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Ependymoma (EPN) is a malignant glial tumor occurring throughout central nervous
system, which commonly presents in children. Although recent studies have
characterized EPN samples at both the bulk and single-cell level, intratumoral
heterogeneity across subclones remains a confounding factor that impedes
understanding of EPN biology. In this study, we generated a high-resolution single-cell
dataset of pediatric ependymoma with a particular focus on the comparison of subclone
differences within tumors and showed upregulation of cilium-associated genes in more
highly differentiated subclone populations. As a proxy to traditional pseudotime analysis,
we applied a novel trajectory scoring method to reveal cellular compositions associated
with poor survival outcomes across primary and relapsed patients. Furthermore, we
identified putative cell–cell communication features between relapsed and primary
samples and showed upregulation of pathways associated with immune cell crosstalk.
Our results revealed both inter- and intratumoral heterogeneity in EPN and provided a
framework for studying transcriptomic signatures of individual subclones at single-
cell resolution.

Keywords: ependymoma, relapse, subclone, single-cell, trajectory score, microenvironment, microglia
INTRODUCTION

Ependymomas (EPNs) are primary tumors of the central nervous system that commonly present in
childhood. Although the diagnosis and stratification of EPN patients have been facilitated by
identification of nine EPN molecular groups from genome-wide DNA methylation studies (1, 2),
EPN patients display a high prevalence of relapse, and recurrence typically results in much poorer
outcomes (3). Between molecular groups, posterior fossa group A (PFA) EPN and supratentorial
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(ST) EPN with C11orf95-RELA fusions have been reported to
show worse prognoses than PF group B, ST-EPN with YAP1-
fusions, and spinal EPNs (1, 4). With the advent of high-
throughput single-cell RNA sequencing technologies, recent
studies have provided resources for understanding the
molecular landscape of EPN, revealing a cellular hierarchy in
these tumor cells characterized by an undifferentiated progenitor
population, which transitions into distinct cell lineages including
neuronal precursor-like, glial progenitor-like, and ependymal-
like cells (5, 6). However, these studies focused on characterizing
EPN from different major molecular groups and anatomical
locations but did not reveal the differences in molecular
signatures between subclones within individual tumors.

To date, cellular heterogeneity has typically been viewed as a
consequence of hyperproliferation and genomic instability that
can give rise to intratumoral subclones during tumor progression
(7). In the context of EPN, previous studies have revealed
potential signaling pathways involved in driving the expansion
of therapy-resistant EPN subclones, which contribute to tumor
relapse and disease progression (8). These findings suggest that
unravelling subclone-to-subclone variability at single-cell
resolution could shed light on the molecular mechanisms
underpinning EPN pathogenesis.

In particular, mutant genotypes can grant selective advantage
on specific cellular subclones, leading to their outgrowth and
allowing them to establish dominance in different types of tissue
environments (7). To date, cellular heterogeneity has been
viewed as a consequence of hyperproliferation and genomic
instability that can give rise to intratumoral subclones during
tumor progression (7). For example, genomic instability
associated with intratumoral heterogeneity can manifest in the
form of extensive subclonal evolution demonstrated to be
correlated with a higher risk of recurrence or death in non-
small-cell lung cancer (9). Indeed, the emergence of subclonal
diversity is a fundamental characteristic of intratumoral
heterogeneity and has been found to be significantly associated
with patient survival across diverse cancer types in a pan-cancer
study, including lower-grade glioma and glioblastoma
multiforme (10). Interestingly, subclones of glioblastoma were
shown to display remarkable heterogeneity of drug resistance
wherein characteristics of coexisting subclones could be linked to
distinct drug sensitivity profiles, hinting at the therapeutic
potential of targeted treatments for tumor subclones associated
with differential survival outcomes (11).

To interrogate subclonal heterogeneity within tumor
populations in pediatric EPN, we performed single-cell RNA-
seq on EPN samples across PF-A and ST regions. Using a
deconvolution approach provided by inferCNV to compare
subclones in a single PF-A sample as a proof-of-concept, we
identified a subclone-specific cilia-associated program within an
individual PF-A EPN sample. We further incorporated a
trajectory score analysis to predict correlations between
survival outcomes in EPN and molecular characteristics, and
primary and recurrent tumor populations. Finally, we identified
cell–cell communication features between relapsed and primary
EPN samples and show upregulation of pathways associated with
Frontiers in Immunology | www.frontiersin.org 2
immune cell crosstalk. Our results reveal gene expression profiles
associated with subclonal variability, providing a framework for
studies on transcriptomic signatures of brain tumor subclones.
RESULTS

Single-Cell Transcriptomic Profiling
Reveals Stemness Signature Differences
Between Intratumoral Subclones in
PF-EPN
To characterize intratumoral heterogeneity in human EPN, we
performed single-cell RNA sequencing on four EPN patients
with the 10× Genomics platform and profiled the transcriptome
of 35,102 qualified cells with an average of 3,472 genes per cell
(Supplementary Table S1). The cells with high percentage
(>12%) of mitochondrial genes and low number (<1,500) of
genes and those regarded as doublets were removed from the
dataset for subsequent analysis (Supplementary Figure S1). We
first performed copy number variation (CNV) analysis to
distinguish neoplastic cells from non-malignant (NM) cells and
identified putative subpopulations of malignant tumor cells with
high CNV in each tumor samples (Figure 1A). Moreover, we
applied the approach to score the differentiation state of
malignant tumor cells using a panel of differentiation-
associated genes, which revealed that CNV-inferred neoplastic
cell populations were in a less differentiated state (Figure 1B).

