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Summary

Tumor heterogeneity is a major barrier to effective cancer diagnosis and treatment. We recently 

identified cancer-specific differentially DNA-methylated regions (cDMRs) in colon cancer, which 

also distinguish normal tissue types from each other, suggesting that these cDMRs might be 

generalized across cancer types. Here we show stochastic methylation variation of the same 

cDMRs, distinguishing cancer from normal, in colon, lung, breast, thyroid, and Wilms tumors, 

with intermediate variation in adenomas. Whole genome bisulfite sequencing shows these variable 
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cDMRs are related to loss of sharply delimited methylation boundaries at CpG islands. 

Furthermore, we find hypomethylation of discrete blocks encompassing half the genome, with 

extreme gene expression variability. Genes associated with the cDMRs and large blocks are 

involved in mitosis and matrix remodeling, respectively. These data suggest a model for cancer 

involving loss of epigenetic stability of well-defined genomic domains that underlies increased 

methylation variability in cancer and could contribute to tumor heterogeneity.

Introduction

Cancer is generally viewed as over 200 separate diseases of abnormal cell growth, 

controlled by a series of mutations, but also involving epigenetic non-sequence changes 

involving the same genes1. DNA methylation at CpG dinucleotides has been studied 

extensively in cancer, with hypomethylation or hypermethylation reported at some genes, 

and global hypomethylation ascribed to normally methylated repetitive DNA elements. Until 

now, cancer epigenetics has focused on high-density CpG islands, gene promoters, or 

dispersed repetitive elements2,3.

Here we have taken a different and more general approach to cancer epigenetics. It is based 

on our recent observation of frequent methylation alterations in colon cancer of lower 

cytosine-density CpG regions near islands, termed shores; as well as the observation that 

these cancer-specific differentially methylated regions, or cDMRs, correspond largely to the 

same regions that show DNA methylation variation among normal spleen, liver, and brain, 

or tissue-specific DMRs (tDMRs)4. Furthermore, cDMRs are highly enriched among 

regions differentially methylated during stem cell reprogramming of induced pluripotent 

stem (iPS) cells5. We thus reasoned that the very same sites might be generalized cDMRs, 

since they are involved in normal tissue differentiation but show aberrant methylation in at 

least one cancer type (colon).

We tested this hypothesis by designing a semi-quantitative custom Illumina array for 

methylation analysis of 151 cDMRs consistently altered across colon cancer, and analyzed 

these sites in 290 samples, including matched normal and cancer from colon, breast, lung, 

thyroid, and Wilms’ tumor. We were surprised to discover that almost all of these cDMRs 

were altered across all cancers tested. Specifically, the cDMRs showed increased stochastic 

variation in methylation level within each tumor type, suggesting a generalized disruption of 

the integrity of the cancer epigenome. To investigate this idea further, we performed 

genome-scale bisulfite sequencing of 3 colorectal cancers, the matched normal colonic 

mucosa, and two adenomatous polyps. These experiments revealed a surprising loss of 

methylation stability in colon cancer, involving CpG islands and shores, and large (up to 

several megabases) blocks of hypomethylation affecting more than half of the genome, with 

associated stochastic variability in gene expression, which could provide an epigenetic 

mechanism for tumor heterogeneity.
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RESULTS

Stochastic variation in DNA methylation across cancer types

We sought to increase the precision of DNA methylation measurements over our previous 

tiling array-based approach, termed CHARM6, analyzing 151 colon cDMRs4. We designed 

a custom nucleotide-specific Illumina bead array 384 probes covering 139 regions7. We 

studied 290 samples, including cancers from colon, lung, breast, thyroid, and Wilms’, with 

matched normal tissues to 111 of these 122 cancers, along with 30 colon premalignant 

adenomas and 27 additional normal samples (see Methods). To minimize the risk of genetic 

heterogeneity arising from sampling multiple clones we purified DNA from small (0.5 cm × 

0.2 cm) sections verified by histopathologic examination.

