
sensors

Article

Forecasting Nonlinear Systems with LSTM: Analysis and
Comparison with EKF

Juan Pedro Llerena Caña * , Jesús García Herrero and José Manuel Molina López

����������
�������

Citation: Llerena Caña, J.P.; García

Herrero, J.; Molina López, J.M.

Forecasting Nonlinear Systems with

LSTM: Analysis and Comparison

with EKF. Sensors 2021, 21, 1805.

https://doi.org/10.3390/s21051805

Academic Editor: Maria

Gabriella Xibilia

Received: 29 January 2021

Accepted: 27 February 2021

Published: 5 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Applied Artificial Intelligence Group (GIAA), Carlos III University of Madrid, 28270 Madrid, Spain;
jgherrer@inf.uc3m.es (J.G.H.); molina@ia.uc3m.es (J.M.M.L.)
* Correspondence: jllerena@inf.uc3m.es

Abstract: Certain difficulties in path forecasting and filtering problems are based in the initial
hypothesis of estimation and filtering techniques. Common hypotheses include that the system can
be modeled as linear, Markovian, Gaussian, or all at one time. Although, in many cases, there are
strategies to tackle problems with approaches that show very good results, the associated engineering
process can become highly complex, requiring a great deal of time or even becoming unapproachable.
To have tools to tackle complex problems without starting from a previous hypothesis but to continue
to solve classic challenges and sharpen the implementation of estimation and filtering systems
is of high scientific interest. This paper addresses the forecast–filter problem from deep learning
paradigms with a neural network architecture inspired by natural language processing techniques
and data structure. Unlike Kalman, this proposal performs the process of prediction and filtering
in the same phase, while Kalman requires two phases. We propose three different study cases of
incremental conceptual difficulty. The experimentation is divided into five parts: the standardization
effect in raw data, proposal validation, filtering, loss of measurements (forecasting), and, finally,
robustness. The results are compared with a Kalman filter, showing that the proposal is comparable in
terms of the error within the linear case, with improved performance when facing non-linear systems.

Keywords: LSTM; filtering; forecasting; regression; encoder–decoder; attention; system identification;
deep learning

1. Introduction

Many problems in engineering and research require or are based in forecasting or
filtering parameters along time, understood by forecasting the predicted values for future
times in the sequence. These processes are often associated with sensor-recorded values
with a certain degree of accuracy. When the noise level has been reduced from the desired
parameters, this is a filtering case.

The problems of estimation and filtering are not new, a classic study field is the theory
of stochastic observers. The Aström [1] and Lewis [2] books provide an introduction
into stochastic estimator theory and have been referenced in thousands of publications.
Classical estimation methods have innumerable successful applications and continue to be
one of the starting points for estimation and filtering problems. For an overview of classical
and Bayesian estimation techniques, H. H. Afshari et al.’s [3] work provides a systematic
review of all classical and Bayesian estimation techniques and their possible applications.

One of the principal landmarks in stochastic observer theory is the optimal stochastic
estimators formulation or Kalman filter (KF) [4–6]. These estimators are based in the state
space systems and different versions, such as extended KF (EKF) [7–9], unscented KF
(UKF) [10,11], or robust KF (RKF) [12], generalize its use with nonlinear Gaussian problems
as shown in Afshari et al. [3]. However, sometimes the systems can present complexities
that may be unapproachable from a classical perspective. In other cases, the systems
present behaviors with memory (non-Markovian), like people moving around among other

Sensors 2021, 21, 1805. https://doi.org/10.3390/s21051805 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3476-6261
https://orcid.org/0000-0003-1768-2688
https://orcid.org/0000-0002-7484-7357
https://doi.org/10.3390/s21051805
https://doi.org/10.3390/s21051805
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21051805
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/5/1805?type=check_update&version=2


Sensors 2021, 21, 1805 2 of 28

people [13]. In these cases, classical solutions provide approximations that diverge from
the wanted behavior.

The KF is a widely used system for filtering and state estimation. This estimator uses
linear systems and Gaussian noise as starting assumptions to find a feedback gain (Kalman
gain) that exponentially minimizes the system covariance. On the other hand, the systems
that can be solved by Kalman or its extended version, EKF, are Markovian, in other words,
for state estimation they only use contiguous states but without taking into account the
behavior (states) at other times. This limits the use in problems with context, such as
natural language processing or human behavior, among others.

In the face of these limitations, artificial intelligence paradigms provide an interest-
ing opportunity to study. It is interesting how hybrids between classical and artificial
intelligence systems have been achieved, such as those made by Satish. R et al. [10] or
H. Caskun [14]. In [14], a neuronal estimator was fused with a KF for human image pose
regularization. Works such as J. Mohd et al. [15] used the term “software sensors” to
describe computational algorithms to estimate system states that are complex to measure,
expensive, or non-observable. Thus, computational artificial intelligent (AI) techniques
were shown to be an alternative to classical estimators in the face of certain problems.
In this line we can find many works, such as those of [15,16], in which they use several
features of the input in their models.

New perspectives in machine learning techniques address several classical theories
limitations problems as shown in Park’s work [17]. Park modeled the potential trajectories
of nearby vehicles from a grid that formed an occupation map and an encoder–decoder sys-
tem based on long short-term memory (LSTM) cells. If we know the states to be estimated
or modeled, we can find problems with time series estimation or systems modeling.

Time series forecasting works, to some extent, to identify/model the dynamical system
that the observations describe. The LSTM cells architectures have proved their potential in
front of traditional techniques, such as ARMA (autoregressive moving average), SARIMA
(seasonal autoregressive integrated moving average model), and ARMAX (autoregressive-
moving average with exogenous terms). A good example of this is Muzaffar and Afshari’s
work [18], where they compared the previous traditional techniques with a light LSTM
architecture for the electric charge estimation case in ranges of different time sampling,
under root mean squared error (RMSE) and mean absolute percentage error (MAPE)
metrics, where the LSTM architecture showed better results than the traditional techniques
in several experiments, and this proposed system is very susceptible to improvements to
increase the performance.

Deep learning (DL) in forecasting, filtering, or classification problems attempts to fit
internal network functions to an input data set to make inferences. Relying on the archi-
tecture of the neural network, the cost function, the training algorithm, hyperparameters,
and especially the dataset, the network can be adapted to a greater or lesser extent to the
desired output.

While Kalman seeks to minimize its covariance based on prior assumptions, a deep
neural network does not assume any of Kalman’s assumptions but attempts to adapt its
hidden dynamics to the training data independently of their distribution or the dynamical
relationship between them. This neural network flexibility provides an opportunity to
generalize estimation and filtering problems under artificial intelligence paradigms.

A previous work [19] made a first approach to forecasting and filtering problems in
an increasing linear dynamic system with noisy measurements from a DL perspective.
In [19], the authors highlighted the neural network saturation problem in non-bounded
system estimation. To solve this problem, a recursive data standardization method based
on overlapping sliding windows and a neural architecture with LSTM cells is proposed.

This paper tackles the forecast-filtering problem of trajectories from deep learning
paradigms. We propose a novel method of network density adjustment based on J. Ller-
ena et al.’s work [19]. That method generalized the estimation and filtering problem
without any initial hypothesis about the system or measurement type (linear or nonlin-



Sensors 2021, 21, 1805 3 of 28

ear, Markovian or non-Markovian, or Gaussian or non-Gaussian), performing a rigorous
analysis of the problem and solutions with a high experimental burden to evaluate the
estimator performance.

Unlike Kalman, this proposal performs the process of prediction and filtering in
the same phase, while Kalman requires two phases. In this evaluation, we study three
different dynamic system trajectories. We selected a set of systems with a progressive
transition for the reader, starting from the position estimation in a uniform rectilinear
motion (URM) in 1D (Section 4.1); next, a sinusoidal paths of a 1D object (Section 4.2);
and finally the curved trajectories defined by a nonlinear dynamic model described by
the Volterra–Lotka evolutionary equations (Section 4.3). The proposed neural estimator is
evaluated for different cases under five experiments: data preprocessing effect on database
(Section 4.4.1), filtering with complete sequences (Section 4.4.2), recursive filtering with new
measurements (Section 4.4.3), loss in measurement estimation simulation (Section 4.4.4),
and finally the impact on the filtering when receiving measurements far from the model
(Section 4.4.5).

The neural estimators proposed are supported by an encoder–decoder system based
on natural language processing methods, which increases its depth with the complexity of
the systems.

Finally, the contributions of the present work can be summarized in the following items:

• An approach has been developed to adapt a neural architecture previously used for
natural language processing to the specific problem of estimation and filtering without
needing the previous hypotheses about the type of system.

• The proposed method shows a comparable performance in terms of error with respect
to KF in linear systems, while in the case of nonlinear systems it shows its potential to
improve in terms of error and robustness.

• The principal advantages of our method lies in the simplicity of the neuro-estimator/
filter as a model building learnt from data with respect to KF.

• The proposed method can address estimation and filtering problems for linear, nonlin-
ear, Markovian, non-Markovian, Gaussian, and non-Gaussian systems.

This paper has been organized as follows: in Section 2, we define the problem and
introduce how to approach the problem from a classic observer’s perspective and a review
of possible solutions to estimation and filtering problems from deep learning paradigms.
In Section 3, we describe the proposal of study, the methodology for its realization, and a
rigorous mathematical definition. Section 4 includes details of the three case studies based
on the proposal and the proposed set of experiments. Finally, in Section 5, our conclusions
are presented.

2. General Problem Formulation

We consider an unknown dynamic system f not necessarily linear or Markovian. From
this system we only know noise measurements z of trajectories described from observable
system states x in time t. Measurements z are connected with the system states by the h
function. Generally, h can be considered nonlinear and dependent of a stochastic parameter
v(t).

dx(t)
dt

= f (x(t)) (1)

z(t) = h(x, v) = h(x) + v (2)

Here, x(t) ∈ Rn is the state vector, f is a state vector field, and h is a function that
selects a subset of specific states. If f is of the Lipchitz type, it is possible to transform the
continuous-time problem to a discrete-time one:

xk+1 = F∗(xk) = xk +
∫ tk+1

tk

f (x(τ))dτ (3)



Sensors 2021, 21, 1805 4 of 28

A common way to discretize generally linear systems is to use the approximation
.
x =

xk+1−xk
Ts

, where Ts refers to the sampling time that we can also find as ∆T or T.
Removing the assumption of a Markovian system, the future states not only depend

on the previous instant states xk, but also have long-term temporal dependencies, and thus
we can formulate it as follows:

xk+1 = F∗(xk) =
∫ tk+1

tl

f (x(τ))dτ (4)

where tl is a temporal instant less than k and generally unknown in non-Markovian systems,
where the approach for the previous discretization can no longer be used. In this way
classical dynamic system can be considered as a particular case of a non-Markovian system.

