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SUMMARY
Unlike the bacterial microbiome, the role of early-life gut fungi in host metabolism and childhood obesity
development remains poorly characterized. To address this, we investigate the relationship between the
gut mycobiome of 100 infants from the Canadian Healthy Infant Longitudinal Development (CHILD) Cohort
Study and body mass index Z scores (BMIz) in the first 5 years of life. An increase in fungal richness during
the first year of life is linked to parental and infant BMI. The relationship between richness pattern and early-
life BMIz is modified by maternal BMI, maternal diet, infant antibiotic exposure, and bacterial beta diversity.
Further, the abundances of Saccharomyces, Rhodotorula, and Malassezia are differentially associated with
early-life BMIz. Using structural equationmodeling, we determine that themycobiome’s contribution to BMIz
is likely mediated by the bacterial microbiome. This demonstrates that mycobiome maturation and infant
growth trajectories are distinctly linked, advocating for inclusion of fungi in larger pediatric microbiome
studies.
INTRODUCTION

The developmental origins of health and disease paradigm hy-

pothesizes that early-life events have long-lasting health impacts,

includingon thedevelopmentof gutmicrobial communities,meta-

bolic programming, and eating behavior,1–3 all of which are impli-

cated in the pathogenesis of obesity in children.4 Childhood

obesity rates are concerning, with 15% and 22% of Canadian

and American children and adolescents classified as obese,

respectively.5,6 Thebacterial gutmicrobiomehasbeenwell estab-

lished to play an important role in host metabolism,7 with studies

finding strong associations between infant gut microbiome

composition, infant growth trajectories,8,9 and the risk of

becoming overweight or obese in prospective birth cohorts,10–15

as well as causal links confirmed in experimental models.16–20
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However, little is known about the role of gut fungal colonizers in

these events as inherent members of this complex ecosystem.

The infant gut microbiome develops through a dynamic pro-

cess of stepwise successions beginning at birth,21,22 with strong

links to host metabolism.23,24 While descriptions of these early-

life patterns are limited for gut fungi (collectively termed the gut

mycobiome), there is evidence that fungi are also integrated in

defined maturation patterns.25–31 Infants are initially colonized

by Candida, Malassezia, Cladosporium, and Saccharomyces

and then exhibit communities abundant in Debaryomyces,

Candida, Malassezia, and Cladosporium around 3 months of

age.25,27,28,30–34 From 1 year of age onward, the mycobiome

shifts toward Saccharomyces dominance, alongside an

increased presence of Rhodotorula.25,27–29,31 These matura-

tional patterns likely arise from an expanding variety of
orts Medicine 4, 100928, February 21, 2023 ª 2023 The Authors. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:marie.arrieta@ucalgary.ca
https://doi.org/10.1016/j.xcrm.2023.100928
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xcrm.2023.100928&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1. Participant characteristics of mother-infant dyads from the

CHILD Cohort Study included in this analysis (n = 100)

Characteristics n (%) or mean ± SD

Infant sex (female)a 46 (46%)

Mode of birth (vaginal) 64 (64%)

Prenatal antibiotics 12 (12%)

Intrapartum antibiotics 50 (52%)

Infant antibiotic exposure

(6–12 months)

16 (16%)

Breastfeeding status at 3 months

None

Partial

Exclusive

36 (36%)

30 (30%)

34 (34%)

Breastfeeding duration (months) 7.81 ± 7.29

Introduction of solid foods by 6 months 70 (70%)

Birth BMIzb

Normalc

Risk of becoming

overweight/overweight

Unknown

60 (60%)

5 (5%)

35 (35%)

3-month BMIz

Normald

Risk of becoming overweight/overweight

Unknown

87 (87%)

10 (10%)

3 (3%)

1-year BMIz

Normal

Risk of becoming

overweight/overweighte

Unknown

64 (64%)

34 (34%)

2 (2%)

3-year BMIz

Normalf

Risk of becoming overweight/overweight

Unknown

54 (54%)

31 (31%)

15 (15%)

5-year BMIz

Normal

Risk of becoming overweight/overweightg

Unknown

59 (59%)

29 (29%)

12 (12%)

Study site

Vancouver

Edmonton

Manitobah

Toronto

40 (40%)

22 (22%)

29 (29%)

9 (9%)

Maternal HEI 72.06 ± 8.14

Maternal AS beverage consumption

during pregnancy

50 (50%)