Cluster analysis of the DNA methylation values revealed that the colon cancer cDMRs 

largely distinguished cancer from normal for each tumor type (Supplementary Fig. 1). The 

increased across-sample variability in methylation within the cancer samples of each tumor 

type compared to normal was even more striking than differences in mean methylation. We 

therefore computed across-sample variance within normal and cancer samples in all five 

tumor/normal tissue types at each CpG site. Although these CpGs sites were selected for 

differences in mean values in colon cancer, the great majority exhibited greater variance in 

cancer than normal in each tissue type (Fig. 1a–e), even accounting for differences in 

variability expected from mean shifts according to a binomial distribution model of 

methylation measurements (Supplementary Fig. 2). This increase was statistically significant 

(p<0.01, using an F-test) for 81%, 92%,81%, 70%, and 80% of the CpG sites in colon, lung, 

breast, thyroid, and Wilms tumor, respectively. Furthermore, 157 CpG sites had statistically 

significant increased variability in all cancer types tested. This increased stochastic variation 

was found in CpG islands, CpG island shores, and regions distant from islands (Fig. 1a–e). 

These data suggest a potential mechanism of tumor heterogeneity, namely increased 

stochastic variation of DNA methylation in cancers compared to normal, within each tumor 

type tested (see Discussion). We ruled out increased cellular heterogeneity and patient age 

as artifactual causes for methylation heterogeneity in cancer samples (Supplementary Figs. 3 

and 4). Furthermore, there was no difference in methylation hypervariability comparing five 

high copy variation colon cancers to five low copy variation Wilms tumors (Supplementary 

Fig. 5a–b), arguing against genetic heterogeneity as a cause of methylation hypervariability. 

Similarly, 7 Wilms tumors without aberrant p53 expression by immunohistochemistry 

showed similar methylation hypervariability to 7 colon tumors with positive staining, a 

marker of chromosomal instability (Supplementary Fig. 6).

The loci where increased variability in cancer was observed are also able to distinguish the 

five normal tissues from each other, but this is a mean shift rather than a variation shift, 

apparent from cluster analysis (Supplementary Fig. 7). Interestingly, this is the case even 

when only using the 25 most variable sites in cancer (Fig. 1f). This result reinforces the 

concept of a biological relationship between normal tissue differentiation and stochastic 

variation in cancer DNA methylation.

To determine if the increased variability is a general property of cytosine methylation in 

cancer or a specific property of the CpGs selected for our custom array, we used as a control 
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a publicly available methylation dataset comparing colorectal cancer to matched normal 

mucosa on the Illumina Human Methylation 27k beadchip array. In this dataset we found 

that only 42% of the sites showed a statistically significant increase in methylation 

variability, compared to 81% in the custom array (p<0.01), confirming the specificity of the 

cancer DMRs included in our custom array. Increased stochastic variation was more 

common in CpGs far from islands (57%) than in shores (44%) or islands (31%), contrasting 

the relative representation of these locations on the 27k array which breaks down as: distal 

to islands (26.4%), shores (31.6%) and islands (42%) (see Methods). This result suggested 

that something other than relationship to CpG islands might be defining the largest fraction 

of sites of altered DNA methylation in cancer.

Hypomethylation of large DNA methylation blocks in colon cancer

The methylation stochasticity described above appears to be a general property of cancer, 

affecting cDMRs in both island and non-island regions, in all five cancer types tested. To 

investigate this apparent universal loss of DNA methylation pattern integrity in cancer, and 

analyze lower CpG abundance regions not examined by array-based methods, we performed 

shotgun bisulfite genome sequencing on 3 colorectal cancers and the matched normal 

colonic mucosausing the ABI SOLiD platform. We wanted to obtain methylation estimates 

with enough precision to detect differences of 10% methylation. Because we used a local 

likelihood approach, which aggregated information from neighboring CpGs and combined 

data from 3 biological replicates, we determined that 4X coverage would suffice to estimate 

methylation values at this precision with a standard error of at most 3% (see Methods). We 

therefore obtained between 12.5 and 13.5 gigabases for each sample, providing ~5X 

coverage for each CpG after quality control filtering (see Methods) and 

alignment(Supplementary Table 1). To verify the accuracy of methylation values obtained 

by our approach, we performed capture bisulfite sequencing on the same 6 samples for 