According to this notation, the forecasting state problem is formulated in relation to
the previous states (4), which means that the forecasting consists of identifying states in
future times (xk+1). On the other hand, a filtering problem base identifies certain xk states
at the same moment in which zk noise measurements are received (5).

xk = h−1(zk − vk) (5)

However, in real problems, it is not possible to know the noise value, vk, and the h
function may not be invertible, so that the state vector has to be estimated from observations.
If we name F̂+ and F̂ the filtered and predicted estimators, respectively, the problem is how
to generate these estimators from observations:

x̂k= F̂+
(z0, . . . , zk−1, zk) (6)

x̂k+1= F̂(z0, . . . , zk−1, zk) (7)

The objective of this process is to build the estimators with the minimum error from
the ideal values.

2.1. Kalman Solution

In Bayesian estimation theory, KF is the optimal solution for a linear dynamic system
and Gaussian noise in the measurement and estimation process [1,2]. For a stochastic
nonlinear dynamic system (8), the first approximation derived from the KF is the EKF.

.
x = f (x, u, w)
z = h(x, v)

(8)

As in the linear KF [1–3], w shows the noise process and v shows the measurement
noise. The system and measurement model can be nonlinear. The EKF idea is built around
the linearization system over the estimated states x̂. This means that f and h must be
derived with respect to the states x, the model noise w, measurement noises v, and the
input signal u. In our case, we considered an autonomous system:

A = ∇ f (x, 0, 0)|(x̂,u,0)
W = ∇ f (0, 0, w)|(x̂,u,0)

H = ∇h(xk, 0)|(x̂,u,0)
V = ∇h(0, v)|(x̂,u,0)

(9)

The first bracket in the previous equations refers to the terms with respect to the
functions derived from the system and measurements, while the second bracket refers to
the values to be substituted in our Jacobian matrix.

The matrices A, W, H, and V are the equivalent to the linearized f , h system. A is
the linear system matrix, H is the observation matrix, W is the process noise, and V is the
observation noise, all in continuous space. If the system has an input signal u, we can find



Sensors 2021, 21, 1805 5 of 28

the input matrix B and the direct transmission matrix D; however, in autonomous systems,
these matrices do not exist. When discretizing a linear continuous system to discrete space
with a sampling time ∆T, some of the above matrices traditionally acquire another notation
symbol: A→ φ and B→ Γ .

When the continuous system has been linearized, the next step is to discretize and
apply the same process as in the linear KF. This classical theory decouples, in two different
phases, the problem of prediction and filtering.

Kalman filters and EKF have two steps, prediction and update. To identify these steps
and the temporary state, Kalman notation uses a sub-index in the form xγ|δ. The first, γ,
refers to the temporal state (current = k and previous = k− 1) and the second, δ, refers to
the filter step (prediction = k− 1 and update = k).

The KF step formulation is formulated as follows when the system does not have
noise in the estimation process and is autonomous when Γ = 0 or when the control signal
uk = 0.

Prediction step:
x̂k|k−1 = φx̂k−1|k−1

Pk|k−1 = φPk−1|k−1φT + Qk
(10)

Update step:

Gk = Pk|k−1HT
(

HPk|k−1HT + Rk

)−1

x̂k|k = x̂k|k−1 + Gk

(
zk − Hx̂k|k−1

)
Pk|k = (I − Gk H)Pk|k−1

(11)

In this way, both problems with forecasting and filtering in Kalman are decoupled.
In the Kalman case, the forecast is made on the current state k; thus, it is usually called
prediction in place of forecast. First, a state space model (SSM) predicts the current time
state vector x̂k|k−1 (prediction step), and then the prediction is improved x̂k|k (current state
vector in update step) with the current measure vector zk.

The KF aim is to find a feedback gain G (optimal Kalman gain) that allows us to
exponentially minimize the covariance P matrix (measure of the estimate accuracy) taking
into account the covariance of the process noise Q (Wk ∼ N (0, Qk)) and the covariance of
the measured observations R (Vk ∼ N (0, Rk)), under the assumption that all noises are
Gaussian, uncorrelated, and zero-mean.

2.2. Deep Learning Solutions

Many works related to forecasting or filtering problems can be found in the literature
under system modeling, filtering/reconstruction, and prediction keywords around deep
learning paradigms. In system identification we can highlight works related to the res-
olution of ordinary differential equations, such as that of Chen et al. [20]. Solving these
equations lets us move through the state space that defines a dynamic system at the instant
of time desired—in other words, predict the future states of the system or reconstruct them.

Some of the works on system modeling, such as Sierra and Santos [21], compare
traditional techniques versus neural networks highlighting the relevance of using neural
networks when the mathematical modeling is complex. Modeling solutions have been
found that are robust to noise in the data. Rudy’s [22] work proposes a new modeling
paradigm that simultaneously learns the dynamics of the system and the noise estimate
of the measurements in each observation, managing to separate additive noise in the
observations of the states of different systems.

Artificial neural networks (ANNs) for the modeling of nonlinear dynamical systems
have proven to be a relevant solution. In Raissi [23], the performance of a neural system
for the modeling of different nonlinear dynamic systems starting from synthetic data. The
data refer to a time series describing the states of the systems under study. In this study,
they used a simple neural architecture and compared the error of the predicted trajectories



Sensors 2021, 21, 1805 6 of 28

versus the density and depth of the neural networks, concluding that a deeper and denser
network will not always show better results.

In the case of signal filtering, the Arsene work [24] showed a performance comparison
in electrocardiogram (ECG) signal filtering between two deep learning filters with the two
most popular trends at present, convolutional neural networks (CNNs) and LSTM, versus
wavelet filters. Finally, the CNN architecture achieved better performance than the LSTM
and the wavelet filter, but the proposed LSTM architecture can be improved.

When the systems to be predicted show non-Markovian behavior, SSM are not suitable.
A widely studied set are those related to natural language processing.

Different studies regarding natural language processing with deep learning provides
exportable tools to other study areas. In relation to this work, we can remark on the encoder–
decoder architectures or the attention models. Y. Zhu et al. [25] showed a novel comparative
study of different LSTM encoder–decoder architectures and attention mechanisms. Finally,
they proposed a combined method of an encoder–decoder with attention mechanisms and
LSTM cells for prediction. They used two different datasets, from the Alibaba Open Cluster
Trace Program and Dinda workload dataset. Finally, the experiments showed that their
proposed model achieved state-of-the-art performance.

The common link between several of the above studies lies in the intention to extract
time trends from data sets with LSTM neural cells. LSTM neural cells are not new [26], but
they have proven to be powerful in catching long short temporal dependencies in multiple
examples. This is the reason for its use in other than recurrent architectures, such as gated
recurrent unit (GRU), bidirectional-LSTM (BI-LSTM), or bidirectional encoder represen-
tations from transformer (BERT) architectures, used with great success as a new context
extraction technique in natural language processing, as shown in J. Delvin’s paper [27].

The LSTM is an recurrent neural network (RNN) that allows long-term dependencies
and overcomes the vanishing gradient issue [28]. Considering the relevance of this layer,
detailed information of its structure can be found in works, such as those of [16,25,26],
and [29–32]. In X. Song [16], we can see a typical structure of a LSTM layer versus a
traditional recurrent network layer. Each cell of the LSTM layer is composed of different
functions as shown in Y. Liu [32]. The processes that an LSTM cell performs when it
receives new data are described as follows.

Given an input xk at time instant k and the hidden cell state h, the basic operation
involves different sections of the neural cell, forget gate (12), input gate (13), candidate
(14), and output gate (15). The hidden state h gives the LSTM cell the property to acquire
memory, and this memory provides the opportunity to address non-Markovian problems.
The forget gate fk decides which information ck−1 is removed from the previous cell state.
The input gate is responsible for identifying the input information xk, which should be kept
in the candidate memory cell c̃k. The current memory vector ck is updated by linking the
past information ck−1 with the candidate information c̃k (14). Finally, in the output gate (15),
the hidden state hk cell is confirmed with the cell state ck and the ok output information.

fk = σ
(

xkU f + hk−1w f + b f

)
(12)

ik = σ(xkUi + hk−1wi + bi)
c̃k = tanh(xkUc + hk−1wc + bc)

(13)

ck = fkck−1 + ik c̃k (14)

ot = σ(xtUo + hk−1wo + bo)
ht = ot ∗ tanh(ct)

(15)

Here, U is the input weight, W is the recurrent weights, and b is the bias. Subscripts
represent the gates: f = forget, i = input, c = candidate, and o = output. The activation
function σ is the sigmoid function, and tanh is the hyperbolic tangent function. The first
function is bounded between 0 and 1, and tanh between −1 and 1.



Sensors 2021, 21, 1805 7 of 28

All the above cases are grouped under a regression problem in which the objective
is to optimize/adjust the network function F̂θ to the Φ dataset. To fit F̂θ to the Φ dataset,
the F̂θ function must be parameterized (θ) with a cost function L(θ) to be optimized
and an optimization methodology, where F̂θ means a network function parameterized
by the internal θ terms. These internal parameters are the weights and biases of each
internal neuron.

As S. Rudy et al. showed in [22], we can mathematically define a recurrent neural
network as the composition of gi functions that define each i-layer of the network. In
addition, these gi functions are the result of the composition of the sj functions that define
each neuron.

F̂θ(x) =

(
l

∏
i=1

Cgi

)
(x) (16)

Here, gi(x) =
(

∏Ni
j=1 Csj

)
(x)

∣∣∣ sj = σj
(
xWj + bj

)
is an i-layer function. Csj is the s

composition operator for each j activation function σj : R→ R and

θ = {Wi , bi }l
i=1

∣∣∣Wi ∈ RNi×Ni−1 , bi ∈ RNi is the network parameterization function in
terms of its weights Wi and biases bi . N0, N1, . . . , Nl are the number of neurons in each
layer, where N0 = d | d ∈ N is the input layer and l ∈ N is number of network layers. The
term ˆ over the F function means “estimated”, which is inherited from the classical notation
from stochastic observers.