After subsetting malignant cells from our single-cell dataset,
we further examined the presence of different subclones within
individual EPN samples. Notably, the inference of subclonal
CNV events uncovered the presence of two putative subclones
within the PFA-EPN sample GTE009, based on the hierarchical
clustering of inferCNV matrix (Figures 1C, D; Supplementary
Figure S2). Subsequently, the differentially expressed genes
(DEGs) of various cell types included neural stem cell (NSC),
neuron (NEU), radial glial cell (RGC), oligodendrocyte precursor
cell (OPC), oligodendrocyte (OD), astrocyte (AS), ependymocyte
(EpC), endothelial cells (EC), microglia (Mic), and T cells (TC)
from human and rodent embryonic and postnatal cortex scRNA-
seq data (Supplementary Table S2) and were enriched as
signatures to classify cell types in our tumor samples (19–24)
(see Materials and Methods). We further applied signature
enrichment (SE) analysis and reversed-SE (rSE) for the
accuracy of cell-type classification (Supplementary Figures S3,
S4, S5F), which was supported by correlation analysis
(Supplementary Figure S5). Similar to previously published
EPN single-cell datasets (5, 6), our analysis identified NSC-,
EpC-, NEU-, RGC-, OPC-, OD-, and AS-like cells in malignant
populations, and endogenous NEUs, ECs, Mic, and other cells
(Figures 1E–F; Supplementary Figure S4). Although both
subclones in GTE009 sample encompassed the same malignant
cell types, cell-type composition analysis of these subclones
interestingly showed a lower proportion of NSC-like cells in
subclone 1 (Figure 1G) with a corresponding increase in EpC-
like cells. Moreover, Gene Ontology (GO) analysis revealed
enrichment of cilium-related terms based on the DEGs in cells
June 2022 | Volume 13 | Article 903246
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from subclone 1 (Figures 1H, I) consistent with studies
highlighting the role of cilium-related genes in disease
processes linked to tumorigenesis (25, 26), suggesting that
molecular characteristics correlated with EPN pathogenesis
may be associated with intratumoral subclonal heterogeneity.

Upregulation of Cilium-Associated Genes
Is Associated With CNV Amplification in
Highly Differentiated EPN Subpopulations
In spite of transcriptomic and CNV differences between
intratumoral subclones, RNA velocity analysis revealed a
classic molecular trajectory originating from NSC-like cells to
Frontiers in Immunology | www.frontiersin.org 3
EpC-like cells similar to previously published single-cell EPN
datasets (5, 6) (Figures 2A–C; Supplementary Figure S6). Given
the marked differences in cell states between populations from
separate intratumoral subclones, we further examined the
expression level of differentially expressed cilium-related genes
and their corresponding CNV score (Supplementary Table S3).
We found that cilium-related genes possessed both higher
expression and genome amplification in cells from the more
highly differentiated subclone 1 compared to subclone 2,
suggesting a correlation between CNV amplification and genes
associated with more differentiated cell states; for example, the
expression level of the cilium-related gene DYNC2H1, which has
A
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C

FIGURE 1 | scRNA-seq analysis reveals intratumoral subclone heterogeneity in PF-EPN. (A) CNV score calculated by modified inferCNV of PF-EPN sample GTE009
presented on tSNE reduction. (B) Undifferentiated score calculated by CytoTRACE of PF-EPN sample GTE009 presented on tSNE reduction. (C) CNV heatmap
(rows represent cells, and columns represent CNV score of genes) of malignant tumor cells from four EPN samples labeled by genetic subclone information for each
sample. (D) Subclonal populations in malignant cells and NM cells of PF-EPN sample GTE009 classified by CNV pattern presented on tSNE reduction. (E) tSNE plot
of all clusters in PF-EPN sample GTE009 color coded by cell types with unbiased visualization by SCUBI (12). (F) Heatmap of DEGs calculated by cell types and
pathogenic sites from scRNA-seq data in this study and bulk-DEGs. Aforementioned bulk-DEGs were calculated by pathogenic sites from online bulk-seq data
[Gene Expression Omnibus (13, 14); Seq: GSE89448 (15); Array: GSE64415 (1, 16, 17); aligned to human reference genome GRCh38(hg38)] through DESeq2 (18).
(G) Histogram of cell types in PF-EPN sample GTE009 colored by cell types in percentage and outlined by subclone annotation showing significant difference
(p value = 7.975e−05) in cell-type proportions using asymptotic two-sample Fisher–Pitman permutation test. (H) Workflow of gene ontology enrichment analysis
comparison between PF-EPN sample GTE009 subclones 1 and 2. (I) Gene ontology analysis of upregulated genes in the PF-EPN sample GTE009 subclone 1
compared to the subclone 2 ordered by adjusted p-value. The "*" means significant difference (p-value): * p < 0.05; ** P < 0.01; *** p < 0.001; **** p < 0.0001.
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been implicated in the formation of hypothalamic hamartoma
(28), was both upregulated and amplified in chromosome 11 of
subclone 1 (Figures 2D–F). Indeed, other genes associated with
cilium-related terms in GO analysis (27) were found to be more
highly expressed in subclone 1 compared to subclone 2
(Figure 2G). The marker genes of EpC-like cells in subclone 1
compared to that of subclone 2 (EpC-Sub1) may be indicative of
more mature cellular populations, which was consistent with an
inverse correlation with the undifferentiated score (r = −0.65) in
EpC-like cells (Figures 2H ,I). These findings suggest that CNV
amplification of EpC-related genes is correlated with
differentiation of malignant cells, manifesting as alterations in
cell composition within intratumoral subclones while
maintaining cardinal features of EPN tumorigenesis. This may
be relevant in the context of diagnosing malignant EPN samples,
as previous findings have shown direct evidence for the roles of
CNV-amplified genes in preventing differentiation, inhibiting
cell death, and promoting tumor growth, which were in turn
correlated with poor patient outcomes (29).
Frontiers in Immunology | www.frontiersin.org 4
Trajectory Score Analysis Identifies
Cellular Compositions Associated With
Worse Survival Outcomes in EPN
To further analyze the cellular subpopulations in subclones 1 and
2, we performed GO analysis on the DEGs between subclones 1
and 2 in NSC-like and EpC-like cells, respectively. We detected
high expression of cell-cycle-related genes in NSC-like cells from
subclone 2, and enrichment of cilium-related genes in EpC-like
cells in subclone 1 (Figure 3A). Given that previous studies have
demonstrated that high expression of NSC-like cells and low
expression of EpC-like cells are correlated with poor patient
survival and vice versa (5, 6), we hypothesized that performing a
combinatorial analysis integrating information from both
subclone and cell types may help in predicting EPN
patient outcomes.

