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Alzheimer’s disease (AD) is an irreversible neurodegenerative disorder that accounts for

60–70% of cases of dementia in the elderly. An early diagnosis of AD is usually hampered

for many reasons including the variable clinical and pathological features exhibited among

affected individuals. This paper presents a computer-aided diagnosis (CAD) system with

the primary goal of improving the accuracy, specificity, and sensitivity of diagnosis. In

this system, PiB-PET scans, which were obtained from the ADNI database, underwent

five essential stages. First, the scans were standardized and de-noised. Second, an

Automated Anatomical Labeling (AAL) atlas was utilized to partition the brain into 116

regions or labels that served for local (region-based) diagnosis. Third, scale-invariant

Laplacian of Gaussian (LoG) was used, per brain label, to detect the discriminant features.

Fourth, the regions’ features were analyzed using a general linear model in the form of a

two-sample t-test. Fifth, the support vector machines (SVM) and their probabilistic variant

(pSVM) were constructed to provide local, followed by global diagnosis. The system was

evaluated on scans of normal control (NC) vs. mild cognitive impairment (MCI) (19 NC

and 65 MCI scans). The proposed system showed superior accuracy, specificity, and

sensitivity as compared to other related work.

Keywords: AD, CAD, PiB-PET, statistical analysis, personalized diagnosis

1. INTRODUCTION

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder marked by cognitive and
behavioral impairments (Hodler et al., 2012; WHO, 2017). Statistically, 42% of AD sufferers are
people over 85 years of age with the percentage decreasing to only 6% for people of 70–74 years old.
Although the probability is small, younger individuals may also be affected (Brown, 2013).

AD is characterized by clinical symptoms and pathological features, both of which vary among
patients (Lu and Bludau, 2011). In the clinical presentation, the patient faces progressive deficits
in cognition as well as disturbances in thought, perception, and behavior. Neuropathological
abnormalities include the formation of neurofibrillary tangles and neuritic plaques as well
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as neuronal loss and granulovacuolar degeneration. Indeed, the
quantity and location of neurofibrillary tangles and neuritic
plaques represent neurodegenerative features that distinguish
AD from other types of dementia. Efforts to establish an early
diagnosis of AD have been thwarted by the fact that pathological
features of the disease occur 10–15 years before the emergence of
clinical symptoms.

Mild cognitive impairment (MCI) can lead to AD. MCI
can be defined as an impairment of cognition that is more
severe than expected from normal aging and a persons
education with objective evidence of impairment in one or
more cognitive domains including memory, executive function,
attention, language, or visuospatial skills. MCI does not interfere
with his/her independence and daily activities including social
or occupational functioning (Yaffe, 2013). In this regard, MCI
represents an intermediate stage between the cognitive decline
observed with normal aging and the severe impairment observed
in dementia (Anderson et al., 2012; Yaffe, 2013). It is important to
note that not all MCI cases proceed to AD, although studies have
found that it increases the risk of later developing AD (Anderson
et al., 2012; NIH, 2017). MCI due to AD is a progressive decline
in cognition over months to years. MCI due to AD has a
lack of significant vascular factors, vascular imaging findings,
parkinsonism, visual hallucinations, prominent behavioral, or
language disorders (Langa and Levine, 2014).

There are a number of tests that have to be considered
when trying to establish a diagnosis of AD. These tests include:
neuropsychological screening (to measure related cognitive
impairments), patients medical history, and mental/physical
examination. In addition, blood tests as well as brain imaging are
usually evaluated to rule out other neurological or physiological
disorders (Turkington and Harris, 2001; Wegrzyn and Rudolph,
2012). In general, these tests help to classify the subjects along the
disease cascade intoMCI, when the appearance of some cognitive
decline does not fulfill dementia criteria, and other stages of
AD (Wegrzyn and Rudolph, 2012). A recent meta-analysis
of neuropsychological measures suggested that verbal memory
measures and other language tests yield high predictive accuracy
for those MCI subjects who will progress to AD. Other domains
including executive function and visual memory showed better
specificity than sensitivity (Belleville et al., 2017). These data
show that there is a clinical need to identify biomarkers of
neural circuits involved in MCI, which ultimately lead to the
development of AD.