Taking LSTM cells in different layers, we must take into consideration the weights
associated with the internal states U∂,i and transitions of the LSTM cells. Finally, the pa-

rameter network functions are: θ =
{

U∂,i, W∂,i , b∂,i
}l

i=1 where W∂,i ∈ R∂×Ni×Ni−1 , b∂,i ∈
R∂×Ni and spreading typical LSTM notation ∂ ≡ {forget = f, input = i, output = o,
candidate = c, and non_LSTM_gate = n}.

3. Proposal Formulation

In this paper, we proposed to approach the joint problem as forecasting-filtering
trajectories without assuming a hypothesis of linear, Markovian, or Gaussian behaviors,
based only on supervised information and in only one processing stage to build the
estimator x̂k+1 from the available observations, zk, zk−1, . . . zk−L based on a model built
with representative training data.

xk+1 = F̂∗(xk) = F̂∗
(

h−1(zk − vk)
)
= F̂(zk) (17)

For this purpose, the recursive method with overlapping sliding time windows with
Llerena et al.’s work [19] Algorithm 1 is combined with the artificial neural architecture
configuration process of Algorithm 2. The general process can be seen at a high level in
Algorithm 1. The overlapping region between windows is used to activate the network,
with activation being understood as a period for initializing the network to update its
hidden states. This allows the network to activate its internal long-term memory with
which to recall time trends of data from the previous time window. We had two cases
of initialization, during the first-time window (no overlap window yet), lines 6–8 in
Algorithm 1 and, when overlaps between adjacent windows happen, lines 9–10. In the first
case, as new measurements are received, they are piled up in an S-sequence until the size of
the overlay/activation is defined as O. In the second case, the last measurements received
in the previous time window are recycled to activate the network during the second (and
successive) time windows.

The method makes it possible to address problems with continuous measurements in
a recursive manner and also when a measurement is lost. If we look at the general process
of Algorithm 1 line 12–20, in the case of not receiving new measurements, the system uses
the previous filtered estimation to feed the network and obtain the following state.



Sensors 2021, 21, 1805 8 of 28

Algorithm 1. General proposal process.

1: L = sliding time window length
2: O = overlap window length (activation area)
3: procedure GENERAL PROCESS (L, O, zk)
4: for k = 1→ L
5: If start & 1st sliding window
6: While Nº measurements < O
7: Sk = zk
8: end while
9: else if start

10: S = [zL−O, zL−O+1, . . . zL]
11: else
12: If new measure
13: S = zk
14: S→ standardization→ S∗ →Net & update internal states→ x̂∗k+1
15: x̂∗k+1 → unstandardization→ return(x̂k+1)

16: else
17: S∗ = x∗k
18: S∗ →Net & update internal states→ x̂∗k+1
19: x̂∗k+1 → unstandardization→ return(x̂k+1)

20: end If
21: end if
22: end for
23: Move sliding window L-O & Start again
24: end procedure

For this, three main blocks are differentiated: the generation of a synthetic database
that allows us to control the system’s performance, network building, and training, and
finally inference with the trained network, like Algorithm 1 shows.

The key to the generation of the synthetic database Φ, lies in matching noisy trajecto-
ries with ideal trajectories shifted one-time unit under Φi data packages. The noise paths Zi
are generated by adding a Gaussian noise with Rk variance to the simulated system states
paths X∗i to be measured. If the measured paths Zi start at z0 and end at zk, the target paths
X∗i start at x∗1 and end at x∗k+1, thus, maintaining the dimensionality one unit shifted. The
size of the time window is therefore the L values. The length of the simulated trajectories is
equal to two consecutive non-overlapping time windows, so that the first-time window
of each trajectory is used for the training subset and the second for the validation subset.
Thus, the problem is formulated as a sequence-to-sequence learning system.

To make step-by-step inference, a neural architecture is composed of LSTM cells.
These neuronal units take advantage of their internal states as a memory to be able to relate
measurements to previous and later states, allowing inferences from sequence to sequence,
sequence to step, and step to step.

We assume, for this purpose, the neural network function F̂θ can be adapted to a
function F that defines a dataset Φ, where θ are the internal network parameters. The ∧
symbol over Fθ is inherited from the classical estimator’s notation.

Then, the problem is to identify the parameters θ of an ANN using exclusively super-
vised information, as in [19], which associates Φi packages of Zi noise system paths with
ideal X∗i paths states.

F̂θ(zk) ≈ F(zk) (18)

3.1. Artificial Neural Network Architecture

The general network architecture proposed in Llerena et al. [19] consists of an encoder–
decoder system based on good results with non-Markovian system models like [18,23,32].
Other fundamentals of design of this architecture focus on filtering problems, such as [24]
or the identification of noisy systems [22,23]. The encoder and decoder are composed of
LSTM recursive structures. Using LSTM layers, it is possible to extract long-term and non-



Sensors 2021, 21, 1805 9 of 28

Markovian trends and show their potential in estimation problems [16,33–35]. However,
other types of dynamic systems have other particular conditions of information or number
of measured states, and the architecture proposed in [19] does not have to be suitable with
all systems; thereby, Algorithm 2 proposes a configuration method to adapt [19]’s neural
architecture to a specific case.

Starting from the structure proposed in [19], focused on the benefits in front of regres-
sion problems of each one the layers and proven performance in URM paths, we propose
an algorithm in Algorithm 2 to increase the depth of the encoder and decoder to adapt the
results in front of other paths that are likely more complex in learning terms compared
with URM paths.

Finally, at the output network side, we added a regression layer to implement the cost
function L(θ) (19) used to train the network system. Depending on the variability of the
training set and the complexity of the system, the depth of the encoder–decoder and, in
general, the network density must be adapted to obtain good training results.

Algorithm 2. The network architecture configuration process.

1: Sliding time window dimension selection
2: J. Llerena [19] Architecture adaption
3: Width = number of features
4: procedure ADAPT NETWORK TO SPECIFIC SYSTEM
5: train loos, MSE measure
6: while RMSE (net) >> RMSE(data)
7: switch No iteration
8: case 1:
9: Hidden encoder and decoder layer = number of data whit sliding time window

10: case 2:
11: Increase number of units in the interconnexion layer.
12: otherwise
13: Add new LSTM layer in encoder with half hidden units than previous LSTM layer
13: end switch
14: goto→train
15: else
16: Save trained network
17: end while
18: end procedure

3.2. Computational Neural Network Framework

Under the supervised learning paradigms, we found that our problem consisted of
identification systems or the regression problem. We can consider this problem as an
optimization problem where we attempt to minimize the cost function L(θ) by modifying
the internal θ parameters from function F̂θ that we want to identify/adjust from the Φ
dataset. The typical cost function L(θ) is the means square error (MSE). When we take the
derivative of the MSE used in the updating the parameters during the backpropagation,
the value 2 of the power can be cancelled if the term 1

2 is added to the MSE. Thus, the
mathematical arrangement for the definite cost function is obtained and called the half
means square error (HMSE). To control for possible overfitting effects, an L2 regularization
is added to the net weights, with λ being the regularization factor.

L(θ) = 1
2S

S

∑
k=1

R

∑
j=1

(
X∗kj − F̂θ

(
Zk,j

))2
+ λ

l

∑
i=1

Ni

∑
j=1
‖θj‖2

2 (19)

S is the sequence length and R is the number of sequence parameters. On the other
hand, this can be found in the literature [36–39], as the addition of Gaussian noise in
the input data helps the regularization the network, for example with Tikhonov regu-



Sensors 2021, 21, 1805 10 of 28

larization [40]. Thus, using z-data with a certain level of N
(
0,σ2) noise also helps the

regularization effect in the network.
As an optimization methodology, the Adam algorithm is used, which has amply

demonstrated its performance with recurrent neural architectures as can be seen in the
comparison with other algorithms in Kingma and Lei’s work [41].

Unlike Kalman, our system does not require Gaussian noise distribution, as the cost
function does not assume any distribution. In addition, the network or cost function does
not need to assume the system is linear, because the network function is fitted to the
data behavior.

4. Case Studies and Experimentation

The following shows different case studies. For each one, we describe the synthetic
data generation model, the classic estimator model and the neuronal structure used. All of
them are accompanied by the configurations to help reproduce the results.

Among the classical estimators, KF is the optimal solution in the case of linear dynam-
ical systems with Gaussian noise. When the system is not linear, its first approximation,
EKF, is a widely extended method. To facilitate the comparison of our solution with the
KF as a reference system in the experimentation, the measurements are simulated with
Gaussian noise.

For each study case, we conducted the following experiments:

1. Standardization effect.
2. LSTM model validation and filtering comparison.
3. Filtering system simulation with new measurements along the first and second-

time window.
4. Simulation of missing measurements in the input to filtering system; we estimated in

the first and second-time window on a signal test, applying only measurements in the
overlap section, first window, and first window measurements for the second case.

5. Impact on filtering of measurements generated with parameters far from the design.

The first experiment was used to visually check that the data converted to the stan-
dardized space remained bounded. The systems were evaluated in filtering and estimation.
The RMSE was used as an evaluation metric in different ways. For complete sequences, we
used experiment Section 4.4.2 with Equation (21) on each of the N validation trajectories
over the k-time position associate with two different checkpoints. R is the number of states
to be analyzed. If the system had a R > 1, the RMSE was determined for each of the j states
independently and in aggregate as the RMSE of the geometrical distance error Di,k (20).
This can be seen in case study Section 4.3. With partial sequences, continuous feed data,
and loss data, we used experiments Sections 4.4.3 and 4.4.4. For these cases, Equation (22)
was used as the evaluation metric, where L is the temporal size of the trajectories, R is the
number of states, and O means the number of overlap data.