To provide a numerical representation of molecular trajectory
information at the single-cell level, we developed a trajectory
score for downstream analyses (Figure 3B): the normalized
average expression of undifferentiated NSC (NSC-like cells in
A B
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C

FIGURE 2 | Highly differentiated cells in PF-EPN subclonal populations show CNV amplification and enrichment of cilium-associated genes. (A) Schematic of RNA
splicing analysis and cell differentiation using RNA velocity and trajectory deduction methodologies. (B) RNA velocity inferred by Velocyto and scVelo of malignant
tumor cells presented on tSNE reduction and colored by cell types in PF-EPN sample GTE009. (C) Differentiation trajectory inferred by Monocle of malignant tumor
cells in PF-EPN sample GTE009. (D) Volcano plot showing genes with differentially expressed CNV values highlighting DYNC2H1 in the PF-EPN sample GTE009
subclone 1 compared to the subclone 2. (E) Heatmap of chromosome 11 showing inferCNV scores colored by cell types designated in Figure 2B and subclone
annotation in PF-EPN sample GTE009. DYNC2H1 is highlighted by black vertical bar. (F) Violin plot showing significant difference (p < 0.0001; Mann Whitney–test) in
gene expression (RNA) and CNV level of DYNC2H1 between subclones in PF-EPN sample GTE009. (G) Heatmap showing relative expression of identified genes
from cilium-related terms in GO analysis (27) colored by subclones in the PF-EPN sample GTE009. (H) Correlation analysis of undifferentiated score in EpC-like cells,
normalized average expression of markers in EpC-like cells in subclone 1 (EpC-Sub1) and subclone 2 (EpC-Sub2), and normalized average expression of Mic
(Control; see Supplementary Table S2) in PF-EPN sample GTE009. (I) Pearson correlation between undifferentiated score and normalized average expression of
EpC-Sub1 (p < 0.0001) in the PF-EPN sample GTE009. The "*" means significant difference (p-value): * p < 0.05; ** P < 0.01; *** p < 0.001; **** p < 0.0001.
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the subclone 2; NSC-Sub2) markers was subtracted by
differentiated-EpC (EpC-Sub1) markers. The trajectory score
was presented in the tSNE plot (Figure 3C), which resembled
the trajectory analysis (see Figure 2B). The trajectory score
allows for the identification of differentiation state at the
single-cell level, which complements the molecular trajectory
analysis in merged samples. Notably, well-characterized
stemness-associated markers (10, 31) such as FTL, LGALS1,
MEG3, MEST, TUBB, TMSB4X, and STMN1 were found in the
DEGs of trajectory-high group compared to trajectory-low group
(Supplementary Table S4), while cilium-related terms were
enriched in the trajectory-low group compared to the
trajectory-high group (Supplementary Figure S7A).

Based on the hypothesis that trajectory score was directly
correlated with survival outcome and could be easily used to
Frontiers in Immunology | www.frontiersin.org 5
predict the prognosis of EPNs by its simple calculation method,
we applied this scoring methodology to two published EPN
scRNA-seq datasets (33 EPN patients in total) and showed that
our results are consistent with the respective survival outcomes
reported in these studies based the respective cell-type composition
of individual samples (5, 6) (Figure 3D). On the contrary, the
application of the aforementioned undifferentiated score led to
relatively more inconsistent results (Supplementary Figure S7B),
suggesting that trajectory score analysis could be a useful tool to
investigate EPN prognosis. Indeed, samples with a high trajectory
score were found to have correspondingly poorer survival
outcomes in published PF-EPN samples and PF/ST-EPN (5, 6)
(Supplementary Figure S7C), although the comparison did not
reach significant difference due to the small sample size. Likewise, a
higher percentage of recurrent patients compared to primary
A

B

D

C

FIGURE 3 | Trajectory score analysis can predict EPN cell compositions associated with poor survival outcomes. (A) Gene ontology analysis of differentially
expressed genes from EpC- and NSC-like cells between subclones classified by annotation of subclones and cell types in PF-EPN sample GTE009. (B) Workflow
for calculating trajectory score based on published computation method (30). E, expression; TPMi,j, transcript per million (TPM) for gene i in sample j; Er, relative
expression. (C) tSNE plot of trajectory score in combined subclone 1 and 2 datasets with EpC- and NSC-like cell populations labeled in the PF-EPN sample
GTE009. (D) Validation of trajectory score on published scRNA-seq data (5, 6) of EPN using previously defined cell-type annotations (p < 0.0001;
Kruskal–Wallis test). The "*" means significant difference (p-value): * p < 0.05; ** P < 0.01; *** p < 0.001; **** p < 0.0001.
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patients had higher trajectory score (Supplementary Figure S7D),
supporting the association between EPN relapse state and overall
survival outcomes of this disease.

Cell Compositions Correlated With Poor
Prognosis in EPN Recurrent Patients Are
Revealed by Trajectory Score Analysis
Relapse rates for EPN can be as high as one-third of the patients
(3), and relapse is known to lead to significantly worse survival
outcomes based on published data (5, 6) (Figure 4A). To
Frontiers in Immunology | www.frontiersin.org 6
determine transcriptomic signatures at the single-cell level
associated with poor survival outcomes in EPN relapse, we
compared the cell-type composition in 36 EPN patients (5, 6)
and revealed a significant difference with higher percentage of
NSC-like cells in relapse patients (Figure 4B). Similarly, we found a
significantly higher trajectory score in recurrent NSC-like cells
compared to primary NSC-like cells, and a similar trend was
observed for EpC-like cells (Figure 4C). Given the association
between high stemness and poor survival outcome found in relapse
patients based on the trajectory score, we further performed GO
analysis on the DEGs between NSC-like cells in primary and
recurrent patients and revealed enrichment of cilium- and
immune-related terms (Figure 4D). This suggests that NSC-like
cells from recurrent patients were not only in a more immature cell
state but also that there is a likelihood of extensive immune cell
crosstalk within these cellular populations, consistent with previous
findings reporting the association between cell–cell communication
in immune cells and tumor progression (32, 33).