39,262 regions yielding 39.3k–125.6k CpG with >30× coverage (Supplementary Table 2), 

with correlations of 0.82–0.91 between our local likelihood approach and capture 

sequencing, a remarkable agreement since experiments were performed in different 

laboratories using different sequencing platforms and protocols. Examination of individual 

loci demonstrated that our methylation estimates closely track the high-coverage capture 

data (Supplementary Fig. 8). We also performed traditional bisulfite pyrosequencing, further 

confirming the accuracy of our approach (Supplementary Fig. 9).

Sequencing analysis revealed the surprising presence of large blocks of contiguous 

hypomethylation in cancer compared to normal (Fig. 2a–b). We identified 13,540 such 

regions of 5kb–10MB (Table 1, Supplementary Table 3). The across-cancer average 

hypomethylation throughout the blocks was 12%–23%. Remarkably, these hypomethylated 

blocks in cancer corresponded to more than half of the genome, even accounting for the 

number of CpG sites within the blocks (Table 1), and may include small hypermethylated 

regions. We also noted the existence of a small fraction (3%) of hypermethylated blocks in 

cancer (Table 1, Figs. 2a, b). A histogram of smoothed methylation values shows the shift in 

distribution of global DNA methylation (Fig. 2c). The predominant change in block 

methylation in cancer was a loss in the abundant compartment of intermediate methylation 

levels (mean 73%for all samples) to significantly lower levels (50–61%)(Fig. 2d).
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These blocks are common across all three cancers. An analysis of the tumors individually 

versus a normal profile shows consistent block boundary locations (see Fig. 2, 

Supplementary Fig. 10, and Methods). These blocks were not driven by copy number 

variation since the location of the latter was not consistent across subjects, in contrast to the 

consistent block boundaries (Supplementary Fig. 11a, b), and the methylation difference 

estimates provided by our statistical approach did not correlate with copy number values 

(Supplementary Fig. 11c).

Global hypomethylation in cancer8 is attributed to the presence of normally methylated 

repetitive elements9 and may be relevant to colon cancer as LINE-1 element 

hypomethylation is associated with worse prognosis in colon cancer10. We observed that in 

normal tissues, repetitive elements were more methylated than non-repetitive regions (76% 

vs. 66%). To determine whether such repetitive elements were responsible for the block 

hypomethylation, we compared differences in methylation levels inside and outside repeat 

elements (see Methods), both inside and outside blocks. Most of the global hypomethylation 

was due to hypomethylated blocks (Fig. 2e) and not the presence of repetitive elements. As 

repetitive elements are slightly enriched in blocks (odds ratio 1.4), much of the apparent 

repeat-associated methylation may in fact be due to blocks. This result does not exclude 

repeat-associated hypomethylation, since not all repeats were mappable. However, 57% of 

L1 elements, 94% of L2 elements, 95% of MIR sequences, and 18% of Alu elements were 

covered by our data (Supplementary Table 4) and did not show repeat-specific 

hypomethylation (Supplementary Fig. 12). Note that it is possible that Alu sequences not 

covered by our data are somehow more hypomethylated than covered Alu sequences and 

thus contribute to global hypomethylation.