Experiment Section 4.4.5 tested the behavior of the systems in the face of new data
deviating from the original design. The mean (24), median (25), and mode were used to
evaluate the behavior with the RMSE (23) obtained from each of the N new trajectories
obtained in each variation of the independent terms of the simulation systems. The
mode of the ordered set E, will be the value Ei with the highest frequency in E, where
E =

{
E1 = mini

(
RMSEi

3
)
, E2, . . . , EN−1, EN = maxi

(
RMSEi

3
)}N

i=1.

ei,k,j = X∗i,k,j − X̂∗
(

Zi,k,j

)
; Di,k =

√
∑R

j=1 e2
i,k,j (20)

RMSE1 =

√
1
N ∑N

i=1 D2
i,k; k = Checkpoint {1, 2} (21)

RMSE2 =

√
1
L ∑L

k=O+ 1 D2
k (22)



Sensors 2021, 21, 1805 11 of 28

RMSEi
3 =

√
1
L ∑L

k=1 D2
i,k (23)

Mean =
1
N ∑N

i=1 Ei (24)

Median =

{
E(N+1)/2 i f N is odd
1
2 (EN/2 + E1+N/2) i f N is even

(25)

Equation (20) is the estimation error and geometrical distance error, where X̂∗
(

Zi,k,j

)
can be Kalman X̂∗ i,k,j| k or LSTM F̂θ

(
Zi,k,j

)
, remembering that the superscript ∗ refers the

subvector state to be estimated. The subscript i denotes trajectory i in a set of N trajectories,
if the error (20) is calculated over a single trajectory, the term is removed as in (22). Finally,
the subscript k is the time step, and j is the system state.

For the second experiment, we show a histogram of the estimation error of each test
trajectories over the check points. If the system predicts R > 1 states (case study Section 4.3),
initially, this is shown as the error of each state and then the Euclidean distance between
the ideal checkpoint X∗i,k,j and estimate system X̂∗ i,k,j. Experiments Sections 4.4.3 and 4.4.4
show the trajectory evolution and step-by-step error for specific initial conditions during
two consecutive time windows. The error was determined for each state independently as
in (20). Finally, experiment Section 4.4.5 shows the KF and LSTM mean, median, and mode
evolution in Sections 4.2 and 4.3 case studies as the independent terms of the trajectory
simulation systems are changed.

To simulate each system trajectory, we used the Ode45 algorithm [42], while, for the
estimation of states for each case study with Kalman techniques from the classical models,
the formulation used is indicated in each of the systems. For training each ANN model,
we trained over 80 epochs with 20 batches and an initial learning rate of 0.005. After
eight epochs, we applied a 0.5 learning drop factor. Finally, we applied a λ = 10−4 L2
regularization factor.

All the algorithms were implemented on MATLAB [43]. The experiments were per-
formed on a commodity machine with Windows 10 Home 64 bit hosted in Intel ® Core™
i7-8550U CPU @1.80 GHz 1.99 GHz with 12 GB RAM and 512 GB SSD from internal
memory, graphic card Nvidia GeForce 940MX 64 bits.

4.1. Linear Paths (Uniform Rectilinear Motion)

The model of linear paths is associated with a 1D uniform rectilinear motion, com-
posed of the states of position p and speed v. To simulate state measurements, we only
considered the position H = [1 0] under gaussian noise Vk ∼ N

(
0, σp

)
. The simulated

paths consider the ideal model, without process noise Wk = [0 , 0]T .[
p
v

]
k
=

[
1 T
0 1

][
p
v

]
k−1

+ Wk (26)

zk = Hxk + Vk (27)

The synthetic data is generated with Table III as described in Llerena’s work [19].

4.1.1. Classical State Estimator

As an estimator, we used a linear KF. In this case, the process noise is Wk = [0 , 0]T , and
the position measurements have Gaussian noise N (0, σZ) (27), as in Algorithm 1 de-
scribed in Llerena’s work [19]. The system model corresponds with Equation (26) and
Algorithm 1′s parameters of [19]. KF requires two steps to obtain the immeasurable



Sensors 2021, 21, 1805 12 of 28

state (speed) as v2 = (p2 − p1)/T and initialize the covariance matrix start, like this:

P2|k−1 = σZ

(
1 100

100 2

)
.

x̂k|k−1 = φx̂k−1|k−1 (28)

4.1.2. Artificial Neural Structure

As in work [19], the architecture referenced in Algorithm 2 of that work is used.
This architecture is composed of an input layer with 80 samples and one feature. The
encoder has 400 hidden units and the decoder has 200, both composed with LSTM cells.
The interconnection layer between the encoder and the decoder corresponds to a fully
connected layer with a rectified linear unit (ReLU) function.

4.2. Sinusoidal Paths (Simple Harmonic Motion)

To generate sinusoidal paths, we considered a 1D system with simple harmonic motion
that defines the transversal position with constant amplitude and frequency. The system
states are given by the position x1 and the speed x2.[ .

x1.
x2

]
=

[
0 1
−ω2 0

][
x1
x2

]
+ W (29)

z = Hx + v (30)

To simulate state measurements, we only considered the first estate x1, H = [1 0]
under gaussian noise Vk ∼ N (0, σx1). The simulated paths consider the ideal model,
without process noise Wk = [0 , 0]T .

The synthetic data is generated with Table 1 conditions:

Table 1. Synthetic data generation parameters: sinusoidal paths.

Data Generation Range

Parameter Minimum Maximum

x1 (m) −10 10
x2 (m/s) −3 3

ω2 (rad/s)2 6
Simulation end times (s) 10.01

Sampling time T (s) 0.01
Number of window data 500

Overlap O (Nº data) 90
V ∼ N (0,σZ) 0.4

4.2.1. Classical State Estimator

Starting from Equations (29) and (30), using discretization (3) and applying Taylor’s
series developments, finally our linear system is discretized as follows:

[
x̂1
x̂2

]
k︸ ︷︷ ︸

x̂k|k−1

=

[
cos(ωT) sin(ωT)

ω
−ωsin(ωT) cos(ωT)

]
︸ ︷︷ ︸

φ

x̂k−1|k−1︷ ︸︸ ︷[
x̂1
x̂2

]
k−1

(31)

zk = Hxk + Vk. (32)

By assuming that we only measured the first of the states, we used the linear trajectory
system strategy to find the second state and be able to initialize a filter in the third measure.
As the estimator minimizes the covariance in an exponential way, the cross covariances can



Sensors 2021, 21, 1805 13 of 28

be made large to converge quickly, and this helps the new poles of the feedback system
have a high negative real part:

P2|k−1 = σZ

(
1 1000

1000 2

)
(33)

4.2.2. Artificial Neural Structure

Taking the method described in the process of Algorithm 2, the architecture proposed
for the sinusoidal paths is the one indicated in Table 2.

Table 2. Listing of neural network layer with sinusoidal paths: s = 500 samples per input path.

Nr Name and Type Activation/Prop. Learnable States

1 Sequence Input: 1 × 500 1 - -

2 lstm_1: LSTM
Hidden units: 500

State activation function: tanh
Gate activation function: sigm

Input Weights: 2000 × 1
Recurrent Weights:

2000 × 500
Bias: 2000 × 1

Hidden States: 500 × 1
CellState: 500 × 1

3 lstm_2: LSTM
Hidden units: 250

State activation function: tanh
Gate activation function: sigm

Input Weights: 1000 × 500
Recurrent Weights:

100 × 250
Bias: 1000 × 1

Hidden States: 250 × 1
CellState: 250 × 1

4 lstm_3: LSTM
Hidden units: 167

State activation function: tanh
Gate activation function: sigm

Input Weights: 668 × 250
Recurrent Weights: 668 × 167

Bias: 668 × 1

Hidden States: 167 × 1
CellState: 167 × 1

5 fc_1: Fully connected 100 Weights: 100 × 167
Bias:100 × 1 -

6 relu_1: ReLU 100 - -

7 Do: Dropout 20% 100 - -

8 lstm_4: LSTM
Hidden units: 500

State activation function: tanh
Gate activation function: sigm

Input Weights: 2000 × 100
RecurrentWeights:

2000 × 500
Bias: 2000 × 1

Hidden States: 500 × 1
CellState: 500 × 1

9 fc_2: Fully connected 1 Weights: 1 × 500
Bias: 1 × 1 -

10 Regression output Loss function: HMSE - -

4.3. Smooth Curved Paths (Volterra–Lotka System)

The proposed model to generate smooth curved paths is the Volterra–Lotka predator–
prey model. This model indicates the evolution of two species parameterized with the
growth rates of the prey r1, the success of the hunt of the predator that affects the prey a1,
the growth rate of the predator r2, and the success of the hunt that affects predator a2. The
paths used are those defined by the union of the two states, also known as phase diagrams.

This is an autonomous system that does not require any input or external signal u and
presents a great variety of smooth curved paths in the whole of its state space.

We added a process noise term to the system W = [w1, w2]
T = [0, 0]T .{ .

x1 = f1(x, w) = r1x1 − a1x1x2 + w1.
x2 = f2(x, w) = a2x1x2 − r2x2 + w2

(34)

z = h(x, v) = Hx + V (35)



Sensors 2021, 21, 1805 14 of 28

This system has an equilibrium point in EP =
[

r2
a2

, r1
a1

]
. Around this point, the system

paths present a periodic evolution associated to a limit cycle attractor.
This study focuses on the set of initial conditions around 20% of the equilibrium point

where the variety of trajectories is more pronounced.
The synthetic data is generated with Table 3 conditions:

Table 3. Synthetic data generation parameters: Volterra–Lotka paths.

Data Generation Range

Parameter Minimum Maximum

State x1 0.8r2/a2 1.2r2/a2

State x2 0.8r1/a1 1.2r1/a1

r1, r2, a1 1
a2 2

Simulation end times (s) 20.05
Sampling time T (s) 0.05

Number of window data 200
Overlap O (Nº data) 40

V ∼ N (0,σZ1 ) = N (0,σZ2 ) 0.09

4.3.1. Classical State Estimator

Using the approximation of Equation (3),
.
x =

xk+1−xk
T the system is discretized as fol-

lows: {
x1,k+1 = x1,k + (r1x1,k − a1x1,kx2,k + w1,k)T
x2,k+1 = x2,k + (a2x1,kx2,k − r2x2,k + w2,k)T

(36)

zk = Hxk + Vk (37)

Since the system is non-linear, an EKF is formulated as an extension of the KF. In this
way, the EKF is formulated with the following parameters:

A = ∇ f (x, 0)|(x̂,0) =

(
1 + (r1 − a1x2)Ts −a1x1Ts

a2x2Ts 1 + (a2x1 − r2)Ts

)∣∣∣∣
(x̂,0)

W = ∇ f (0, 0, w)|(x̂,0) = 02x2

H = ∇h(xk, 0)|(x̂,0) = I2x2

V = ∇h(0, v)|(x̂,0) = V2x1

(38)

We considered the system to be fully observable in which we could simultaneously
measure the two states that we considered as positions on a two-dimensional plane, known
in other environments under the phase diagram name. The measurement noise corresponds
to a Gaussian noise N (µ, σz) with mean µ = 0 and variance σz.