Relapsed EPN Show Upregulation of
Distinct Signaling Pathways Associated
With Immune Cell Crosstalk
Based on studies demonstrating the role of tumor-infiltrating
NM cells such as Mic in brain tumor (32, 33), we performed
crosstalk analysis to investigate cell–cell interactions between the
different cell-types profiled. Although there has been increasing
interest in examining communication patterns between cell
populations using scRNA-seq, crosstalk analysis on intracranial
EPN samples has not been extensively studied given the relatively
lower number of tumor-infiltrating NM cells profiled in previous
datasets (5, 6). To investigate cell–cell interactions in EPN, we
first examined the expression of ligand–receptor pairs in
different cell-types across four EPN samples (Figure 5A) and
identified the presence of numerous crosstalk events (Figure 5B;
Supplementary Figure S8A; Supplementary Table S5). For
example, we observed strong outcoming events from NSC-like
cells towards other cells (Supplementary Figure S8B).
Moreover, we uncovered the overlap in simulated spatial 3D
position between NSC-like cells and Mic by CSOMAP (34)
(Figure 5C; Supplementary Figure S8C). Interestingly, these
events that had higher expression in recurrent samples than that
in primary samples in 36 EPN patients (Figure 5D) showed
interaction between NSC-like cells and Mic (see Supplementary
Figures S8D, E), including theMK pathway that promoted brain
tumor growth (32, 33) and the EGFR pathway that inhibited
glioblastoma invasion via pharmacological inhibition of EGFR
(35). For example, MDK (ligand) and NCL (receptor) were
highly expressed in the tumor microenvironment (TME) of
recurrent samples (Figure 5E), consistent with previous studies
implicating the roles of this ligand–receptor pair in
tumorigenesis (36, 37) and the MK-deficiency-reduced tissue
infiltration of microglia (38). To further elucidate signaling
pathways involved in crosstalk between normal and malignant
cells, the inferred gene regulatory networks also revealed
multiple pathways shared in crosstalk (Supplementary Figure
S9). Taken together, crosstalk analysis on 35,102 individual cells
in conjunction with validation using 36 EPN patients revealed
A B

D

C

FIGURE 4 | Cellular populations in recurrent EPN with poor prognosis are
associated with higher trajectory score. (A) Survival plot of primary and
recurrent EPN patients. The solid line refers to overall survival (OS; p-value =
0.0018), and the dotted line refers to progression-free survival (PFS; p =
0.00026), which are colored by relapse situations on published scRNA-seq
data (5, 6). (B) Histogram of cell types in primary and recurrent EPN colored
by cell types and outlined by primary/recurrent conditions showing significant
difference (p < 2.2e−16) between cell types using asymptotic two-sample
Fisher–Pitman permutation test. (C) Trajectory score analysis comparison
between primary and recurrent samples in NSC- and EpC-like cells using
Kruskal–Wallis test (all p < 0.0001). (D) Gene ontology analysis of differentially
expressed genes in NSC-like cells between primary and relapse conditions.
The "*" means significant difference (p-value): * p < 0.05; ** P < 0.01; *** p <
0.001; **** p < 0.0001.
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elevated cell–cell interactions between malignant cells and
tumor-infiltrating NM cells, such as between NSC-like cells
and Mic, consistent with studies demonstrating a key role of
the central nervous system TME in the pathogenesis of EPN.

DISCUSSION

The increasing accessibility of scRNA-seq technologies has
accelerated our understanding of cellular function in health
and disease. Here, we generated a high-resolution EPN single-
cell dataset with a particular focus on the comparison of subclone
differences within tumor populations. Our analysis on four EPN
samples profiled 35,102 single-cell transcriptomes and
uncovered 17 major cell types including NSC-like, EpC-like,
and microglia populations that are present across different EPN
groups. We further revealed differences in cell proportions
within highly differentiated populations within tumor subclone
cells by integrating CNV pattern analysis with single-
transcriptome data in this study and previously published
datasets. Additionally, differential gene expression analysis also
identified gene programs associated with tumor subclones and
survival outcomes.
Frontiers in Immunology | www.frontiersin.org 7
Treatment of heterogeneous tumors such as EPN can favor
selection of resistant subclones given that different subclones
respond differently to intrinsic and extrinsic signaling cues. EPN
relapses after surgical resection and treatment of EPN are
common and have poor outcomes, and recent findings have
demonstrated that administration of radiation and
chemotherapy can lead to a significant increase in EPN
mutational burden in conjunction with changes to the tumor
subclonal architecture, without eliminating the original founding
clone (8). In this study, we report the presence of subclones
within a single EPN tumor sample characterized by molecular
signatures reflecting different stages of cellular differentiation.
This suggests that in addition to stemness signature gradients
between tumors (5, 6), intratumoral heterogeneity can also be
uncovered within individual samples containing multiple
subclones. Importantly, further interrogation of the subclones
identified from CNV analysis also showed that EPN
subpopulations that were more differentiated exhibited an
increase in cilium-associated genes. For example, in the sample
GTE009, 6% of 494 DEGs from EpC-like cells compared to the
other malignant tumor cells were found to be overlapped with
genes related to cilium assembly, organization, and movement
A B
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FIGURE 5 | Crosstalk analysis reveals cell–cell interactions implicating immune cell populations in recurrent EPN. (A) Cell numbers of all cell types in four EPN
samples. (B) Crosstalk net analyzed by CellChat. Individual lines represent the crosstalk from source to target cells, highlighting interactions from NSC-like cells and
Mic to other cell types. Related to Supplementary Figures S8A, B. (C) Simulated 2D spatial structure showing overlap of Mic and NSC-like cell populations by
CSOMAP (34). Related to Supplementary Figure S8C. (D) Heatmap of ligands or receptors with significantly higher expression in recurrent samples compared to
primary samples, colored by cell type and gene class (ligands or receptors) using published single-cell transcriptomes of 36 EPN samples (5, 6). (E) Expression of
MDK (ligand) and NCL (receptor) between recurrent and primary samples of 36 EPN patients (5, 6) (p < 0.0001; Mann–Whitney test).The "*" means significant
difference (p-value): * p < 0.05; ** P < 0.01; *** p < 0.001; **** p < 0.0001.
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such as PIFO, ZMYND10, DNAH9, TEKT1, DYNLL1, SPEF1,
MNS1, DNAAF1, IQCG, SPAG16, and FOXJ1. Indeed, ciliary
signaling is known to be a mediator of paracellular signals
controlling cancer metastatic processes and responses to
therapy, and mutations leading to defects or structural
abnormalities in cilia have been shown to be directly correlated
with cancer pathogenesis (25). Given that ependymal cells in
EPN are multiciliated cells (26), it is plausible that changes in
ciliation of EPN subpopulations and/or cells of the tumor TME
during EPN development can contribute to disparities in
outcomes within tumors of the same molecular group.