Brain biomarkers have been postulated to help in the diagnosis
of AD throughout the diseases natural history. For example,
Jack et al. (2010) presented a study in which positron emission
tomography (PET) amyloid imaging and cerebrospinal fluid
(CSF) amyloid beta 42 (Aβ42) revealed Aβ abnormalities in the
brain. These abnormalities are the earliest pathological features
observed in the AD-related disease cascade. Additionally,
the study reported that both the increase in CSF tau and
cerebral atrophy serve as biomarkers of neuronal injury and
neurodegeneration. Finally, the decrease in 2-[18F]fluoro-2-
deoxy-D-glucose PET (FDG-PET), as demonstrated by the study,
helps in revealing the synaptic dysfunction that accompanies
the neurodegeneration. Therefore, according to this study,

sMRI measures abnormalities of the brain’s structure, and
FDG-PET/CSF-tau identifies tau-mediated neuronal injury
and dysfunction. The authors concluded that PET amyloid
imaging could be considered an early identifier of AD-related
abnormalities.

PET is a main scanning application of the emission computed
tomography (ECT) methodology. Despite the role of the PET
amyloid imaging in the early diagnosis of AD, arguments for
and against the implementation of this scan modality in clinics
should be carefully considered. False positive diagnoses of AD
may occur since normal elderly subjects can have elevated
Aβ levels. Fortunately, the introduction of carbon-11 labeled
Pittsburgh compound B (11C PiB), a neutral analog of the
thioflavin T, caused a noteworthy conversion in studies related
to AD (Johnson et al., 2013). The compound assists in visualizing
the pathological hallmarks related to AD and consequently helps
in quantitating the neuropathological burden during subsequent
AD stages (Varghese et al., 2013).

Numerous research efforts have been proposed to help in
the differentiation between normal control (NC), MCI, and
AD utilizing PET scans. These efforts include studies focused
on testing computer-aided diagnosis (CAD) systems, such as
the automatic classification system proposed by Illán et al.
(2010). For this purpose, principal component analysis (PCA)
and support vector machines (SVM) were utilized. To evaluate
the system, the PiB and FDG related scans were used to
compare their results regarding early diagnosis. Although PiB
and FDG showed similar accuracies, the PiB had a higher
power of discrimination in the very early cases. Again, Illán
et al. (2011) utilized PET scans to construct a CAD system
that relied on eigenimage framework and composed of feature
extraction, dimensionality reduction, and classification stages.
In this system, PCA and independent component analysis
(ICA) were utilized for image projection (feature reduction),
eigenimage based decomposition for feature reduction, and SVM
for classification. Through these stages, the system achieved
an accuracy of 88.24%. Another study by Jiang et al. (2015)
demonstrated a CAD system that improved the classification
accuracy of AD using the PCA, ICA, and SVM. The PCA was
used for dimension reduction, ICA for feature extraction, and
SVM using linear and radial basis function (RBF) kernels for
classification. The results of their study showed either better
or equivalent performance as compared to the competitive
CAD methods with higher accuracy than the traditional visual
assessment methods.

In the same context, López et al. (2011) proposed a
CAD system aimed at improving the accuracy of three-
way classification between NC, MCI, and AD. The study
used PCA and linear discriminant analysis/Fisher discriminant
ratio for the feature selection process followed by artificial
neural network/SVM for the classification purpose. Testing this
methodology with FDG PET scans led to a classification accuracy
of 89.52%.Martínez-Murcia et al. (2012) presented a CAD system
composed of three stages: Mann-Whitney-Wilcoxon U-Test for
voxel selection in order to exclude outliers, factor analysis for
feature extraction, and linear SVM for classification. Testing
this system on PET scans achieved an accuracy of 92.9%. Also,
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Chaves et al. (2012) exploited association rule mining in a CAD
system used in the early diagnosis of AD. Testing the system
using two datasets, including PET scans, showed better results as
compared to other related work. Padilla et al. (2012) introduced
a CAD system to serve the early diagnosis of AD by combining
nonnegative matrix factorization (NMF) for feature selection and
reduction, and SVM with confidence bounds for classification.
Application of the system led to an accuracy of 86%.