P1|k−1 = σZ I2x2 (39)

4.3.2. Artificial Neural Structure

Starting from the initial structure of the URM, the proposed structure for the Volterra–
Lotka system is indicated in Table 4.



Sensors 2021, 21, 1805 15 of 28

Table 4. Listing of neural network layer: s = 200 is the number of samples per input path.

Nr Name and Type Activation/Prop. Learnable States

1 Sequence Input: 2 × 200 2 - -

2 lstm_1: LSTM
Hidden units: 400

State activation function: tanh
Gate activation function: sigm

Input Weights: 1600 × 2
Recurrent Weights:

1600 × 400
Bias: 1600 × 1

Hidden States: 400 × 1
CellState: 400 × 1

3 fc_1: Fully connected 16 Weights: 16 × 400
Bias: 16 × 1 -

4 relu_1: ReLU 16 - -

5 Do: Dropout 20% 16 - -

6 lstm_2: LSTM
Hidden units: 200

State activation function: tanh
Gate activation function: sigm

Input Weights: 800 × 16
RecurrentWeights: 800 × 200

Bias: 800 × 1

Hidden States: 200 × 1
CellState: 200 × 1

7 fc_2: Fully connected 2 Weights: 2 × 200
Bias: 2 × 1 -

8 Regression output Loss function: HMSE - -

Although apparently the structure is similar to the URM, the density of the network is
higher because it contains one more feature in the input and output layers, and a larger
number of measurements to define the input/output layers.

4.4. Experimentation

In the following section, we show, in a compact way, each of the proposed experiments
for the different study cases.

4.4.1. Standardization Effect

In this section, we show the dataset information mapping before and after applying
the standardization process. We used the standardization process described in [19] based
on [16].

First, it is important to emphasize that the arrival spaces after the standardization are
bounded Figure 1b,d,f. Another perception that can be observed is that, for certain trajecto-
ries, the noise in the arrival space after the transformation can be attenuated (pronounced
speeds, big amplitudes, or big closed paths) on the contrary increased (small speeds, am-
plitudes, and closed paths). This differentiation can be perceived by an intelligent system.
These features combined with a bounded space are good hints to use ANN.

4.4.2. Architecture Validation

The validation process of the different architectures is carried out using two check-
points on each path. The first checkpoint is located just after the activation window and the
second at the end of the data window. This is justified based on the KF covariance evolution,
where it decreases exponentially in a linear system. Thus, KF will be less accurate at the
beginning of receiving measurements than at the end.

The checkpoints are taken over the measured, Kalman, and LSTM network outputs.
The values obtained with each of the previous paths are compared with the ideal values,
and the error value is saved. These errors are shown as a histogram in Figure 2, and the
values of the RMSE obtained are shown in Table 5.



Sensors 2021, 21, 1805 16 of 28Sensors 2021, 21, x FOR PEER REVIEW 16 of 29 
 

 

Raw dataset image  Standardization dataset image  

 
(a)  

(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 1. (a,c,e) a set of 10  ideal paths in real space with uniform rectilinear motion (URM), si-
nusoidal, and Volterra System. (b,d,f) a set of 10  paths in standardized space with URM, sinus-
oidal, and Volterra System. 

4.4.2. Architecture Validation 
The validation process of the different architectures is carried out using two check-

points on each path. The first checkpoint is located just after the activation window and 
the second at the end of the data window. This is justified based on the KF covariance 
evolution, where it decreases exponentially in a linear system. Thus, KF will be less accu-
rate at the beginning of receiving measurements than at the end. 

The checkpoints are taken over the measured, Kalman, and LSTM network outputs. 
The values obtained with each of the previous paths are compared with the ideal values, 
and the error value is saved. These errors are shown as a histogram in Figure 2, and the 
values of the RMSE obtained are shown in Table 5. 

  

Figure 1. (a,c,e) a set of 103 ideal paths in real space with uniform rectilinear motion (URM),
sinusoidal, and Volterra System. (b,d,f) a set of 103 paths in standardized space with URM, sinusoidal,
and Volterra System.

Sensors 2021, 21, x FOR PEER REVIEW 17 of 29 
 

 

1st Checkpoint 2nd Checkpoint 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 2. Cont.



Sensors 2021, 21, 1805 17 of 28

Sensors 2021, 21, x FOR PEER REVIEW 17 of 29 
 

 

1st Checkpoint 2nd Checkpoint 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Sensors 2021, 21, x FOR PEER REVIEW 18 of 29 
 

 

 
(g) 

 
(h) 

Figure 2. Long short-term memory (LSTM) and Kalman histogram validation: (a) first and (b) second, checkpoint in the 
URM model. (c) First and (d) second checkpoint in the sinusoidal path model. (e) First and (f) second checkpoint in the 
Volterra system paths. (g) First and (h) second checkpoint in the Volterra system (Euclidean distance error). 

Table 5. Kalman and LSTM validation results. 

Path-Model 
Histogram RMSE [𝟏𝟎 𝟏] 

(Measurements | Kalman | LSTM) 
First Checkpoint Last Checkpoint 

Lineal 9.086 | 4.569 | 1.444 8.697 | 2.038 | 5.799 
Sinusoidal 3.971 | 0.720 | 1.395 3.955 | 1.092 | 1.068 
Volterra state 𝒙𝟏 0.893 | 0.195 | 0.424 0.933 | 0.948 | 0.089 
Volterra state 𝒙𝟐 0.847 | 0.168 | 0.107 0.885 | 0.501 | 0.125 
Volterra paths (distance) 1.231 | 0.258 | 0.437 1.286 | 1.072 | 0.153 

The error distributions of the sensor-measured data simulation show an invariant 
Gaussian behavior of the path position at the checkpoint. Given the nature of the RMSE, 
the values obtained correspond to the variance of the Gaussian noise. 

We verified that the KF behavior implemented also presented a Gaussian distribu-
tion with less variance in the second checkpoint in linear systems cases (URM and sinus-
oidal). However, in the EKF case, we can see how the filter presents difficulties at the end 
of the paths but maintained the noise below the measurements. 

In the case of the LSTM networks, we can see how the behavior was generally Gauss-
ian except for the second checkpoint in the linear paths of the URM model. In the case of 
the second state of Volterra, it remained practically bounded, while in the sinusoidal tra-
jectories, the first state of Volterra was reduced and was lower than in Kalman. 

Figure 2g,h shows the system error as a Euclidean distance of the estimated XY posi-
tions with respect to the ideal values in order to check the deviation of the filter. All dis-
tributions have a tail to the right; however, this metric allows us to highlight the amount 
of data centered around the zero error. We verified how the performance of the LSTM 
network for this non-linear system showed great performance as the EKF approached.  

Finally, we verified how the proposed system with LSTM networks reduced the 
noise of the measurements and presented an error comparable to the KF. 

4.4.3. Filtering System Simulation with New Measurements 
This experiment shows the behavior of Kalman and the proposed network when they 

are in continuous measurement feeds during the first and second time window when 
faced with a new set of data different from those used in the training and validation. 

Figure 2. Long short-term memory (LSTM) and Kalman histogram validation: (a) first and (b) second, checkpoint in the
URM model. (c) First and (d) second checkpoint in the sinusoidal path model. (e) First and (f) second checkpoint in the
Volterra system paths. (g) First and (h) second checkpoint in the Volterra system (Euclidean distance error).

The error distributions of the sensor-measured data simulation show an invariant
Gaussian behavior of the path position at the checkpoint. Given the nature of the RMSE,
the values obtained correspond to the variance of the Gaussian noise.

We verified that the KF behavior implemented also presented a Gaussian distribution
with less variance in the second checkpoint in linear systems cases (URM and sinusoidal).
However, in the EKF case, we can see how the filter presents difficulties at the end of the
paths but maintained the noise below the measurements.



Sensors 2021, 21, 1805 18 of 28

Table 5. Kalman and LSTM validation results.

Path-Model
Histogram RMSE [10−1]

(Measurements|Kalman|LSTM)
First Checkpoint Last Checkpoint

Lineal 9.086|4.569|1.444 8.697|2.038|5.799
Sinusoidal 3.971|0.720|1.395 3.955|1.092|1.068
Volterra state x1 0.893|0.195|0.424 0.933|0.948|0.089
Volterra state x2 0.847|0.168|0.107 0.885|0.501|0.125
Volterra paths (distance) 1.231|0.258|0.437 1.286|1.072|0.153

In the case of the LSTM networks, we can see how the behavior was generally Gaussian
except for the second checkpoint in the linear paths of the URM model. In the case of
the second state of Volterra, it remained practically bounded, while in the sinusoidal
trajectories, the first state of Volterra was reduced and was lower than in Kalman.

Figure 2g,h shows the system error as a Euclidean distance of the estimated XY
positions with respect to the ideal values in order to check the deviation of the filter. All
distributions have a tail to the right; however, this metric allows us to highlight the amount
of data centered around the zero error. We verified how the performance of the LSTM
network for this non-linear system showed great performance as the EKF approached.

Finally, we verified how the proposed system with LSTM networks reduced the noise
of the measurements and presented an error comparable to the KF.

4.4.3. Filtering System Simulation with New Measurements

This experiment shows the behavior of Kalman and the proposed network when they
are in continuous measurement feeds during the first and second time window when faced
with a new set of data different from those used in the training and validation.

The initial conditions used in each system simulation are shown in Table 6. We used
the same initial conditions for both experiments with continuous feed measurements and
in the measurement experiment 4.4.4.

Table 6. The initial simulation conditions.

System-Model Initial Conditions
¯
x0

URM −23.4897,−5.3815
Sinusoidal 4.8647,−0.9199

Volterra–Lotka 3.0298, 0.8219

Figures 3a–f and 4a–f show the overlapping regions in yellow—that is, the region
without estimates, and is used to activate the networks and also to adjust the KF states
in iterative way. After this time, the different systems were fed with new measurements
to perform the filtering. In the linear case, this was checked as during the first two time
windows, while the KF tended to reduce the RMSE, the network kept the error bounded to
acquire the desired trend, Table 7.