Lister et al. performed bisulfite sequencing analysis of the H1 human embryonic stem cell 

line compared to the IMR90 fibroblast line, identifying large regions of the genome that are 

less methylated in fibroblast cells than ES cells, referred to as partially methylated domains 

(PMDs)11. The intermediate-methylation level regions we identified above largely coincided 

with the PMDs, containing 85% of CpGs inside PMDs (odds ratio 6.5, P<2×10−16, 

Supplementary Table 5). We previously described large organized chromatin lysine (K) 

modifications, or LOCKs, genome-wide in normal mouse cells that are associated with both 

constitutive and tissue-specific gene silencing12. We mapped LOCKs in primary human 

cells (see Methods). Remarkably, 89% of the LOCKs were contained within the blocks 

(odds ratio 6.8, P<2×10−16). LOCKs are also known to overlap with nuclear lamina-

associated domains or LADs12. Approximately 83% of the LADs were also contained 

within the blocks (odds ratio 4.9, P<2×10−16). In addition, DNase I hypersensitive sites, a 

structural signal for regulatory regions13 were enriched within 1 kb of block boundaries and 

small DMRs (p<2×10−16 for both). Thus the large hypomethylated blocks we identified in 

cancer correspond to a genomic organization identified in normal cells by several 

complementary methods. Note that although the PMDs and our hypomethylated blocks 

largely overlap, we demonstrate later significant differences in gene expression in cancer 

between non-overlapping blocks and PMDs.

We observed a relationship between the 157 CpGs that are hypervariable across all cancer 

types identified by our custom array and the hypomethylated blocks identified by whole 
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genome bisulfite sequencing. We found that 63% of the hypomethylated hypervariable 

CpGs were within hypomethylated blocks, and 37% of the hypermethylated hypervariable 

CpGs were within the rare hypermethylated blocks. In contrast, hypomethylated and 

hypermethylated CpGs, respectively, from the control Human Methylation 27K array, that 

were not hypervariable in cancer were enriched only 13% and 1.5% in the hypomethylated 

and hypermethylated blocks, respectively, demonstrating high statistical significance for 

enrichment of hypervariably methylated CpGs in blocks (p<2×10−16; Supplementary Table 

6).

Small DMRs in cancer involve loss of stability of DNA methylation boundaries

We developed a statistical algorithm (see Methods) for detecting DNA methylation changes 

in regions smaller than the blocks (≤5kb). Our analysis of biological replicates was critical 

as we found that regions showing across-subject variability in normal samples would be 

easily confused with DMRs if only one cancer-normal pair was available (Supplementary 

Fig. 13). Methylation measurements in these smaller regions exhibited good agreement with 

measurements from our previous CHARM-based microarray analysis4 (Supplementary Fig. 

14). We refer to these as small DMRs to distinguish them from the large (>5 kb) 

differentially methylated blocks described above. The increased comprehensiveness of 

sequencing over CHARM and other published array-based analyses allowed us to detect 

more small DMRs than previously reported, 5,810 hypermethylated and 4,315 

hypomethylated small DMRs (Supplementary Table 7). We also confirmed our finding4 that 

hypermethylated cDMRs are enriched in CpG islands while hypomethylated cDMRs are 

enriched in CpG island shores (Table 1). Sequencing also showed that the ratio of 

unmethylated to methylated islands is normally approximately 2:1, and for both types 

approximately 20% change methylation state in cancers (Table 2, Supplementary Table 8).

The most striking and consistent characteristic of small DMR architecture was a shift in one 

or both of the DNA methylation boundaries of a CpG island out of the island into the 

adjacent region (Fig. 3a,)or into the interior of the island (Fig. 3b). Boundary shifts into 

islands would appear as hypermethylated islands on array-based data, while boundary shifts 

out of islands would appear as hypomethylated shores.

The second most frequent category of small DMRs involved loss of methylation boundaries 

at CpG islands. For example, many hypermethylated cDMRs were defined in normal 

samples by unmethylated regions surrounded by highly methylated regions. In cancer, these 

regions exhibited stable methylation levels of approximately 40–60% throughout (Table 1, 

Fig. 3c). These regions with loss of methylation boundaries largely correspond to what are 

classified as hypermethylated islands in cancer.