Maternal BMI 26.52 ± 6.10

Paternal BMI 28.52 ± 4.54

AS, artificially sweetened; BMI, body mass index; BMIz, BMI Z score; HEI,

healthy eating index; SD, standard deviation. See Tables S1 and S2 for

additional information.
aInfant sex is based on sex assigned at birth.
bNormal is defined as a BMIz of 1.0 or less. Risk of becoming overweight/

overweight is defined as a BMIz greater than 1.0.
cIncludes 4 participants classified as underweight (BMIz < �2.0).
dIncludes 5 participants classified as underweight (BMIz < �2.0).
eIncludes 2 participants classified as obese (BMIz >3.0).
fIncludes 1 participants classified as underweight (BMIz < �2.0).
gIncludes 2 participants classified as obese (BMIz >3.0).
hIncludes Winnipeg and two rural sites, Morden and Winkler.
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exposures over the course of early life, with a 3-month-old infant

having greater exposure to skin microbes, such as Malassezia,

through breastfeeding and frequent skin-to-skin contact with

caregivers.30,34 In contrast, with the introduction of solid foods

and development of crawling behavior, infants are exposed to

a greater number of fungi with food or environmental origins,

such as Saccharomyces and Fomitopsis.27,30 From a diversity

perspective, the patterns of mycobiome maturation are

inconsistent across studies, with reports of increasing,25,29,30

decreasing,28,35 and unchanged or fluctuating27,31,33,34 alpha di-

versity metrics over the course of early life. Similarly, differential

associations between fungal beta diversity and infant age have

also been reported.27–31,33 Beyond these patterns of infant

gut mycobiome maturation, it is not well understood how host

and environmental factors influence gut mycobiome establish-

ment and how this may subsequently impact infant growth

trajectories.

Recent evidence in adults highlights the potential role of the

gut mycobiome in obesity. For example, obesity has been asso-

ciated with a reduction in mycobiome diversity; the relative

abundance of Rhodotorula mucilaginosa has been negatively

correlated with body mass index and visceral adiposity; and

selective expansion of Mucor has been observed in adults un-

dergoing diet-induced weight loss.24,36,37 Mouse models have

demonstrated causal contributions of the gut mycobiome to

host energy balance, with one study highlighting the potential

for Candida parapsilosis-derived lipases in enhancing fatty acid

harvest from a high-fat diet.38While these findings have provided

some insights into the role of certain mycobiome features in

nutrient metabolism,39 our understanding of infant gut myco-

biome development and its role in childhood obesity is limited.

To address this knowledge gap, we definedmycobiomematura-

tion patterns in the first year of life and evaluated their associa-

tion with body mass index Z score (BMIz) during the first 5 years

of life in a sub-cohort of 100 of the 3,264 infants followed in the

Canadian Healthy Infant Longitudinal Development (CHILD)

Cohort Study.40 By evaluating ecological metrics at the individ-

ual level and accounting for the effects of covariates relevant

to microbiome maturation and metabolism, we identified a

distinct relationship between infant mycobiome maturational

patterns and early childhood growth.

RESULTS

Participant characteristics
We carried out this work as a secondary analysis of a previously

reported case-control study on the relationship between

maternal consumption of non-nutritional sweetener, early-child-

hood BMIz, and the bacterial microbiome.13 The sub-cohort

consisted of 100 infants with a rich dataset that allowed us to

study other relevant associations, including between the gut my-

cobiome and BMIz. In this sub-cohort, 46% of the infants were

female based on sex assigned at birth, with 64% of infants deliv-

ered vaginally. Prenatal and postnatal antibiotic exposure was

limited to 12% and 16%, respectively, but intrapartum antibiotic

exposure occurred in half of the cohort. At 3months, breastfeed-

ing status was classified as none (36%), partial (30%), or exclu-

sive (34%), and the mean overall breastfeeding duration was



Figure 1. Divergent fungal richness patterns are observed in the first year of life that exhibit compositional and structural differences at 3 and

12 months of age

(A) Fungal Shannon and Chao1 alpha diversity indices at 3 and 12 months, assessed by Mann-Whitney U test (3 months: n = 95, 12 months: n = 95). Boxplots

show median and interquartile range.

(B) Comparison of mycobiome beta diversity at 3 and 12 months based on Bray-Curtis dissimilarity indices, assessed by permutational multivariate analysis of

variance (PERMANOVA; 3 months: n = 95, 12 months: n = 95). Ellipses represent 95% CI.

(C) Changes in fungal richness (Chao1) per individual from 3 to 12 months, assessed by paired t test (n = 91; see Figure S1 for alpha diversity).

(D) Comparison of mycobiome beta diversity by fungal richness pattern at 3 and 12 months, assessed by PERMANOVA (decrease: n = 63, increase: n = 25; see

Figure S1 for alpha diversity). Ellipses represent 95% CI.

(E) Relative abundance of the 10 most abundant fungal genera at 3 and 12 months (3 months: n = 95, 12 months: n = 95).