Notably, our analysis on the sample GTE009 showed that cells
from different subclones on the tSNE plot appear to cluster together
without displaying pronounced segregation. This is largely due to
the clear difference between the selected transcriptome for tSNE
reduction and transcriptome-based genome for subclonal
classification. For example, the inferCNV analysis selects the
expression (RNA) of a panel of genes located consecutively along
a chromosome to establish the CNV situation (DNA) of those
genes; however, these genes are not all selected as variable features
for tSNE reduction. Hence, this results in a difference between the
visualization of the transcriptome-based tSNE reduction and the
inferred subclones, meaning that subclones may not polarize
within the large cluster. Consistent with our analysis, previous
findings on glioblastoma intratumoral heterogeneity revealed that
most subclones within glioblastoma samples appear to show an
overlapping distribution, even though a small proportion of
subclonal populations could also exhibit distinct cell states (10).
Additionally, since our subclone definition in this study was based
on only CNV analysis due to inherent limitations of scRNA-seq
data, future studies could also encompass the analysis of possible
subclones differentiated by single nucleotide alterations to decipher
the impacts of such changes on EPN metastasis.

To complement classical pseudotime molecular trajectory
methodologies (39–42), we applied a curated trajectory score to
our single-cell dataset to integrate EPN subclone and cell-type
information in our analysis and found that higher trajectory
scores were found in patients with EPN samples exhibiting
elevated stemness signatures [FTL, LGALS1, MEG3, MEST,
TUBB, TMSB4X, and STMN1 (10, 31)], which is also associated
with worse prognoses. This trajectory score analysis allows for a
numerical representation of EPN trajectory stages at the single-cell
level to facilitate comparison with datasets of interest. Moreover, our
analysis takes into consideration both cell types and stemness
signatures and can be easily applied to other transcriptomic
datasets of interest to quantify the relative correlation degree
between survival outcomes and stemness signatures across
different samples. As a proof-of-concept, we performed validation
of our dataset with previously published results on EPN samples
(derived from 36 patients in total) and indeed demonstrated that
this analysis reveals consistent trends in EPN survival outcomes. In
addition to using trajectory score analysis to examine the association
between EPN stemness signatures and survival outcomes, we
further applied this method to compare differences in survival
outcomes between primary and recurrent EPN samples. Previous
findings have identified an enrichment of undifferentiated programs
(NSC-like) in recurrent PF-EPN relative to primary PF-EPN
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samples from comparing three matched samples at the single-cell
level (5). Here, we find that this is consistent across the single-cell
transcriptome of 36 published EPN samples, as trajectory score
analysis shows a clear significant difference in cell-type composition
between recurrent and primary EPN samples with a higher
percentage of NSC-like cells in recurrent EPN. Further analysis of
subpopulations within recurrent and primary samples revealed that
recurrent samples also show higher trajectory score in NSC- and in
EpC-like cells compared to the corresponding cell types in primary
samples. These findings suggest that trajectory score analysis can
uncover multiple types of association in EPN samples in a
quantifiable form, such as the correlation between stemness and
tumor occurrence with patient mortality.

In EPN and other brain cancers, there is increasing evidence
that the brain TME functions as a key regulator of cancer
progression in brain malignancies (43). Hence, we performed
cell–cell communication analysis on our EPN single-cell
transcriptomes to assess the crosstalk between different cell types
in EPN, given that the TME contains non-cancerous cell types
such as pericytes, endothelial cells, and immune cells in addition to
cancer cells. We revealed putative interactions between malignant
cells and tumor-infiltrating NM cells, such as enrichment in
interactions between NSC-like cells and microglia. For example,
the MK pathway, which has been implicated in brain tumor
pathogenesis (32, 33), was not only found to be significantly
upregulated in this study’s dataset but also showed higher
expression in recurrent samples compared to primary samples
based on 36 published EPN single-cell transcriptomes. Indeed,
MK deficiency has been shown to reduce tissue infiltration of
microglia, leading to reduced neuroinflammation and apoptosis
(38). Given that inflammatory crosstalk with immune cells has
previously been shown to play a key role in driving tumor growth
in the EPN microenvironment (44), these findings suggest that
immune cell crosstalk analysis may serve as a useful resource for
the identification of candidate genes for future in vitro and in vivo
validation studies.

In summary, we report a curated EPN atlas focusing on the
comparison of intratumoral heterogeneity in this study. We used
an integrative analysis approach to show both changes in cell-
type composition and cell-type-specific gene expression
associated with different tumor groups and subclones.
Moreover, we also applied a novel trajectory scoring method as
a parallel tool to traditional molecular trajectory analysis and
demonstrated its robustness in recapitulating survival outcomes
within individual EPN samples and across primary and recurrent
tumors. This approach will complement existing published
datasets and provide valuable insights into cell-type-specific
properties of EPN, laying the foundation for therapeutic
treatments of this disease.
MATERIALS AND METHODS

EPN Sample Preparation for scRNA-Seq
Fresh tumor samples were processed as previously described
with minor modifications (45). A fresh EPN tissue was excised by
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physicians, with signed informed consent documents and was
approved by the Ethics Committee of Beijing Tiantan Hospital of
Capital Medical University. Samples were delivered on ice to the
Institute of Genetics and Developmental Biology of Chinese
Academy of Sciences immediately. Microdissected tissues were
transferred to a 24-well cell culture plate and digested by buffer
comprising 20 U/ml Papain (LK003178; Worthington,
Lakewood, USA), 100 U/ml DNaseI (LK003172; Worthington),
10 U/L chondroitinase ABC (C3667; Sigma-Aldrich, St. Louis,
USA), 0.07% hyaluronidase (R006687; Rhawn, Canton, China),
1× Glutamax (35050061; Life Technologies, Waltham, USA),
0.05 mM (2R)-amino-5-phosphonovaleric acid (APV; 010510;
Thermo Fisher Scientific, Waltham, USA), 0.01 mM Y27632
dihydrochloride (T9531; Sigma), and 0.2× B27 supplement
(17504044; Thermo Fisher Biosciences) in Hibernate-E media
(A1247601, Life Technologies) for 1–2 h at 37°C, and then
pooled with Hibernate-E buffer containing 1× Glutamax, 0.05
mM APV, 0.2× B27, and 0.01 mM Y27632 dihydrochloride.
Tissues were gently triturated through Pasteur pipettes with
finely polished tips of 600, 300, and 200 mm diameters in
order, and washed once with Hibernate-E buffer to generate
single-cell suspensions. After filtration through a 40-mm strainer
(130-101-812; Thermo Fisher Scientific), 1× red blood cell lysis
solution (130-094-183; Miltenyi Biotec, Bergisch Gladbach,
Germany) was added to remove blood contamination during
surgery followed by 1,800 ml debris removal solution (130-109-
398; Miltenyi Biotec). Subsequently, the dissociated cells were
stained with 4′,6-diamidino-2-phenylindole (DAPI) (0.2 µg/ml)
to identify dead cells. scRNA-seq libraries were constructed
following the manufacturer’s instructions provided by 10×
Genomics accompanying single-cell 3′ Library and Gel Bead
Kit V3 (1000075; 10× Genomics, Pleasanton, USA). A
Chromium Single Cell Controller (10× Genomics) was loaded
in cell suspensions (300–600 living cells per microliter
determined by Count Star) to generate single-cell gel beads in
the emulsion (GEM). Quality control was performed on the
generated cDNA library using Agilent 4200, and scRNA-seq was
performed on a Illumina Novaseq6000 sequencer.