We also found hypomethylated cDMRs that arose de novo in highly methylated regions 

outside of blocks, which we call novel hypomethylated DMRs, usually corresponding to 

CpG-rich regions that were not conventional islands (Table 1). Here, regions in which 

normal colon tissue was 75–95% methylated dropped to lower levels (20–40%) in cancer 

(Fig. 3d). In summary, in addition to the hypomethylated blocks, we found 10,125 small 

DMRs, 5,494 of which clearly fell in three categories: shifts of methylation boundaries, loss 

of methylation boundaries, and novel hypomethylation. Note that not all small DMRs 
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followed a consistent pattern across all three sample pairs and were therefore not classified 

(Table 1).

Methylation-based Euclidean distances show colon adenomas intermediate between 
normals and cancers

Using multidimensional scaling of the methylation values measured via the custom array in 

colon samples we noticed that normal samples clustered tightly together in contrast to 

dispersed cancer samples (Fig. 4a). This is consistent with the observed increase in 

methylation variability in cancer described earlier. We analyzed 30 colon adenomas on the 

custom array, and found that they were intermediate in both variability within samples and 

distance to the cluster of normal samples (Fig. 4a).

We subsequently performed whole genome bisulfite sequencing on two of these adenomas, 

a premalignant colon adenoma with relatively small methylation-based distance to the 

normal colons and an adenoma with a large methylation-based distance to the normal 

colons, similar to the cancer samples. We computed average methylation levels over each 

block from each sequenced sample and computed pairwise Euclidean distances between 

samples using these values. These measurements from hypomethylated blocks confirm the 

characteristic observed the array data: genome-wide increased variability in cancers 

compared to normals with adenomas exhibiting intermediate values (Fig. 4).

Expression of cell cycle genes associated with hypomethylated shores in cancer

Whole genome analysis has demonstrated an inverse relationship between gene expression 

and methylation, especially at transcriptional start sites14. To study this relationship in small 

DMRs, we obtained public microarray gene expression data from cancer and normal colon 

samples (see Methods) and compared to results fromour sequencing data. We mapped 6,869 

genes to DMRs within 2 kb of the gene’s transcription start site and observed the expected 

inverse relationship between DNA methylation and gene expression (r = −0.27, p< 2×10−16, 

Supplementary Fig. 15).

We examined the inverse relationship between methylation and gene expression for each 

category of small DMRs separately and noticed that the strongest relationship for 

hypomethylated shores is due to methylation boundary shifts (Supplementary Table 9). We 

performed gene ontology enrichment analysis15 for differentially expressed genes 

(FDR<0.05), comparing those associated with hypomethylated boundary shifts to the other 

categories. Categories (Supplementary Table 10) were strongly enriched for mitosis and 

cell-cycle related genes CEP55, CCNB1, CDCA2, PRC1, CDC2, FBXO5, AURKA, CDK1, 

CDKN3, CDK7, and CDC20B, among others (Supplementary Table 11).

Increased variation in gene expression in hypomethylated blocks and DMRs

We compared across-subject methylation variability levels between cancer and normal, 

within the blocks, and found a striking similarity to the cancer methylation hypervariability 

found with the custom array (Fig. 1a–e compared to Supplementary Fig. 16). To study the 

relationship to gene expression in colon cancer, we obtained public gene expression data 

from cancer and normal samples (see Methods). Genes in the blocks were generally silenced 
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(80% genes silenced in all samples) both in normal and cancer samples. Of the genes 

consistently transcribed in normal tissue, albeit at low levels, 36% are silenced in blocks in 

cancers, compared to 15% expected by chance. This is consistent with other reports in the 

literature, e.g. Frigola et al16.

