981–990.

110. Woodhouse SW. Zonotrichia Cassinii, nobis. Proceedings of the Academy of Natural Science of Phila-

delphia. Philadelphia: Merrihow and Thompson; 1852. pp. 60–61. Available: https://www.

biodiversitylibrary.org/item/17888#page/7/mode/1up

111. Ohmart RD. Dual breeding ranges in Cassin’s sparrow (Aimophila cassinii). In: Hoff CC, Riedesel ML,

editors. Physiological systems in semiarid environments. Albuquerque, NM: University of New

Mexico Press; 1969. p. 105.

112. Norman JA, Christidis L. Ecological opportunity and the evolution of habitat preferences in an arid-

zone bird: implications for speciation in a climate-modified landscape. Scientific Reports. 2016; 6:

19613. https://doi.org/10.1038/srep19613 PMID: 26787111

113. Hubbard JP. Avian evolution in the aridlands of North America. The Living Bird. 1974; 155–196.

114. Sohl TL. The Relative Impacts of Climate and Land-Use Change on Conterminous United States Bird

Species from 2001 to 2075. Romanach SS, editor. PLoS ONE. 2014; 9: e112251. https://doi.org/10.

1371/journal.pone.0112251 PMID: 25372571

115. Rosenberg KV, Dokter AM, Blancher PJ, Sauer JR, Smith AC, Smith PA, et al. Decline of the North

American avifauna. Science. 2019; 366: 120. https://doi.org/10.1126/science.aaw1313 PMID:

31604313

116. Reside AE, VanDerWal JJ, Kutt AS, Perkins GC. Weather, Not Climate, Defines Distributions of Vagile

Bird Species. Hector A, editor. PLoS ONE. 2010; 5: e13569. https://doi.org/10.1371/journal.pone.

0013569 PMID: 21042575

117. Iknayan KJ, Beissinger SR. Collapse of a desert bird community over the past century driven by cli-

mate change. Proc Natl Acad Sci USA. 2018; 115: 8597. https://doi.org/10.1073/pnas.1805123115

PMID: 30082401

118. Heenan CB, Seymour RS. The Effect of Wind on the Rate of Heat Loss from Avian Cup-Shaped

Nests. Brigham RM, editor. PLoS ONE. 2012; 7: e32252. https://doi.org/10.1371/journal.pone.

0032252 PMID: 22389689

119. Liebmann B. Characteristics of North American Summertime Rainfall with Emphasis on the Monsoon.

American Meteorological Society Jounal of Climate. 2008; 21: 1277–1294.

PLOS ONE Automatic variable selection in ecological niche modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0257502 January 21, 2022 24 / 27

https://doi.org/10.1002/ece3.5555
http://www.ncbi.nlm.nih.gov/pubmed/31624555
https://doi.org/10.1002/wics.1314
http://arxiv.org/abs/1907.05013
http://arxiv.org/abs/1907.05013
http://arxiv.org/abs/1604.06174
https://www.topbots.com/how-solve-memory-challenges-deep-learning-neural-networks-graphcore/
https://www.topbots.com/how-solve-memory-challenges-deep-learning-neural-networks-graphcore/
https://petuum.medium.com/a-solution-to-the-memory-limit-challenge-in-big-data-machine-learning-49783a72088b
https://petuum.medium.com/a-solution-to-the-memory-limit-challenge-in-big-data-machine-learning-49783a72088b
https://doi.org/10.1109/CLUSTER.2011.21
https://doi.org/10.1109/CLUSTER.2011.21
https://doi.org/10.1109/IEEECloudSummit48914.2020.00037
https://doi.org/10.1109/IEEECloudSummit48914.2020.00037
https://doi.org/10.1145/2602571
https://www.biodiversitylibrary.org/item/17888#page/7/mode/1up
https://www.biodiversitylibrary.org/item/17888#page/7/mode/1up
https://doi.org/10.1038/srep19613
http://www.ncbi.nlm.nih.gov/pubmed/26787111
https://doi.org/10.1371/journal.pone.0112251
https://doi.org/10.1371/journal.pone.0112251
http://www.ncbi.nlm.nih.gov/pubmed/25372571
https://doi.org/10.1126/science.aaw1313
http://www.ncbi.nlm.nih.gov/pubmed/31604313
https://doi.org/10.1371/journal.pone.0013569
https://doi.org/10.1371/journal.pone.0013569
http://www.ncbi.nlm.nih.gov/pubmed/21042575
https://doi.org/10.1073/pnas.1805123115
http://www.ncbi.nlm.nih.gov/pubmed/30082401
https://doi.org/10.1371/journal.pone.0032252
https://doi.org/10.1371/journal.pone.0032252
http://www.ncbi.nlm.nih.gov/pubmed/22389689
https://doi.org/10.1371/journal.pone.0257502