Data Processing of scRNA-seq
The sequencing data were processed by CellRanger v3.1.0 with
the reference genome hg19-3.0.0 to generate filtered expression
matrixes, which were analyzed using Seurat v3.2.0 (46). Doublet
Finder (47) was first applied to erase doublets with default
settings. Genes detected in at least 10 cells were used for
analysis, and cells that possessed transcription numbers fewer
than 1,500 or cells with mitochondrial genes taking up more than
12% of reads were removed. After normalizing the data, we used
5,000 highly variable features for downstream analysis, and cell
cycle variation was regressed out as previously described (30).
tSNE analysis was performed with the top 50 significant
principal components from principal component analysis, and
cells were clustered using “FindClusters” function based on tSNE
reduction. CNV analysis was performed using inferCNV of the
Trinity CTAT Project (48) (https://github.com/broadinstitute/
inferCNV) as described in the following section. Calculation of
the undifferentiated score was performed using CytoTRACE (49)
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as previously described (45). The EPN single-cell datasets
covering malignant cells and tumor-infiltrating NM cells were
analyzed by “iCytoTRACE” function with the quantification of
the number of expressed genes as an indicator of differentiation
potential; genes’ associated differentiation (deduced by
CytoTRACE) and their relative expression levels were used to
perform this calculation. Kyoto Encyclopedia of Genes and
Genomes (KEGG)/GO analysis was performed based on the
DEGs between malignant tumor cells and NM cells of the
merged dataset using “FindAllMarkers” function in Seurat and
clusterProfiler (50). The correlation of malignant tumor cells and
NM cells among samples was in favor of malignancy separation
(Supplementary Figure S1E) utilizing “cor” function of stats
package in R v3.6.3.

Estimating CNVs in scRNA-seq Data
The initial CNVs of single cells were estimated from their whole-
genome wide expression level by inferCNV (30, 48). To perform
comparison across samples, 300 cells of OPCs were sampled
from the GTE009 as a common reference, and all the non-
immune cells of each sample were tested against it, with the
parameters of “min_max_counts_per_cell = c(5e2, 6e6); cutoff =
0.1; min_cells_per_gene = 5” and other default parameters in
inferCNV. Then, the estimated CNV values were re-scaled to 0–
2, with 1 as the normal copy, to compare among samples. The
CNV cluster of each sample was deduced by the hierarchical
clustering (ward.D2) of inferCNV matrix. The CNV level of each
cell was also calculated as previously described (51). The
estimated CNV values were re-standardized as −1 to 1, and the
CNV level of each cell was then calculated as the quadratic sum
of all the expressed genes.

Estimating CNVs in WES Data
Sample DNA was extracted and sequenced via Agilent SureSelect
Human All Exon v6 and Illumina platform. Whole-exome
sequencing reads were aligned to human reference genome
(b37), using BWA (52), followed by marking of duplications
via Picard (http://broadinstitute.github.io/picard/). CNVkit (53)
was used to call CNVs from targeted regions of exons in each
sample, following the default workflow, with the bin size of 1 kb.
A flat reference was made to run CNVkit with each sample, and
during segmentation, the “CBS” method was applied, with 1e−4
as the significance threshold and parameters of “–drop-low-
coverage –drop-outliers 3.”

Statistical Analysis
CNV score, gene expression, and undifferentiated score
comparison between subclones was analyzed by D’Agostino and
Pearson normality test, Shapiro–Wilk test, and Mann–Whitney
test in GraphPad v8.3.0. Asymptotic two-sample Fisher–Pitman
permutation test of cell-type composition between subclones of
the sample GTE009 and between recurrent and primary samples
was performed by “oneway_test” function of coin package in R
v3.6.3. Correlation analysis was performed by R package
“corrplot” from Taiyun Wei and Viliam Simko (2021)
[Visualization of a Correlation Matrix (Version 0.90)] and cor()
function in R v3.6.3.
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The survival analysis was performed on published data (5, 6)
by R package “survminer” from Alboukadel Kassambara, Marcin
Kosinski, and Przemyslaw Biecek (2021) [Drawing Survival
Curves using “ggplot2” (0.4.9)] and R package “survival” (54).
The groups were separated by the relapse situation (recurrent or
primary annotated by original authors (5, 6)) or the mean of
trajectory scores of samples. First, a survival object was created
by “Surv” function; second, the survival curves were created by
“survfit” function based on a tabulation of the number at risk and
at death time of events from the supplementary files of these
published studies (5, 6); and third, “ggsurvplot” function was
used for the visualization of these curves.

Cell-Type Annotation
For cell malignancy analysis, we combined the following
approaches to achieve a combinational separation of non-
malignant cells and malignant tumor cells. First, all cells were
sorted by t-distributed stochastic neighbor embedding (t-SNE)
projections in each patient and colored based on the cell clusters
identified by Seurat (46), as malignant cells were often comprised
of multiple clusters and were contiguous in t-SNE projection
(55). Second, the malignancy of cells was explored by copy
number variation (CNV) scores through whole-exon sequence
by CNVkit (53) (Supplementary Figure S2) and through
modified inferCNV (https://github.com/broadinstitute/
inferCNV) (30, 48) (Figure 1A) for each sample. Third, the
malignancy was further supported by the high undifferentiated
score calculated by CytoTRACE (49) (Figure 1B). Combining
the result of cell-cycle stages (Supplementary Figure S1D), we
classified each sample into malignant tumor cells and non-
malignant cells. For better exploration of the intratumoral
genome, the pattern revealed by inferCNV was used for
separation of malignant tumor cells into different subclones of
each sample (Figures 1C, D). To support the genetic information
inferred by transcriptome, we applied whole-exome sequencing
analyzed by CNVkit (53) (Supplementary Figure S2) and
obtained similar results in chromosomal level comparing to
that from inferCNV. Fourth, the high correlation between
malignant tumor cells and between non-malignant cells among
samples supported malignancy separation (Supplementary
Figure S1E). As validation, we performed KEGG analysis (50)
on the differentially expressed genes (DEGs) of malignant tumor
cells compared to non-malignant cells of merged samples, which
showed enrichment on cell cycles and cancer-related terms:
breast cancer, hepatocellular carcinoma, and proteoglycans in
cancer (Supplementary Figure S1F). To sum up, we obtained
non-malignant cells and malignant tumor cells and explored the
genome of each sample.