In addition to the aforementioned studies, various researchers
have used voxel analysis for the early diagnosis of AD.
For example, Morbelli et al. (2012) performed voxel-wise
interregional correlations through statistical parametric mapping
to extract relevant information. The study’s results illustrated
the association between the pathophysiological process of AD
and alterations of the functional brain networks. According
to the study, the default mode network (DMN) and memory
function-related networks are themain causes of such alterations.
Kemppainen et al. (2006) compared AD vs. NC subjects to
find the brain regions that showed significant increases in
the uptake of 11C PiB by applying voxel-based analysis. A
Statistical Parametric Mapping (SPM) analysis was performed
using automated region of interest (ROI). The study found
that the voxel-based analysis showed widespread distribution
regarding the increased 11C PiB uptake. Ziolko et al. (2006)
statistically evaluated the amyloid imaging agents’ (i.e., PiB)
retention differences throughout the brain. In addition, they
compared the PiB results with the FDG-based scans of glucose
metabolism. The results revealed that the statistical significance
of the PiB analysis was both greater than others and had a larger
spatial extent. The results also showed that the PiB significance
was retained after corrections of family-wise error and false
discovery rate.

Forsberg et al. (2008) studied the amyloid deposition in
patients with MCI. They used 11C PiB and FDG based
PET scans with AD, which were compared with NC scans.
The analysis showed an intermediate retention of the mean
cortical PiB in the MCI as compared to NC and AD. Also,
the study found significantly higher PiB retention in the
MCI conversion to AD group, comparable to that of AD
patients (p > 0.01) and much less in MCI subjects who did
not convert to AD. Shin et al. (2010) presented a voxel-
based analysis relying on the FDG, PiB along with another
tracer known as 2-(1-6-[(2-(18F)fluoroethyl) (methyl) amino]-
2-naphthylethylidene) malononitrile (FDDNP). These tracers
were utilized to address the pathological hallmarks of AD, beta
amyloid plaques, potential neurofibrillary tangles, and glucose
metabolism related impairments. The experimental results
demonstrated the available capacity to develop and test disease-
modifying drugs targeting both tau and amyloid pathology,
and/or energy metabolism when using the same subject based
PET imaging with these three tracers.

Despite the achievements of the aforementioned
investigations, the studies only supported a global diagnosis that
indicate whether or not the subject belongs to a certain studied
group. The main objectives of this paper are summarized in
the following points. First, it provides a personalized diagnosis
to help individualize diagnostic options as well as monitoring
the disease progression. Second, it improves the final global

diagnosis results as compared with previously published studies.
To achieve these goals, our system utilized PiB PET scans
due to the superior role of this brain imaging modality, as
compared to other scanning modalities, when applied to the
early diagnosis of the disease. Therefore, the paper is organized
as follows. Section 2 (vide infra) starts by describing the materials
used for the preparation of the paper and defines the methods
used in the proposed CAD system. In section 3, different
experimental results are presented to evaluate the performance
as well as the efficiency of our system. Finally, the discussion
of the applied tests and the future work are highlighted in
section 4.

2. MATERIALS AND METHODS

2.1. Materials
A set of 11C PiB-PET scans were used to validate the
proposed framework. These scans were collected from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The database of ADNI was initially launched
in 2003 as a public-private partnership, led by principal
investigator Michael Weiner, MD. The goal of demonstrating
ADNI was to test whether serial MRI, PET, or other markers,
in addition to clinical and neuropsychological assessment, can
measure the progression ofMCI and AD by combining them. For
further advance information, please see www.adni-info.org. The
used dataset was obtained from ADNI 1 where it contains a total
number of 84 scans obtained from 19 NC and 65 MCI subjects.
NC comprises those subjects who do not show any signs of
depression, cognitive impairment, or dementia. The MCI group,
in general, comprises those subjects with subjective memory
concerns, whether self-reported or through an informant or a
clinician. Those subjects display neither significant impairment
levels in other cognitive domains nor signs of dementia. The
Logical Memory II subtest of the Wechsler Memory Scale
(WMS) was performed on the participants to document the
normality/abnormality of their memory function with respect to
their level of education. The demography of the used dataset is
presented in Table 1.