More striking than subtle differences in gene silencing, we found substantial enrichment of 

genes exhibiting increased expression variability in cancer compared to normal samples in 

the hypomethylated blocks. First, we ruled out that this observed increased variability was 

due to the potential high cellular heterogeneity of cancer (Supplementary Fig. 17a). Then, 

we noticed a clear and statistically significant association between increased variability in 

expression of a gene and its location within a hypomethylated block (Supplementary Fig. 

17b). For example, 26 of the 50 genes exhibiting the largest increase in expression 

variability were inside the blocks; 52% compared to the 17% expected by chance (p = 

3×10−9). Expression levels for 25 of these exhibited an interesting pattern: while never 

expressed in normal samples, they exhibited stochastic expression in cancer (Fig. 5 and 

Supplementary Fig. 18). For example the genes MMP3, MMP7, MMP10, SIM2, CHI3L1, 

STC1, and WISP (described in the Discussion) were expressed in 96%, 100%, 67%, 8%, 

79%, 50%, and 17% of the cancer samples, respectively, but never expressed in normal 

samples (Supplementary Table 12).

Functional differences between hypomethylated blocks and PMDs

As noted above, the hypomethylated blocks we observed substantially overlapped PMDs 

reported in a fibroblast cell line by Lister et al.11. We examined the genomic regions of no 

overlap between blocks and PMDs to identify potential functional differences between them. 

We grouped them into two sets: 1) regions within the hypomethylated blocks but not in the 

PMDs (B+P−) and 2) regions within the PMDs but not in the hypomethylated blocks (B−P

+). We obtained microarray gene expression data from fibroblast samples (see Methods) 

and, as expected, the genes in the fibroblast PMDs were relatively silenced in the fibroblast 

samples (p<2×10−16). Furthermore, genes that were silenced in fibroblast samples and 

consistently expressed in normal colon were enriched in the B-P+ regions (odds ratio of 3.2, 

p<2×10−16), while genes consistently silenced in colon and consistently expressed in 

fibroblast samples were enriched in the B+P-regions (odds ratio 2.8, p = 0.0004). Finally, 

the 50 hypervariable genes described above were markedly enriched in the B+P− regions 

(p=0.00013), yet showed no enrichment in the B−P+ regions. These results suggest that 

hypervariable gene expression in colon cancer may be related to their presence in 

hypomethylated blocks.

DISCUSSION

In summary, we show that colon cancer cDMRs are generally involved in the common solid 

tumors of adulthood, lung, breast, thyroid, and colon cancer, and the most common solid 

tumor of childhood, Wilms tumor, with tight clustering of methylation levels in normal 

tissues, and marked stochastic variation in cancers. Efforts to exploit DNA methylation for 

cancer screening focus on identifying narrowly defined cancer-specific profiles17. Our data 
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suggests future efforts might instead be directed at defining the cancer epigenome as the 

departure from a narrowly defined normal profile.

Surprisingly, two-thirds of all methylation changes in colon cancer involve hypomethylation 

of large blocks, with consistent locations across samples, comprising more than half of the 

genome. The functional relevance is supported by the fact that genes in colon blocks not in 

fibroblast blocks tend to be silenced in colon and not in fibroblasts and vice-versa.

The most variably expressed genes in cancer are enriched in the blocks, and involve genes 

associated with tumor heterogeneity and progression, including three matrix 

metalloproteinase genes, MMP3, MMP7, and MMP1018, and a fourth, SIM2, which acts 

through metalloproteinases to promote tumor invasion19. Another, STC1, helps mediate the 

Warburg effect of reprogramming tumor metabolism20. CHI3L1 encodes a secreted 

glycoprotein associated with inflammatory responses and poor prognosis in multiple tumor 

types including colon21. WISP genes are targets of Wnt-1 thought to contribute to tissue 

invasion in breast and colon cancer22. Our gene ontology enrichment analysis15 of genes 

associated with hypervariable expression in blocks (FDR<0.05)showed enrichment for 

categories including extracellular matrix remodeling genes (Supplementary Table 13). One 

cautionary note raised by these findings is that treatment of cancer patients with nonspecific 

DNA methylation inhibitors could have unintended consequences in the activation of tumor-

promoting genes in hypomethylated blocks. It is also important to note that while previous 

studies23,24 have shown large-region hypermethylation or no regional methylation change, 

this study is based on whole-genome bisulfite sequencing. Nevertheless, future studies are 

needed to show whether block hypomethylation is a feature of cancer epigenomes in 

general.