To achieve cell-type classification, we applied signature
enrichment analysis (Supplementary Figure S3). First, the
DEGs of various cell types were calculated from each published
data of the corresponding area (Supplementary Table S2) and
were used as signatures to distinguish cell types in our tumor
samples (19–24) (Supplementary Figure S5F), which included
RGC, AS, EC, EpC, NEU, NSC, OD, OPC, Mic, and T cells, from
human and rodent embryonic and postnatal cortex scRNA-seq
data. The enrichment of these gene signatures was calculated
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using the “AddModuleScore” function by subtracting the
aggregated expression of control genes from the average
expression levels of gene signatures (30). Then, the signature
enrichment of those gene sets in cellular level was summarized in
cluster level on average and was utilized as the standard to
ascertain the cell type. Conclusively, the cell types of clusters
were determined by the highest signature score.

Studies on scRNA-seq have also employed a reversed
approach for cell-type classification (rSE; extracting signatures
from unknown clusters and enriching them on published data of
identified cell types; for details, see Materials and Methods;
Supplementary Figure S3) (5, 6, 56, 57). We then compared
the similar results of these two methods in our data and obtained
a high degree of correlation (Supplementary Figure S3). Hence,
the following research applied the result of the first mentioned
method, namely, SE analysis. This method and calculated
signatures (Supplementary Table S2) were further tested on
other published data, which displayed high similarity in cell-type
classification compared to the cell types determined by original
authors: human cortex (58) (Supplementary Figure S5B),
rodent cortex (24) (Supplementary Figure S5C), ependymoma
(5) (Supplementary Figure S5D), and childhood ependymoma
(6) (Supplementary Figure S5E).

Trajectory Analysis
Unbiased visualization of cell types without cells stack on each
other was performed by SCUBI (12). For developmental trajectory
analysis, the BAM files from Cell Ranger were processed by
Velocyto (39) to obtain loom files containing spliced and
unspliced transcript counts, which was used as input for scVelo
(40) and Velocyto (39). Pseudo-time reconstruction and
evaluation was performed by TSCAN (41) and by Slingshot (42)
with modified default settings. Monocle (59, 60) was applied on
2,000 variable features detected within more than 5% of cells to
obtain reduced coordinates by “DDRTree.” The trajectory score
was inferred by “AddModuleScore.” The undifferentiated
trajectory score was calculated based on the significantly highly
expressed genes in NSC-like cells in the subclone 2 of the sample
GTE009, while the differentiated trajectory score was calculated
based on the significantly highly expressed genes in EpC-like cells
in the subclone 1 of the sample GTE009. The final trajectory score
was then calculated by subtracting the differentiated trajectory
score from the undifferentiated trajectory score of each cell.

Crosstalk and Gene Regulatory
Network Analysis
Crosstalk analysis on EPN was performed on the integrated
dataset of four EPN samples using CellChat (61), and the
simulated 3D spatial structure of different cell types was
calculated by CSOMAP (34). In details, CellChat preprocessed
the expression data of our integrated four ependymomas for cell–
cell communication analysis; the cell–cell communication
network was inferred by computation of the communication
probability at a signaling pathway level and the calculation of the
aggregated data frame. The elevated crosstalk pathways were
validated in previously published EPN single-cell datasets (5, 6).
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Similarly, CSOMAP (34) computed the network of ligand–
receptor interaction and then calculated optimized
3D coordinates.

Regulons for individual cell types were computed using the
single-cell regulatory network inference and clustering
(SCENIC) pipeline (62) on our integrated four EPN samples
and validated by previously published EPN single-cell datasets
(5, 6). A log-normalized expression matrix of the four integrated
EPN samples was used as an input into the pySCENIC workflow
with default settings to infer regulon activity scores. To examine
relevant networks using cell–cell communication analysis, we
identified genes involved in crosstalk (ligands or receptors
expressed in NSC-like cells) or gene regulatory networks
(regulons with significantly high activity in NSC-like cells) of
interest and then used genes classified under the same enriched
terms in GO/KEGG analysis. Genes that had significantly higher
expression in recurrent EPN than that in primary EPN were
enriched in GO and KEGG analysis to highlight key terms in
crosstalk and regulatory networks.
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Supplementary Figure 1 | Quality Control of scRNA-Seq Analysis of Human
EPN. (A) Doublets identified by Doublet Finder presented on tSNE reduction. High
doublet cells are filtered out. (B) Density plot of mitochondria percentage of cells in
sample GTE009. Cells with more than 5% of mitochondria percentage are filtered
out. (C) Density plot of captured gene numbers of cells in sample GTE009. Cells
with less than 1500 transcripts are filtered. (D) Cell cycle phases of cells in sample
GTE009 re-calculated after quality control presented on tSNE reduction.
(E) Correlation plot of transcriptome of malignant tumor cells (Mal) and non-
malignant cells (NM) among samples (GTE001, GTE002, GTE009, and GTE012).
(F) KEGG analysis on DEGs of malignant tumor cells compared to non-malignant
cells of four merged samples (GTE001, GTE002, GTE009, and GTE012).
(G) Enrichment of RGC signatures in malignant tumor cells compared to other cells
types using single-cell transcriptomes from 1) this study, 2) EPN (5) and 3)
childhood EPN (6) (one-way ANOVA analysis; p value < 0.0001).

Supplementary Figure 2 | CNV Analysis of Whole-exome Sequencing. CNV
heatmap of whole-exon sequence data labeled by samples.