2.2. Methods
The main aim of this article is to present local (i.e., region) based
diagnosis of the MCI regarding AD, to assist clinicians in the
personalized treatment of the disease. To achieve this goal, five
main steps were performed, as illustrated in Figure 1. First, the
scans were preprocessed through data standardization and de-
noising. Data standardization aimed to prepare the scans for the
labeling step, while the de-noising process aimed to improve the
scan’s quality and consequently the systems accuracy. Second,
the atlas of Automated Anatomical Labeling (AAL) was used
for brain parcellation to serve the local diagnosis goal. After
labeling the brain, we used a Laplacian of Gaussian (LoG) with
the automatic scale to extract the discriminant features from the
scans. Then, a statistical analysis was performed to determine
the significant brain regions to analyze rather than using all the
labeled regions in the decision-making process. Finally, these
regions were used to construct two decision-making levels using
a probabilistic version of SVM (pSVM) and standard SVM to
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TABLE 1 | The demographic data of the NC and MCI groups of the 11C PiB-PET scans.

(N = 84) Average Age ± SD Gender N (%) WMS logical memory II results

(based on years of education)

Male Female ≥16 years 8–15 years 0–7 years

NC (19) 78.3 ± 5.01 11 (57.89) 8 (42.1) ≥ 9 ≥ 5 ≥ 3

MCI (65) 75.78 ± 7.67 44 (67.69) 21 (32.30) ≥ 8 ≥ 4 ≥ 2

provide local followed by global diagnosis. The details of the
proposed system are presented in the following subsections.

2.2.1. Preprocessing
Scans underwent some preprocessing to orient the data and
reduce noise. For orienting the data in a standard coordinate
system, the SPM MATLAB toolbox (NeuroImaging, 2017)
was used to perform re-orientation, co-registration, spatial
normalization, and re-slicing. Noise reduction was accomplished
through wavelet shrinkage. Details are as follows: PET scans’
associated sMRI data were re-oriented so that the anterior-
posterior axis coincides with the AC-PC line. This differs from
the ADNI pipeline, which only ensures the axis is parallel to
the AC-PC line. The associated PiB-PET scan was re-oriented
to the resulting sMRI scan to produce a re-orientation matrix
that was then used to re-orient the remaining PiB-PET scans.
Precise co-registration between the PET scans and the previously
used sMRI scan was performed using rigid body transformations
(translations and rotations) to maximize the mutual information.
Then, the spatial normalization and re-slicing were applied to the
sMRI and PET scans to align the scans to the MNI-152 standard
space. In this step, general affine transformation (translations,
rotations, non-uniform scaling, and shears) was used, followed
by nonlinear deformations. After data standardization, wavelet
based de-noising was applied using the symlet8 mother wavelet
with Steins unbiased risk estimate as a threshold selection rule
and soft thresholding (Bagci and Mollura, 2013). The aim was to
retain image detail while removing artifacts of image acquisition
and/or transmission (Agrawal and Bahendwar, 2011). At this
point, the scans were ready for voxel-wise comparison and
labeling steps.

2.2.2. Brain Labeling
Due to the local diagnosis based goal of the proposed system, the
brain labeling/partitioning needs to be performed. Through this
aim, a detailed diagnosis of the subjects could be achieved. For
this purpose, any of the detailed based brain atlases can be used,
such as AAL, Talairach Daemon, and Brodmann areas atlases (Su
et al., 2014; Zhang et al., 2015; Salas-Gonzalez et al., 2016). In this
paper, the AAL atlas was used to label each of the preprocessed
scans voxel’s positions to the matched anatomical regions. The
AAL atlas provides a total of 116 brain regions: 45 per cerebral
hemisphere, 9 per cerebellar hemisphere, and 8 in the vermis of
the cerebellum. AAL provides a detailed parcellation of the brain
and is recommended for use with PET scans. To accomplish the
labeling procedure, the xjViewMATLAB toolbox (Alivelearn.net,
2017) was utilized.