Small DMRs, while representing a relatively small fraction of the genome (0.3%), are 

numerous (10,125), and frequently involve loss of boundaries of DNA methylation at the 

edge of CpG islands, shifting of DNA methylation boundaries, or the creation of novel 

hypomethylated regions in CG-dense regions that are not canonical islands. These data 

underscore the importance of hypomethylated CpG island shores in cancer since shores 

associated with hypomethylation and gene overexpression in cancer are enriched for cell 

cycle related genes, suggesting a role in the unregulated growth that characterizes cancer.

We propose a model relating tissue-specific DMRs to the sites of methylation 

hypervariability in cancer. Normal pluripotency might require stochastic gene expression at 

some loci, allowing for differentiation along alternative pathways in response to external 

stimuli or even intrinsically. The epigenome could collaborate to create a permissive state by 

changing its physical configuration to relax the stringency of epigenetic marks, since 

variance increases away from the extremes, and a similar process may occur in cancer. One 

way is by altering LOCKs/LADs/blocks, which could involve a change in the chromatin 

packing density or proximity to the nuclear lamina. Similarly, subtle shifts in DNA 

methylation boundaries near CpG islands may drive normal chromatin organization and 

tissue-specific gene expression. Given the importance of boundary regions for both small 

DMRs and large blocks identified in this study, it will be important to focus future 
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epigenetic investigations on the boundaries of blocks and CpG islands (shores), and on 

genetic or epigenetic changes in genes encoding factors that interact with them.

The increased methylation and expression variability in each cancer type is consistent with 

the potential selective value of increased epigenetic plasticity in a varying environment first 

suggested for evolution but applicable to the strong but variable selective forces under which 

a cancer grows, such as varying oxygen tension or metastasis to a distant site25. Thus, 

increased epigenetic heterogeneity in cancer at cDMRs (which we show are also tDMRs) 

could underlie the ability of cancer cells to adapt rapidly to changing environments, such as 

increased oxygen with neovascularization, then decreased oxygen with necrosis; or 

metastasis to a new intercellular milieu.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Increased methylation variance of common CpG sites across human cancer types
Methylation levels measured at 384 CpG sites using a custom Illumina array exhibit an 

increase in across-sample variability in (a) colon, (b) lung, (c) breast, (d) thyroid, and (e) 

kidney (Wilms tumor) cancers. Each panel shows the across-sample standard deviation of 

methylation level for each CpG in normal and matched cancer samples. The solid line is the 

identity line; CpGs above this line have greater variability in cancer. The dashed line 

indicates the threshold at which differences in methylation variance become significant (F-

test at 99% level). In all five tissue types, the vast majority of CpGs are above the solid line, 

indicating that variability is larger in cancer samples than in normal. Colors indicate the 

location of each CpG with respect to canonical annotated CpG islands. (f) Using the CpGs 

that showed the largest increase in variability we performed hierarchical clustering on the 

normal samples. The heatmap of the methylation values for these CpGs clearly distinguishes 

the tissue types, indicating that these sites of increased methylation heterogeneity in cancer 

are tissue-specific DMRs.
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Figure 2. Large hypomethylated genomic blocks in human colon cancer
Shown in (a) and (b) are smoothed methylation values from bisulfite sequencing data for 

cancer samples (red) and normal samples (blue) in two genomic regions. The 

hypomethylated blocks are shown with pink shading. Grey bars indicate the location of 

PMDs, LOCKs, LADs, CpG Islands, and gene exons. Note that the blocks coincide with the 