Sensors 2021, 21, 1805 19 of 28

Sensors 2021, 21, x FOR PEER REVIEW 19 of 29 
 

 

The initial conditions used in each system simulation are shown in Table 6. We used 
the same initial conditions for both experiments with continuous feed measurements and 
in the measurement experiment 4.4.4. 

Table 6. The initial simulation conditions.  

System-Model Initial Conditions 𝒙𝟎 
URM −23.4897, −5.3815 

Sinusoidal 4.8647, −0.9199 
Volterra–Lotka 3.0298, 0.8219 

Figures 3a–f and 4a–f show the overlapping regions in yellow—that is, the region 
without estimates, and is used to activate the networks and also to adjust the KF states in 
iterative way. After this time, the different systems were fed with new measurements to 
perform the filtering. In the linear case, this was checked as during the first two time win-
dows, while the KF tended to reduce the RMSE, the network kept the error bounded to 
acquire the desired trend, Table 7. 

Table 7. The root mean squared error (RMSE) with continuous feed measurements. 

Model 
RMSE [𝟏𝟎 𝟏] (Kalman | LSTM) 

1st Window 2nd Window 
Lineal 5.533 | 1.660 0.969 | 2.046 

Sinusoidal 1.325 | 1.444 0.678 | 1.269 
Volterra state 𝒙𝟏 1.118 | 0.723 1.728 | 0.597 
Volterra state 𝒙𝟐 0.800 | 0.861 1.099 | 0.410 

Volterra paths (distance) 1.500 | 1.125 2.157 | 0.725 

 
First time window Second time window 

  

(a) (b) 

  
(c) (d) 

Sensors 2021, 21, x FOR PEER REVIEW 20 of 29 
 

 

  
(e) (f) 

  
(g) (h) 

Figure 3. Kalman and LSTM with new feed measurements. (a) First and (b) second time window 
URM path evolution. (c) First and (d) second time window sinusoidal path evolution. (e) First and 
(f) second, time window Volterra path evolution in both two states. (g) First and (h) second win-
dow, Volterra phase diagram evolution. 

First time window Second time window 

 
(a) 

 
(b) 

Figure 3. Kalman and LSTM with new feed measurements. (a) First and (b) second time window URM path evolution. (c)
First and (d) second time window sinusoidal path evolution. (e) First and (f) second, time window Volterra path evolution
in both two states. (g) First and (h) second window, Volterra phase diagram evolution.



Sensors 2021, 21, 1805 20 of 28Sensors 2021, 21, x FOR PEER REVIEW 21 of 30 
 

 

First time window Second time window 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4. Cont.



Sensors 2021, 21, 1805 21 of 28

Sensors 2021, 21, x FOR PEER REVIEW 22 of 30 
 

 

 
(g) 

 
(h) 

Figure 4. Kalman and LSTM without feed new measurements. (a) First and (b) second time window URM path evolution. 
(c) First and (d) second, time window sinusoidal path evolution. (e) First and (f) second, time window Volterra path evo-
lution in both states. (g) First and (h) second window, Volterra phase diagram evolution. 

In the sinusoidal case, we checked during the first two time windows as the KF tends 
to reduce its error. In the case of the neural network, it does not manage to improve on 
the Kalman results, but it remained with an acceptable trend and a comparable RMSE, 
Table 7. 

In the case of Volterra’s system, the trajectory was split into the components defined 
by the system states. During the first time window, the EKF and the network acquired the 
system trend but with higher amplitude offset by the EKF than the LSTM, showing a be-
havior with less error than EKF in the initial moments but with a comparable RMSE. This 
effect is better observed in Figure 3g (phase diagram first window) where it is shown that, 
even maintaining a comparable RMSE, the EKF was much farther than the LSTM from the 
ideal values. During the second time window Figure 3h the effect was even more pro-
nounced, and, this time, we found that the LSTM had a behavior with less error than the 
EKF. We can see the joint states error in the error diagram of the second time window 
Figure 3h, where the error in the evolution of the LSTM is shown compressed around 
(0,0), clearly more compact and reduced than the EKF and, in this case, an order of mag-
nitude higher than the network. 

4.4.4. Effect of Missing Observations in the Input Sequence 
We simulated the loss of measurements after the overlap/activation region in two 

consecutive time windows. In the first window, we only used data from the overlap sec-
tion for network activation and as feed measurements in the Kalman filters. In the second 
time section, KF used the set of measurements of the first-time window, while the neu-
ronal model only used the overlapping region for the activation. When measurements are 
missing, the systems were fed with predictions based on the previous estimates from each 
system as Algorithm 1 explains. 

In the case of the URM system, we see how, with few measurements lost, KF can 
diverge from the real trajectory, while the network managed to extract the trend of the 
system and maintain a bounded error Figure 4a. On the other hand, when Kalman was 
fed with a complete time window, it managed to extract a trend that reduced its error 
compared to the LSTM in terms of the RMSE. However, it may be the case that this is not 
sufficient and the system continues to decouple as long as the network keeps its error 
bounded. Figure 4b shows how the Kalman RMSE was lower than the LSTM but with a 
slightly increasing error trend indicating that it continues to decouple, while the LSTM 
remained bounded Table 8. 

In the case of the sinusoidal paths, we verified how the well-adjusted KF managed to 
maintain the trends better than the LSTM during the first two-time windows. We also 

Figure 4. Kalman and LSTM without feed new measurements. (a) First and (b) second time window URM path evolution.
(c) First and (d) second, time window sinusoidal path evolution. (e) First and (f) second, time window Volterra path
evolution in both states. (g) First and (h) second window, Volterra phase diagram evolution.

Table 7. The root mean squared error (RMSE) with continuous feed measurements.

Model
RMSE [10−1] (Kalman | LSTM)

1st Window 2nd Window

Lineal 5.533|1.660 0.969|2.046
Sinusoidal 1.325|1.444 0.678|1.269

Volterra state x1 1.118|0.723 1.728|0.597
Volterra state x2 0.800|0.861 1.099|0.410

Volterra paths (distance) 1.500|1.125 2.157|0.725

In the sinusoidal case, we checked during the first two time windows as the KF tends
to reduce its error. In the case of the neural network, it does not manage to improve on the
Kalman results, but it remained with an acceptable trend and a comparable RMSE, Table 7.

In the case of Volterra’s system, the trajectory was split into the components defined
by the system states. During the first time window, the EKF and the network acquired
the system trend but with higher amplitude offset by the EKF than the LSTM, showing
a behavior with less error than EKF in the initial moments but with a comparable RMSE.
This effect is better observed in Figure 3g (phase diagram first window) where it is shown
that, even maintaining a comparable RMSE, the EKF was much farther than the LSTM
from the ideal values. During the second time window Figure 3h the effect was even more
pronounced, and, this time, we found that the LSTM had a behavior with less error than
the EKF. We can see the joint states error in the error diagram of the second time window
Figure 3h, where the error in the evolution of the LSTM is shown compressed around (0,0),
clearly more compact and reduced than the EKF and, in this case, an order of magnitude
higher than the network.

4.4.4. Effect of Missing Observations in the Input Sequence

We simulated the loss of measurements after the overlap/activation region in two
consecutive time windows. In the first window, we only used data from the overlap
section for network activation and as feed measurements in the Kalman filters. In the
second time section, KF used the set of measurements of the first-time window, while the
neuronal model only used the overlapping region for the activation. When measurements
are missing, the systems were fed with predictions based on the previous estimates from
each system as Algorithm 1 explains.

In the case of the URM system, we see how, with few measurements lost, KF can
diverge from the real trajectory, while the network managed to extract the trend of the
system and maintain a bounded error Figure 4a. On the other hand, when Kalman was



Sensors 2021, 21, 1805 22 of 28

fed with a complete time window, it managed to extract a trend that reduced its error
compared to the LSTM in terms of the RMSE. However, it may be the case that this is
not sufficient and the system continues to decouple as long as the network keeps its error
bounded. Figure 4b shows how the Kalman RMSE was lower than the LSTM but with a
slightly increasing error trend indicating that it continues to decouple, while the LSTM
remained bounded Table 8.

Table 8. The RMSE with measurement loss simulation.

Model
RMSE [10−1] (Kalman|LSTM)

1st Window 2nd Window

Lineal 42.534|2.054 2.084|2.414
Sinusoidal 0.903|17.455 0.323|10.898

Volterra state x1 2.855|1.188 2.855|0.690
Volterra state x2 2.034|0.817 1.893|0.541

Volterra paths (distance) 3.901|1.442 3.803|0.877

In the case of the sinusoidal paths, we verified how the well-adjusted KF managed
to maintain the trends better than the LSTM during the first two-time windows. We also
observed how the network managed to have a behavior like Kalman in the first estimation
moments, but it decoupled in the absence of measurements and introduced a certain gap
in the estimation.

Finally, in the case of the Volterra system, it can be seen how the EKF in the first and
second time windows is much more vulnerable and can diverge from the ideal trajectory
with respect to the proposed LSTM solution. This is easily observed in each state graphs
in Figure 4g,h, especially in the joint state diagrams in error part, where the error of the
LSTM is clearly bounded around (0,0) while the EKF is not. Figure 4g,h shows that the EKF
was more vulnerable to decoupling in the absence of measurements compared with the
neuronal system as observed in the evolution of systems in terms of the amplitude, phase,
and finally higher error.

Figure 4e,f shows that the EKF was more vulnerable to decoupling in the absence of
measurements compared with the neuronal system, as observed in the evolution of systems
in terms of the amplitude, phase, and definitely higher error. Figure 4g shows how in the
first moments around (1.5,1) the EKF, the network, and the ideal measurements evolved
together, while the neuronal network extracted the tendency of the equilibrium point and
presented an evolutionary behavior on an invariant set, the EKF began to diverge from the
limit cycle decoupling itself from the system and becoming unstable in terms of tendency
and comparison with the ideal system.

4.4.5. Impact on Filtering of Measurements Simulated with Different Parameters with
Respect to the Design

To perform these experiments we used an ideal model for training and to configure
the KF, but we generated new paths with slight changes in the dynamic simulation model
with respect to the ideal model.