2.2.3. Blob Detection Based Feature Extraction
Each of the labeled regions is individually fed to the scale-
invariant blob detector, which employs LoG with automatic
scale selection, for the purpose of feature extraction. Blob
detection aims to separate structures (i.e., blobs) from the image
background. Each blob is itself a radially symmetric distribution
of image intensity about a local minimum or maximum
(Toennies, 2012). Blobs corresponding to local maxima could
reveal the targeted abnormalities, given that significantly greater
retention of PiB in a brain region is linked with greater incidence
of Aβ plaques within that region (Shin et al., 2010). Figure 2
shows a sample of the extracted features with a 3 Dimensional
(3D) smoothed histogram showing the local maxima locations
that are targeted through the detector.

2.2.4. Statistical Analysis
AAL regions where mean PiB uptake differs significantly in
MCI with respect to NC was determined using two-sample t-
tests. Each atlas region was tested independently. The Bonferroni
method was applied to identify a region as “significant” when the
p-value was less than 0.00043 (i.e., 0.05/116). Significant regions
were subsequently used in building a classifier.

2.2.5. Diagnosis
A two-level diagnosis was performed to make local (region-
specific abnormalities) and global (level of cognitive impairment)
diagnoses. For this purpose, SVM and one of its variant (pSVM)
were utilized. Standard SVM is an abstract machine learning
technique where the training data are used for the learning
followed by a generalization attempt for correct prediction
on other novel data (Campbell and Ying, 2011). In SVM, a
hyperplane (known as maximal margin hyperplane) is used for
the binary separation of the labeled training data. The goal
is to build a decision function f :RS → ±1, according to
S-dimensional training patterns pi and ti, capable to perform
classification for new example (p, t): (p1, t1), (p2, t2), ..., (ps, ts) ∈

RS±1. The decision hyperplanes in multidimensional feature
space can be defined through either using a linear separation
of the training data, using linear discriminant functions, or
combining SVM with kernel techniques that produce a non-
linear decision boundary (hyperplane) in the input space (Illán
et al., 2011). Beside its classification power, a variation of SVM,
which produces a posterior probability output of the classifier
(pSVM), is useful to allow further post processes.

In the proposed system, a separate pSVM model was
constructed, in the first diagnosis level, for each significant
region. Each pSVM produces a probabilistic result for the
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FIGURE 1 | The framework of the proposed early diagnosis system for AD based on local and global region analysis using 11C PiB PET scans.

FIGURE 2 | An example of the feature extraction step, (A) the original slice, (B) the obtained features (blue pluses), (C,D) a 3D histogram representation of the slice to

indicate the targeted local maxima/minima locations.

incidence of MCI given the features from its brain region
independently of all others. In the second level, the scores
obtained from the first level were fused with respect to each
subject and used to train and test a single SVMmodel to produce
the global diagnosis. Classifier performance, i.e., accuracy,
sensitivity, and specificity, were estimated using both leave-one-
subject-out (LOSO) and K-fold cross-validation, with two- and
four-fold.

3. RESULTS

According to the Bonferroni corrected two-sample t-tests,
the AAL brain regions of significance, nine regions, were
Cerebelum_3_L (left alar central lobule), Cerebelum_8_R (right
biventer lobule), Cingulum_Post_L (left posterior cingulate
gyrus), Olfactory_L and Olfactory_R (bilateral olfactory cortex),
plus Vermis_1_2, Vermis_3, Vermis_8, and Vermis_9 (lobules

I, II, III, VIII, and IX of the vermis) as visualized in Figure 3.
The performance of the resulting classifier was evaluated under
a number of different kernels selected for the SVM, with best
results being obtained when the linear kernel was used at
both level 1 and level 2 (Table 2). This classifier was used to
compare three cases, using data from all brain regions, using
all regions except the significant ones, and using pre-selected,
specific regions. The third case found to outperform the other
two cases (Table 3).

The efficiency of the proposed system was compared to two
other published methods (Chaves et al., 2012; Jiang et al., 2015).
Our methodology was found to distinguish MCI from NC as
well or better than either previous techniques (Table 4). Note
that performance of the compared classifiers is taken directly
from the respective publications since each of them used the
same database (i.e., 11PiB PET scans from ADNI), and LOSO
cross-validation. Finally, Figures 4, 5 provide examples of the
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FIGURE 3 | The significant regions as obtained through the two sample t-test.

TABLE 2 | Evaluation of SVM classifier performance when different kernels are used.