Supplementary Figure 3 | Workflow of Cell Type Classification. Top: Schematic
for cell type classification by signature enrichment (SE). The DEGs of different cell
populations are obtained from published transcriptomic datasets of human and
rodent embryonic and adult cortex (details see Supplementary Table 2) and used
as signatures to distinguish cell types. All unknown cells are then clustered at high
resolution to obtain multiple clusters, and the highest signature enrichment score in
each cluster is designated as the cell type identity for these clusters. Bottom:
Schematic for cell type classification by reversed signature enrichment (rSE). In the
reciprocal analysis pipeline, unknown cells are first clustered at high resolution to
obtain multiple clusters and the DEGs of all clusters are calculated and used as
signatures to distinguish cell types. The signatures are then compared with
published transcriptomic datasets of human and rodent embryonic and adult cortex
(details see Supplementary Table 2), and the highest signature enrichment score
is assigned as the name for the unknown cluster. The correlation result of SE- and
rSE-determined cell types by ‘cor’ function of stats package in R v3.6.3 confirms
high correlation across the two analysis pipelines.

Supplementary Figure 4 | Additional scRNA-Seq Analysis of Human EPN
samples. (A) CNV score calculated by modified inferCNV of samples (GTE001,
GTE002, and GTE012) presented on tSNE reduction. (B) Cell cycle phases in
cellular level of samples (GTE001, GTE002, and GTE012) presented on tSNE
reduction. (C) Undifferentiated score calculated by CytoTRACE of samples
(GTE001, GTE002, and GTE012) presented on tSNE reduction. (D) Classified non-
malignant cells and malignant tumor cells of samples (GTE001, GTE002, and
GTE012) presented on tSNE reduction. (E) Annotated clusters of samples
(GTE001, GTE002, and GTE012) presented on tSNE reduction with unbiased
visualization by SCUBI (12). (F) Enrichment of signatures in malignant tumor cells
compared to other cell types in samples (GTE001, GTE002, and GTE012; one-way
ANOVA analysis; p value < 0.0001). See also Supplementary Table 1.
June 2022 | Volume 13 | Article 903246

https://www.frontiersin.org/articles/10.3389/fimmu.2022.903246/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.903246/full#supplementary-material
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wu et al. Immune Crosstalk in Relapsed Ependymoma
Supplementary Figure 5 | EPN cell type classification validation. (A) Heatmap of
DEGs in annotated clusters of the sample GTE009. (B–E), Correlation of cell types
classified by method of signature enrichment (rows) and that of original cell types
determined by original authors [B: human cortex (58), C: rodent cortex (63),
D: ependymoma (5), and E: childhood ependymoma (6)]. (F) Workflow of cell-type
classification. Signature markers genes are obtained from public transcriptome databases
of human and rodent cortex and used for cell-type assignment and cluster annotation.

Supplementary Figure 6 | Trajectory and pseudotime analysis. The columns are
samples from patients (from left to right: GTE001, GTE002, GTE009, and GTE012).
(A) RNA velocity inferred by Velocyto and scVelo of malignant tumor cells presented
on tSNE reduction and colored by cell types. (B, C) Pseudo-time reconstruction
and evaluation by TSCAN (41) (B) and by Slingshot (42) (C). (D) Differentiation
trajectory inferred by Monocle of malignant tumor cells.

Supplementary Figure 7 | Additional trajectory score analysis of EPN. (A) Gene
ontology analysis of upregulated genes in patients with low trajectory score
compared to patients with high trajectory score in published ependymoma scRNA-
seq data (5, 6). (B) Undifferentiated score analysis on published scRNA-seq
datasets of ependymoma (5, 6) (Kruskal-Wallis test). (C) Overall survival analysis on
the trajectory score. A p value of 0.39 and 0.72 were obtained from the difference
between two groups of trajectory score of patients (separated by the mean of
trajectory score), with a trend of worse survival in patients with high trajectory score.
The high and low group were separated by the mean of trajectory score on
published scRNA-seq data (5, 6). (D) Histogram showing percentage of cells with
high and low trajectory score and outlined by subclone annotation in samples from
primary and recurrent patients. Permutation test shown significant compositional
difference between primary and recurrent samples (p value = 0.01241; asymptotic
two-sample Fisher-Pitman permutation test). *p < 0.05; **P < 0.01; ***p < 0.001;
****p < 0.0001

Supplementary Figure 8 | Additional crosstalk analysis of EPN. (A) Interaction
strength between cell types profiled in EPN samples inferred by CellChat.
(B) Crosstalk net analyzed by CellChat. Individual lines represent the crosstalk from
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source to target cells. (C) Simulated 3D spatial structure of all cells and 2D angle of
the simulated spatial structure by CSOMAP (34) of Mic, NSC-like cells, and NEU
cells respectively, colored by pink (cell type of interest) and blue (other cell types).
(D, E) Circle plots of ligands and receptors with higher expression in recurrent
samples than that in primary samples. Lines represent the crosstalk between
specific ligands and colors represent the cell type origin for each interaction

Supplementary Figure 9 | Additional regulon analysis of EPN. (A) Gene
regulatory networks were inferred by SCENIC and were clustered by cell types
(bottom) and regulons (right). (B) List of significantly upregulated genes in recurrent
samples from crosstalk and gene regulatory network analysis of NSC-like cells
which share the same enriched terms in GO/KEGG analysis. (C, D) Visualization of
genes using GO and KEGG enrichment analysis.

Supplementary Table 1 | Clinical data from EPN patients. Clinical data of four
sequenced EPN samples from patients in this study.

Supplementary Table 2 | Signatures for cell type classification. For recognition of
cell type in SE algorithms, Seurat was used to calculate the DEGs (latter utilized as
signatures) of each cell type from each reference data 12-16,62 which included
RGC, AS, EC, EpC, NEU, NSC, OD, OPC, Mic, and T cells, from human and rodent
embryonic and postnatal cortex scRNA-seq data.

Supplementary Table 3 | Differentially expressed genes between subclones of
the sample GTE009. Differentially expressed genes calculated from subclone 1
compared to the subclone 2 of the sample GTE009.

Supplementary Table 4 | Analysis on cilium-related genes and CNV score.
DEGs calculated from subclone 1 compared to the subclone 2 of the sample
GTE009 marked by GO terms, annotated with results of statistical analysis from
CNV score.

Supplementary Table 5 | Crosstalk analysis output. List of ligand-receptor
interactions annotated by cell type source and target.
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