This α variation was made over each constant’s parameters ψi of the ideal model,
between 5% and 200% of the ideal value. The variation was made with only one parameter
to study their impact without changing the rest of the terms with the initial/ideal model.
Finally, the new constant ψ∗i is as Equation (40), where i indicates the different constants in
the dynamic model and j indicates the variation range.

ψ∗i = ψi.αj (40)

For this test, the mean value, the median, and the mode of the set of RMSE values
were determined over 1000 new test paths generated over each modification of the constant
parameters. This means that, when making 40 modifications, we finally generated 40,000
new paths per study case.



Sensors 2021, 21, 1805 23 of 28

This test was performed on the sinusoidal case by modifying the system frequency
and with the Volterra system for each of the four constant terms (34).

In Figures 5 and 6, there were two essential regions in each of the graphs delimited by
the variance of the measurements (blue lines). Over this border, the filtering was worse
than the measurements; however, this could be due to missing measurements, and so it
is interesting to study the evolution over the border of measurements and compare the
differences between the classical system and the proposed LSTM system.

Sensors 2021, 21, x FOR PEER REVIEW 24 of 29 
 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5. RMSE evolution as the independent term changed in the sinusoidal measurements model: (a) RMSE mean, (b) 
RMSE median, and (c) RMSE mode. 

In the sinusoidal case, 𝜔 = 𝜓 was considered as the constant term. The general 
RMSE evolution in the average and median KF showed a linear-symmetric growth, while 
the network showed an irregular behavior, but with an increasing trend on both sides of 
α=1. In the lower region of the measure’s variance, Kalman had a lower value than the 
LSTM, reaching the border after the LSTM in both sides of the optimum. However, we 
found a region in the range of [1.25, 1.5] in Figure 5a,b in which the network continued 
filtering while Kalman did not. To the right of this region, Kalman performed worse than 
the network. In terms of the RMSE frequency (mode), we can see how both systems for 
the set of ranges studied were maintained in the filtering region and Kalman generally 
showed the best performance Figure 5c. 

Volterra system:  

Figure 5. RMSE evolution as the independent term changed in the sinusoidal measurements model: (a) RMSE mean, (b)
RMSE median, and (c) RMSE mode.

Sinusoidal system:
In the sinusoidal case, ω2 = ψ was considered as the constant term. The general

RMSE evolution in the average and median KF showed a linear-symmetric growth, while
the network showed an irregular behavior, but with an increasing trend on both sides of
α = 1. In the lower region of the measure’s variance, Kalman had a lower value than the
LSTM, reaching the border after the LSTM in both sides of the optimum. However, we
found a region in the range of [1.25, 1.5] in Figure 5a,b in which the network continued
filtering while Kalman did not. To the right of this region, Kalman performed worse than
the network. In terms of the RMSE frequency (mode), we can see how both systems for the
set of ranges studied were maintained in the filtering region and Kalman generally showed
the best performance Figure 5c.



Sensors 2021, 21, 1805 24 of 28

Sensors 2021, 21, x FOR PEER REVIEW 25 of 29 
 

 

 
(𝐚𝟏) 

 
(𝐚𝟐) 

 
(𝐚𝟑) 

 
(𝐚𝟒) 

 
(𝐛𝟏) 

 
(𝐛𝟐) 

Figure 6. Cont.



Sensors 2021, 21, 1805 25 of 28

Sensors 2021, 21, x FOR PEER REVIEW 26 of 29 
 

 

 
(𝐛𝟑) 

 
(𝐛𝟒) 

 
(𝐜𝟏) 

 
(𝐜𝟐) 

 
(𝐜𝟑) 

 
(𝐜𝟒) 

Figure 6. The RMSE evolution as the independent term changed in Volterra model: (a) RMSE 
mean, (b) RMSE median, and (c) RMSE mode. Subscripts indicate Volterra constant terms: [1,2,3,4] =  [𝑟 , 𝑎 , 𝑟 , 𝑎 ].  

Based on the statistical values of the mean and median RMSE with Volterra’s system 
trajectory, the EKF sensitivity to changes in the independent terms are shown in Figure 
6a,b. The EKF quickly left the filtering region and showed an increasing trend on both 
sides of the optimum (𝛼 = 1). On the other hand, the LSTM architecture was much less 
sensitive to these changes, becoming practically invariant in the second state (𝑥 ) to 𝑎  
modifications. The previous trend was generalized for all terms. The mode of the RMSE 
in Figure 6c showed the same behavior emphasizing the difference between the EKF and 
the network with the 𝑎  constant term modifications, where the network with even a 

Figure 6. The RMSE evolution as the independent term changed in Volterra model: (a) RMSE mean, (b) RMSE median, and
(c) RMSE mode. Subscripts indicate Volterra constant terms: [1, 2, 3, 4]= [r1, a1, r2, a2].

Volterra system:
Based on the statistical values of the mean and median RMSE with Volterra’s system

trajectory, the EKF sensitivity to changes in the independent terms are shown in Figure 6a,b.
The EKF quickly left the filtering region and showed an increasing trend on both sides of



Sensors 2021, 21, 1805 26 of 28

the optimum (α = 1). On the other hand, the LSTM architecture was much less sensitive to
these changes, becoming practically invariant in the second state (x2) to a1 modifications.
The previous trend was generalized for all terms. The mode of the RMSE in Figure 6c
showed the same behavior emphasizing the difference between the EKF and the network
with the a2 constant term modifications, where the network with even a slight increasing
trend in the edges did not achieve, in the study range, the filtering border.

5. Conclusions

In this work, three neuro-estimator/filters were implemented through a common but
different density encoder–decoder architecture, based on recurrent LSTM cells and using
the Algorithm 2 design process. These models were compared with a KF adapted to each
specific case obtaining similar results in terms of the RMSE but, unlike Kalman, working in
only one processing stage. The Kalman algorithm consists of two main processing stages,
namely prediction and update, using ad-hoc models, while the proposed solution works in
a single stage applying the model built after the training stage.

The study was limited with two consecutive time windows for two linear systems
with linear and sinusoidal paths in a one-dimensional path space. In addition, it included
a nonlinear autonomous system defined by Volterra–Lotka’s equations, which describes
a set of smooth, curved paths in a two-dimensional space. The simulated measurements
were made by adding a Gaussian additive term in the state of the system case.

KF has proven to be the optimal process for linear systems; however, the proposed
neural architectures, without taking any assumptions as Gaussian, linear, or Markovian
processes, managed to show a comparable performance in terms of RMSE Table 5. Al-
though it has been justified why our proposed system does not initially assume Gaussian
systems or measurements (Section 3.1), the system has not been tested with other noises
to be compared with a reference system, such as KF or EKF. We verified that the system
proposed in the case of linear trajectories, with few measurements, managed to acquire
the desired trend in front of possible decoupling of the KF in absence of the measurements
in Figure 4a,b. When the system had non-linearity, the approaches used in the EKF may
diverge from the ideal solution. The neural proposed system managed to improve the
behavior of the EKF both in the filtering and in estimation in the absence of measurements
Figure 4e–h.

One of the principal advantages of our method lies in the simplicity of modeling
the neuro-estimator/filter as KF. Finally, we studied the system behavior in the face of
separate trajectories from the models for which the systems had been designed. To do
this, we generated new paths modifying each constant term ψi of the dynamic models
by a multiplicative value α. As expected, in all cases, the optimal value was found when
the independent term matched between the model and generated values—that is, the
multiplicative value α = 1.

We proved, as in the case of a linear system (sinusoidal paths), Kalman grew linearly
out of the filtering region after the neuronal system. The irregularity of the growth for
the neuronal system proposed for sinusoidal paths was shown to exist in regions where
Kalman does not work while the network does (understanding by that “work” refers to
the filter process).

As far as Volterra’s system is concerned, the influence of each of its four independent
terms (r1, a1, r2, a2) on EKF systems and the proposed LSTM solution were verified. We
checked how the LSTM architecture could be maintained in the filtering area with a higher
variation range than Kalman when each one of the independent terms is modified. In the
case of a1 and a2, our system remained practically invariant as shown in Figure 6(a2,b2),
Figure 6(a4,b4)-second state x2. On the other hand, the EKF with its linear approximations
quickly left the filter region in Figure 6. We can affirm that, for all the cases regarding
parameter modification on the Volterra system and in the study domain as a whole, the
LSTM solution was more robust than the EKF, with the filtering border beyond the EKF or
even not having that border in certain cases.



Sensors 2021, 21, 1805 27 of 28

Author Contributions: Conceptualization, J.P.L.C., J.G.H., and J.M.M.L.; Formal Analysis, J.P.L.C.,
J.G.H., and J.M.M.L.; Funding Acquisition, J.G.H. and J.M.M.L.; Investigation J.P.L.C.; Methodology,
J.P.L.C.; Project Administration, J.G.H., J.M.M.L.; Resources, J.P.L.C., J.G.H., and J.M.M.L.; Software
J.P.L.C.; Supervision, J.G.H. and J.M.M.L.; Validation, J.P.L.C., J.G.H., and J.M.M.L.; Visualization,
J.P.L.C.; Writing—Original Draft Preparation, J.P.L.C.; Writing—Review and Editing, J.P.L.C., J.G.H.,
and J.M.M.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by public research projects of Spanish Ministry of Economy
and Competitivity (MINECO), reference TEC2017-88048-C2-2-R and by the Madrid Government
under the Multiannual Agreement with UC3M in the line of Excellence of University Professors
(EPUC3M17), and in the context of the V PRICIT (Regional Programme of Research and Technologi-
cal Innovation).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Åström, K.; Wittenmark, B. Computer-Controlled Systems: Theory and Design; Courier Corporation: Chelmsford, MA, USA, 2013.
2. Lewis, F.L.; Vrabie, D.L.; Syrmos, V.L. Syrmos, “Optimal Control”; John Wiley & Sons: Hoboken, NJ, USA, 2012.
3. Afshari, H.; Gadsden, S.; Habibi, S. Gaussian filters for parameter and state estimation: A general review of theory and recent

trends. Signal Process. 2017, 135, 218–238. [CrossRef]
4. Musoff, H.; Zarchan, P. Fundamentals of Kalman Filtering: A Practical Approach, 3rd ed.; American Institute of Aeronautics and

Astronautics: Reston, Virginia, 2009.
5. Welch, G.; Bishop, G. An Introduction to the Kalman Filter. In Proceedings of the SIGGRAPH, Boston, MA, USA, 30 July–3 August

2006; Volume 7, pp. 1–16.
6. Bogdanski, K.; Best, M.C. Kalman and particle filtering methods for full vehicle and tyre identification. Veh. Syst. Dyn. 2017, 56,

769–790. [CrossRef]
7. Lee, J.H.; Ricker, N.L. Extended Kalman Filter Based Nonlinear Model Predictive Control. Am. Control Conf. 1993, 1, 1895–1899.