Level 2

LOSO K-fold

K = 2 K = 4

RBF Linear Polynomial RBF Linear Polynomial RBF Linear Polynomial

RBF ACC 72.61 50 22.61 59.52 22.61 77.38 77.38 22.61 77.38

Spec. 26.31 57.89 100 57.89 100 0 0 100 0

Sens. 86.15 47.69 0 60 0 100 100 0 100

Linear ACC 77.38 88.09 95.23 77.38 79.76 77.38 77.38 89.28 77.38

Level 1 Spec. 0 47.36 78.94 0 10.52 0 0 52.63 0

Sens. 100 100 100 100 100 100 100 100 100

Polynomial ACC 77.38 88.09 77.38 77.38 80.95 76.19 77.38 88.09 77.38

Spec. 0 47.36 0 0 26.31 0 0 47.36 0

Sens. 100 100 100 100 96.92 98.46 100 100 100

Classifier accuracy (ACC), sensitivity (Sens.) and specificity (Spec.), respectively in %, were estimated over all the labeled regions using LOSO and K-fold cross-validation. The bolded

results (linear-pSVM linear-SVM) indicates the best combination of kernels used in the two levels.

local diagnostic results (i.e., the results of the first diagnosis
level). Figure 4 illustrates the local diagnosis of two NC and
two MCI cases. While Figure 5 shows examples of five different
MCI subjects. The color bar in both figures represent the degree
of abnormality starting from 0 (unaffected) to 1 (indicative of
MCI). These examples indicate the varying abnormality effects
in each significant region for each case independently. The
implementation of the proposed CAD system can be found in
the Supplementary Material.

4. DISCUSSION

This paper discusses a personalized MCI diagnosis system
while improving the diagnostic performance as compared
to other available methods. The personalized diagnosis is
achieved through regional/local measurements, using the AAL
atlas, which reflects how the disease affects different brain
regions. To enhance this procedure, a statistical analysis was
initially performed to determine the salient brain regions and
consequently analyze the influence of the disease on them
through the first diagnosis level, as shown in Figures 4, 5. Apart

from being the first stage of the MCI diagnosis procedure, the
reported local diagnoses are helpful assistance in the personalized
management of the disease. This has been represented through
the color bar that shows the degree of abnormality from 0
(unaffected) to 1 (indicative of MCI) in each one of the nine
significant regions separately. Finally, the system fuses the
regional based probabilistic results obtained from the first
diagnosis level to produce the final global diagnosis of each
subject.

Regarding the cerebellar regions identified as significant, there
have been several studies that focused on cerebellar abnormalities
in dementia. Some of these studies were neuropathological-
based studies that found that the neuronal shrinkage and loss
represent well-known changes that accompany AD (Baldaçara
et al., 2011). Morphological studies have targeted the prominent
neuropathological AD-related hallmarks, like amyloid plaques
(Cole et al., 1993; Wang et al., 2002). According to Wang et al.
(2002), most AD-based pathological features that are found in
the cerebellum include diffuse Aβ deposits. Considering the later
finding and since the regions with increased Aβ plaques are
represented as the high retention in the PiB, we could justify this
finding in the early stage of AD. In addition to these findings
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TABLE 3 | Using LOSO and K-fold cross-validation methods to evaluate the

classification results, in %, (using linear-pSVM linear-SVMs) using the features of

different cases of input regions: all the labeled regions, all the regions except the

significant ones, and the significant regions only.

LOSO K-fold

K = 2 K = 4

All labeled regions ACC 88.09 79.76 89.28

Spec. 47.36 10.52 52.63

Sens. 100 100 100

The resulting significant regions ACC 100 97.61 98.80

Spec. 100 94.73 94.73

Sens. 100 98.46 100

Excluding the significant regions ACC 82.14 77.38 83.33

Spec. 21.05 0 26.31

Sens. 100 100 100

and according to Sjöbeck and Englund (2001), structural based
changes, mainly involved in the vermis, were judged to represent
the progression of the disease.