120. NOAA. The North American Monsoon. NOAA NWS Climate Prediction Center; 2019 p. 25. Available:

https://www.cpc.ncep.noaa.gov/products/outreach/Report-to-the-Nation-Monsoon_aug04.pdf

121. Hansen H. Skylarking Cassin’s Sparrows in Southeast Arizona. In: ABA Blog [Internet]. 2019 [cited 23

Jun 2021]. Available: https://blog.aba.org/2019/08/skylarking-cassins-sparrows-in-southeast-arizona.

html

122. West AM, Kumar S, Brown CS, Stohlgren TJ, Bromberg J. Field validation of an invasive species Max-

ent model. Ecological Informatics. 2016; 36: 126–134. https://doi.org/10.1016/j.ecoinf.2016.11.001

123. Fourcade Y, Besnard AG, Secondi J. Paintings predict the distribution of species, or the challenge of

selecting environmental predictors and evaluation statistics. Global Ecol Biogeogr. 2018; 27: 245–

256. https://doi.org/10.1111/geb.12684

124. Porter WP, Budaraju S, Stewart WE, Ramankutty N. Calculating Climate Effects on Birds and Mam-

mals: Impacts on Biodiversity, Conservation, Population Parameters, and Global Community Struc-

ture. American Zoologist. 2000; 40: 597–630. https://doi.org/10.1668/0003-1569(2000)040[0597:

cceoba]2.0.co;2

125. Anderson JT, Conway WC. The flight song display of the Cassin’s Sparrow (Aimophila cassinii): form

and possible function. Bulletin of the Texas Ornithological Society. 2000; 33: 1–12.

126. Cuddington K, Fortin M-J, Gerber LR, Hastings A, Liebhold A, O’Connor M, et al. Process-based mod-

els are required to manage ecological systems in a changing world. Ecosphere. 2013; 4: 1–12. https://

doi.org/10.1890/ES12-00178.1

127. Kendall BE, Briggs CJ, Murdoch WW, Turchin P, Ellner SP, McCauley E, et al. Why do populations

cycle? A synthesis of statistical and mechanistic modeling approaches. 1999; 80: 17.

128. Lipschutz ML. Effects of Drought and Grazzing on Land Bird Populations in South Texas. MS, Range

and Wildlife Management, Texas A&M University-Kingsville. 2016.

129. Cassin’s Sparrow—Whatbird.com. [cited 22 May 2021]. Available: https://identify.whatbird.com/obj/

278/overview/cassins_sparrow.aspx

130. Cassin’s Sparrow. In: Audubon [Internet]. 2014 [cited 22 May 2021]. Available: https://www.audubon.

org/field-guide/bird/cassins-sparrow

131. Cassin’s Sparrow (Peucaea cassinii)—BirdLife species factsheet. [cited 22 May 2021]. Available:

http://datazone.birdlife.org/species/factsheet/22721272

132. Cassin’s Sparrow Life History, All About Birds, Cornell Lab of Ornithology. [cited 22 May 2021]. Avail-

able: https://www.allaboutbirds.org/guide/Cassins_Sparrow/lifehistory
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