PMD, LOCKS, and LADs in panel (a) but not in (b). Also one can see small 

hypermethylated blocks at the right edge, which account for 3% of the blocks. (c) The 

distribution of high-frequency smoothed methylation values for the normal samples (blue) 

versus the cancer samples (red) demonstrates global hypomethylation of cancer compared to 

normal. (d) The distribution of methylation values in the blocks (solid lines) and outside the 

blocks(dashed lines) for normal samples (blue) and cancer samples (red). Note that while the 

normal and cancer distributions are similar outside the blocks, within the blocks methylation 

values for cancer exhibit a general shift. (e) Distribution of methylation differences between 

cancer and normal samples stratified by inclusion in repetitive DNA and blocks. Inside the 

blocks, the average difference was ~−20% in both in repeat and non-repeat areas. Outside 

the blocks, the average difference was ~0% in repeat and non-repeat areas, indicating that 

blocks rather than repeats account for the observed differences in DNA methylation.
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Figure 3. Loss of methylation stability at small DMRs
Methylation estimates plotted against genomic location for normal samples (blue) and 

cancer samples (red). The small DMR locations are shaded pink. Grey bars indicate the 

location of blocks, CpG islands, and gene exons. Tick marks along the bottom axis indicate 

the location of CpGs. Pictured are examples of (a) a methylation boundary shift outward, (b) 
a methylation boundary shift inward, (c) a loss of methylation boundary, and (d) a novel 

hypomethylation DMR.
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Figure 4. Adenomas show intermediate methylation variability
(a) Multidimensional scaling of pairwise distances derived from methylation levels assayed 

on a custom Illumina array. Note that cancer samples (red) are largely far from the tight 

cluster of normal samples (blue), while adenoma samples (black) exhibit a range of 

distances: some are as close as other normal samples, others are as far as cancer samples, 

and many are at intermediate distances. (b) Multidimensional scaling of pairwise distances 

derived from average methylation values in blocks identified via bisulfite sequencing. 

Matching sequenced adenoma samples (labeled 1 and 2) appear in the same locations 

relative to the cluster of normal samples in both (a) and (b). (c) Methylation values for 

normal (blue), cancer (red) and two adenoma samples (black). Adenoma 1, which appeared 

closer to normal samples in the multidimensional scaling analysis (a), follows a similar 

methylation pattern to the normal samples. However, in some regions (shaded with pink) 

differences between Adenoma 1 and the normal samples are observed. Adenoma 2 shows a 

similar pattern to cancers.
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Figure 5. High variability of gene expression associated with blocks
(a) An example of hypervariably expressed genes contained within a block; note genes 

MMP7, MMP10, and MMP3 highlighted in red. Methylation values for cancer samples (red) 

and normal samples (blue) with hypomethylated block locations highlighted (pink shading) 

are plotted against genomic location. Grey bars are as in Fig. 2. (b) Standardized log 

expression values for 26 hypervariable genes in cancer located within hypomethylated block 

regions (normal samples in blue, cancer samples in red). Standardization was performed 

using the gene expression barcode. Genes with standardized expression values below 2.54, 

or the 99.5th percentile of a normal distribution (horizontal dashed line) are determined to be 

silenced by the barcode method26. Vertical dashed lines separate the values for the different 

genes. Note there is consistent expression silencing in normal samples compared to 

hypervariable expression in cancer samples. A similar plot drawn from an alternative GEO 

dataset is shown in Supplementary Figure 18.
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Table 2

Methylation values* observed in CpG islands in cancer compared to normal samples

Methylation status in normals Total Hypo No change Hyper

Unmethylated (<= 0.2) 16184 0.1% 83.2% 16.7%

Partial methylated (>= 0.2, <=0.8) 4796 17.0% 46.7% 36.3%

Methylated (>= 0.8) 5527 24.0% 75.9% 0.1%

*
Average methylation value in each island were then averaged across subject for cancer and normal samples separately
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