Dysfunction in the olfactory cortex was found, through some
studies, to probably be one of the earliest symptoms that are
clinically obtained regarding AD (Serby et al., 1991; Devanand
et al., 2000). According to Velayudhan (2015), the combination
of the olfactory function tests along with the conventional
diagnostic methods provides the ability to improve the sensitivity
as well as the specificity of diagnosing AD. This consequently
facilitates both the early recognition and diagnosis of AD. More
details about the research progress and the future directions of
the olfactory dysfunction in AD could be found in Zou et al.
(2016).

Finally, as regards the posterior cingulate gyrus, some
neuroimaging studies, which targeted several cortical regions,
have identified that the posterior cingulate regions of the medial
parietal cortex are among the earliest regions affected in AD
(Scheff et al., 2015). These studies include one that supports
the involvement of the posterior cingulate in the very early
progression of AD (Rami et al., 2012).

In general, as shown in Table 2, the linear kernel shows best
results either using it on both levels of the classifier or along with
the polynomial kernel, while the RBF kernel performed poorly
even when used conjointly with another kernel. The ability of
the extracted features to differentiate the two groups (NC and
MCI) and consequently make them linearly separate could justify
the highest results of the linear kernel. For the polynomial as
well as the RBF kernels, nonlinear kernels, the obtained separable
features in addition to the small size of the dataset caused the
outperformance of the polynomial kernel as compared to the
RBF kernel that can show better results with large size of the
dataset. According to these results and since linear-linear SVM-
based classifiers show in general the best results, they were used
to build the CAD system.

As expected, the significant region-based diagnostic
performance outperforms that of the other two trial classifiers

TABLE 4 | The comparison of the proposed system’s performance results, in %,

against other related studies using LOSO cross-validation method.

ACC Spec. Sens.

Chaves et al., 2012 90.48 100 87.69

Jiang et al., 2015 89.17 – –

The proposed system 100 100 100

(Table 3) with a maximum performance of 100% of accuracy,
specificity, and sensitivity. This finding could be due to the
discrimination power of the features extractor in addition to the
demonstration of alpha that helped in obtaining these salient
regions. Regarding the two other tests, using all the labels shows
better results than excluding the significant regions but worse
than using the significant regions. This finding could be due
to the presence of the labeled regions that are not significant
enough to differentiate between the groups and consequently
led to misclassification results that could finally affect the overall
performance of the system. In addition, this is the same case
when excluding the significant regions, but in addition to the
presence of these not well significant regions, the significant
regions are excluded causing this drop of performance results as
compared with the other two tested cases.

The fact that our system improved performance with respect
to other techniques while using the same dataset is of crucial
consideration. The superior results of the proposed system over
prior work (Table 4) could be justified through the capabilities
of the combined components of the system that could extract the
most discriminant features, identify the significant brains regions
and then perform the classification using the SVM along with the
linear kernel.

Since the primary goal of the paper was to provide
local diagnosis, Figures 4, 5 illustrated various examples that
demonstrate the variability of the abnormality in each of the
salient regions among the subjects. Figure 4 showed sample
cases of NC and MCI groups proving this point where the
color bar indicates the degree of the diseases effect starting with
the dark blue, no effect, to the dark red, total effect. Figure 5
shows additional illustration source of the local diagnosis.
The figure includes five different MCI subjects where the
abnormalities’ degree differ from one subject to another. Both
figures demonstrate the power of the proposed system to reveal
the local diagnosis of the disease on the significant brain regions.
The analysis results that could be derived from the figures show
the ability of the proposed analysis to reflect the current degree
of the dysfunctionality that each region achieved through the
disease. This visualization consequently can be considered an
effective assistant for the individualized/personalized diagnosis
process.

According to the above results, the proposed system may
be of assistance in the diagnosis of MCI. In other words, the
system offers a personalized diagnosis of the subjects in a short
computation time using a subset of the brain’s regions rather
than using all regions. Additionally, the system provides high
global diagnosis results compared to other related studies. Due
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FIGURE 4 | Examples of local diagnosis results for NC vs. MCI classification problem.

FIGURE 5 | Examples of local diagnosis results of different MCI subjects.
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to the promising results of the proposed system and pilot nature
of our data, we plan to examine two goals in the future work.
First, the system’s performance will be evaluated on larger PET
scan datasets. Second, the results will be incorporated with other
AD-related scanning modalities, to provide more analysis based
assistance for the early diagnosis of AD.
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