[CrossRef]
8. García, J.; Molina, J.M.; Trincado, J. Real evaluation for designing sensor fusion in UAV platforms. Inf. Fusion 2020, 63, 136–152.

[CrossRef]
9. Huang, R.; Patwardhan, S.C.; Biegler, L.T. Robust stability of nonlinear model predictive control based on extended Kalman filter.

J. Process. Control. 2012, 22, 82–89. [CrossRef]
10. Jondhale, S.R.; Deshpande, R.S. Kalman Filtering Framework-Based Real Time Target Tracking in Wireless Sensor Networks

Using Generalized Regression Neural Networks. IEEE Sens. J. 2018, 19, 224–233. [CrossRef]
11. Wan, E.; Van Der Merwe, R. The unscented Kalman filter for nonlinear estimation. In Proceedings of the IEEE 2000 Adaptive

Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373); IEEE: New York, NY, USA, 2002;
pp. 153–158.

12. Tsai, Y.-C.; Lyuu, Y.-D. A New Robust Kalman Filter for Filtering the Microstructure Noise. Commun. Stat. Theory Methods 2016,
46, 4961–4976. [CrossRef]

13. Alahi, A.; Goel, K.; Ramanathan, V.; Robicquet, A.; Fei-Fei, L.; Savarese, S. Social LSTM: Human Trajectory Prediction in Crowded
Spaces. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA,
27–30 June 2016; pp. 961–971.

14. Coskun, H.; Achilles, F.; DiPietro, R.; Navab, N.; Tombari, F. Long Short-Term Memory Kalman Filters: Recurrent Neural
Estimators for Pose Regularization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice,
Italy, 22–29 October 2017; pp. 5525–5533. [CrossRef]

15. Ali, J.M.; Hussain, M.; Tade, M.O.; Zhang, J. Artificial Intelligence techniques applied as estimator in chemical process systems—A
literature survey. Expert Syst. Appl. 2015, 42, 5915–5931. [CrossRef]

16. Song, X.; Liu, Y.; Xue, L.; Wang, J.; Zhang, J.; Wang, J.; Jiang, L.; Cheng, Z. Time-series well performance prediction based on Long
Short-Term Memory (LSTM) neural network model. J. Pet. Sci. Eng. 2020, 186, 106682. [CrossRef]

17. Park, S.H.; Kim, B.; Kang, C.M.; Chung, C.C.; Choi, J.W. Sequence-to-Sequence Prediction of Vehicle Trajectory via LSTM Encoder-
Decoder Architecture. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018;
pp. 1672–1678. [CrossRef]

18. Muzaffar, S.; Afshari, A. Short-Term Load Forecasts Using LSTM Networks. Energy Procedia 2019, 158, 2922–2927. [CrossRef]
19. Llerena, J.P.; García, J.; Molina, J.M. An Approach to Forecasting and Filtering Noise in Dynamic Systems Using LSTM Architec-

tures. Adv. Intell. Syst. Comput. 2021, 1268, 155–165.
20. Hjortsø, M.A.; Wolenski, P. Some Ordinary Differential Equations. Linear Mathematical Models in Chemical Engineering. In

Proceedings of the NeurIPS 2018 Conference; World Scientific: Singapore, 2018; pp. 123–145.
21. Sierra, J.E.; Santos, M. Modelling engineering systems using analytical and neural techniques: Hybridization. Neurocomputing

2018, 271, 70–83. [CrossRef]

http://doi.org/10.1016/j.sigpro.2017.01.001
http://doi.org/10.1080/00423114.2017.1337914
http://doi.org/10.23919/acc.1993.4793207
http://doi.org/10.1016/j.inffus.2020.06.003
http://doi.org/10.1016/j.jprocont.2011.10.006
http://doi.org/10.1109/JSEN.2018.2873357
http://doi.org/10.1080/03610926.2015.1096390
http://doi.org/10.1109/iccv.2017.589
http://doi.org/10.1016/j.eswa.2015.03.023
http://doi.org/10.1016/j.petrol.2019.106682
http://doi.org/10.1109/ivs.2018.8500658
http://doi.org/10.1016/j.egypro.2019.01.952
http://doi.org/10.1016/j.neucom.2016.11.099


Sensors 2021, 21, 1805 28 of 28

22. Rudy, S.H.; Kutz, J.N.; Brunton, S.L. Deep learning of dynamics and signal-noise decomposition with time-stepping constraints. J.
Comput. Phys. 2019, 396, 483–506. [CrossRef]

23. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Multistep Neural Networks for Data-driven Discovery of Nonlinear Dynamical
Systems. arXiv 2018, arXiv:1801.01236.

24. Arsene, C.T.; Hankins, R.; Yin, H. Deep Learning Models for Denoising ECG Signals. In Proceedings of the 2019 27th European
Signal Processing Conference (EUSIPCO), A Coruña, Spain, 2–6 September 2019; pp. 1–5. [CrossRef]

25. Zhu, Y.; Zhang, W.; Chen, Y.; Gao, H. A novel approach to workload prediction using attention-based LSTM encoder-decoder
network in cloud environment. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 1–18. [CrossRef]

26. Hochreiter, S.; Schmidhuber, J.U. Long Shortterm Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
27. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding.

In Proceedings of the NAACL HLT 2019—2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; Volume 1, pp. 4171–4186.

28. Lechner, M.; Hasani, R. Learning Long-Term Dependencies in Irregularly-Sampled Time Series. arXiv 2020, arXiv:2006.04418v1.
29. Greff, K.; Srivastava, R.K.; Koutnik, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural

Networks Learn. Syst. 2017, 28, 2222–2232. [CrossRef]
30. Zhao, Z.; Chen, W.; Wu, X.; Chen, P.C.Y.; Liu, J. LSTM network: A deep learning approach for short-term traffic forecast. IET

Intell. Transp. Syst. 2017, 11, 68–75. [CrossRef]
31. Wang, Y.; Huang, M.; Zhu, X.; Zhao, L. Attention-based LSTM for Aspect-level Sentiment Classification. In Proceedings of the

2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–5 November 2016; pp. 606–615.
[CrossRef]

32. Liu, Y. Novel volatility forecasting using deep learning–Long Short Term Memory Recurrent Neural Networks. Expert Syst. Appl.
2019, 132, 99–109. [CrossRef]

33. Deng, L.; Hajiesmaili, M.H.; Chen, M.; Zeng, H. Energy-efficient timely transportation of long-haul heavy-duty trucks. IEEE
Trans. Intell. Transp. Syst. 2016, 19, 2099–2113. [CrossRef]

34. Wu, Q.; Lin, H. A novel optimal-hybrid model for daily air quality index prediction considering air pollutant factors. Sci. Total.
Environ. 2019, 683, 808–821. [CrossRef]

35. Ravichandar, H.C.; Kumar, A.; Dani, A.P.; Pattipati, K.R. Learning and predicting sequential tasks using recurrent neural networks
and multiple model filtering. AAAI Fall Symp. Tech. Rep. 2016, 1–5, 331–337.

36. Graves, A. Supervised Sequence Labelling. In Complex Networks & Their Applications IX; Springer: Berlin/Heidelberg, Germany,
2012; pp. 5–13.

37. An, G. The Effects of Adding Noise During Backpropagation Training on a Generalization Performance. Neural Comput. 1996, 8,
643–674. [CrossRef]

38. Neelakantan, A.; Vilnis, L.; Le, Q.V.; Sutskever, I.; Kaiser, L.; Kurach, K.; Martens, J. Adding Gradient Noise Improves Learning
for Very Deep Networks. arXiv 2015, arXiv:1511.06807.

39. Graves, A.; Mohamed, A.-R.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649.
[CrossRef]

40. Bishop, C.M. Training with Noise is Equivalent to Tikhonov Regularization. Neural Comput. 1995, 7, 108–116. [CrossRef]
41. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference Learn. Represent.

(ICLR), San Diego, CA, USA, 5–8 May 2015.
42. Shampine, L.F.; Reichelt, M.W. The MATLAB ODE Suite. SIAM J. Sci. Comput. 1997, 18, 1–22. [CrossRef]
43. Beale, M.H.; Hagan, M.T.; Demuth, H.B. Neural Network Toolbox TM User ’ s Guide R2013b; Mathworks Inc.: Natick, MA, USA, 2013.

http://doi.org/10.1016/j.jcp.2019.06.056
http://doi.org/10.23919/eusipco.2019.8902833
http://doi.org/10.1186/s13638-019-1605-z
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1109/TNNLS.2016.2582924
http://doi.org/10.1049/iet-its.2016.0208
http://doi.org/10.18653/v1/d16-1058
http://doi.org/10.1016/j.eswa.2019.04.038
http://doi.org/10.1109/TITS.2017.2749262
http://doi.org/10.1016/j.scitotenv.2019.05.288
http://doi.org/10.1162/neco.1996.8.3.643
http://doi.org/10.1109/icassp.2013.6638947
http://doi.org/10.1162/neco.1995.7.1.108
http://doi.org/10.1137/S1064827594276424

	Introduction 
	General Problem Formulation 
	Kalman Solution 
	Deep Learning Solutions 

	Proposal Formulation 
	Artificial Neural Network Architecture 
	Computational Neural Network Framework 

	Case Studies and Experimentation 
	Linear Paths (Uniform Rectilinear Motion) 
	Classical State Estimator 
	Artificial Neural Structure 

	Sinusoidal Paths (Simple Harmonic Motion) 
	Classical State Estimator 
	Artificial Neural Structure 

	Smooth Curved Paths (Volterra–Lotka System) 
	Classical State Estimator 
	Artificial Neural Structure 

	Experimentation 
	Standardization Effect 
	Architecture Validation 
	Filtering System Simulation with New Measurements 
	Effect of Missing Observations in the Input Sequence 
	Impact on Filtering of Measurements Simulated with Different Parameters with Respect to the Design 


	Conclusions 
	References