(F) Relative abundance of the 10 most abundant fungal genera by fungal richness pattern at 3 and 12 months (decrease: n = 63, increase: n = 25). See Figures S1

and S2 for alpha diversity and differential abundance.
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7.81 ± 7.29months. At 6months, 70%of infants had solids intro-

duced into their diets (Table 1). Infants were grouped into BMI

categories based on BMIz cutoffs established by the World

Health Organization (WHO);41 infants with a BMIz of 1.0 or

less were classified as normal, while infants with a BMIz

greater than 1.0 were classified as at risk of becoming over-

weight/overweight. BMIz values below �2.0 were classified as

wasted under WHO guidelines41 and were excluded from further

analysis. BMIz values greater than 4.0 were also excluded. No

significant sex differences in BMI Z scores were observed in

the first 5 years of life in our sub-cohort (Table S1). Further,

when comparing the evaluated covariates between BMI cate-

gories (normal vs. risk of becoming overweight/overweight), no

significant differences were observed in the first 5 years of life,

except for increased maternal and paternal BMI in infants at

risk of becoming overweight or overweight at 3 and 5 years

(data not shown).

Compared to the rest of the CHILD cohort (n = 3,164), our sub-

cohort had a greater proportion of infants born by Cesarean sec-
tion (C-section) (p = 0.018), reduced breastfeeding duration

(p < 0.001), greater maternal BMI (p < 0.001) and paternal BMI

(p = 0.031), and early childhood BMIz scores. This included a

higher BMIz at 3 months in females (p = 0.049), at 1 year in

both sexes (females: p = 0.004, males: p = 0.005), and at 5 years

in males (p = 0.008; females trended toward significance at

p = 0.052). As anticipated, given the original selection criteria,

greater maternal consumption of artificially sweetened bever-

ages during pregnancy was observed in our sub-cohort at

50% compared to 29% in the rest of the CHILD cohort

(p < 0.001; Table S2). This indicates that our sub-cohort repre-

sents a population with higher BMIz, which allowed us to inves-

tigate the risk of elevated BMIz in relation to the gut mycobiome

in a pan-Canadian cohort.

Divergent maturational patterns are observed in the gut
mycobiome in the first year of life
Previous studies examining mycobiome maturation during early

life have demonstrated inconsistent findings regarding shifts in
Cell Reports Medicine 4, 100928, February 21, 2023 3



Figure 2. Maternal factors, antibiotic exposure, and bacterial community composition are associated with fungal richness pattern and

modify its effect on BMIz in early life

(A) Predictors of fungal richness pattern identified by random forest analysis using 10-fold cross-validation, 500 trees, and 1,000 permutations (decrease: n = 60,

increase: n = 23). The decreasing richness pattern was set as the reference level.

(B) Effect modification assessment of maternal BMI on the association of fungal richness pattern with early-life BMIz from birth to 5 years (decrease: n = 63,

increase: n = 25).

(C) Effect modification assessment of maternal HEI on the association of fungal richness pattern with early-life BMIz from birth to 5 years (decrease: n = 63,

increase: n = 25).

(D) Effect modification assessment of infant antibiotic exposure from 6–12months on the association of fungal richness pattern with early-life BMIz from birth to 5

years (decrease: n = 63, increase: n = 25).

(E) Effect modification assessment of bacterial beta diversity at 3 months on the association of fungal richness pattern with early-life BMIz from birth to 5 years

(decrease: n = 62, increase: n = 25). Regression interaction p values calculated with Stargazer v.5.2.2.42

See also Figures S3 and S4 and Table S3. AS, artificially sweetened; BMI, body mass index; BMIz, BMI Z score.

Report
ll

OPEN ACCESS
fungal alpha diversity over time.25,27,28,30–33 In the mycobiome of

Canadian infants assessed in this cohort, we observed an overall

decrease in fungal alpha diversity (Shannon) and richness

(Chao1) from 3–12 months of age (Shannon: 2.22 ± 0.76 vs.

1.28 ± 0.83; Chao1: 29.44 ± 7.61 vs. 24.18 ± 8.87; p < 0.001; Fig-

ure 1A). Significant differences in mycobiome composition were

observed by age, accounting for 4.8% of the variance, with my-

cobiome composition across infants displaying less heterogene-

ity at 3 months compared to 12 months (p < 0.001; Figure 1B).

However, upon assessing shifts in the mycobiome at the individ-

ual level, we observed differences in fungal richness and alpha

diversity patterns from 3 to 12 months (Figures 1C and S1A).

Of the 91 infants with available mycobiome data at both time

points after bioinformatic quality control (STAR Methods), 63

(69%) displayed decreased, 25 (28%) displayed increased,

and 3 (3%) displayed no change in mycobiome richness

(Chao1 index) in the first year of life (p < 0.001; Figure 1C), with

a similar pattern observed for alpha diversity (Shannon index;

Figure S1A). These alpha diversity patterns were reflected in

the significant compositional differences evident at 3 and

12 months (3 months: R2 = 0.016, p = 0.03; 12 months: R2 =

0.029, p < 0.001; Figures 1D and S1B). This highlights that the in-

fant gut mycobiome follows varied maturational patterns from a

diversity perspective, suggesting that these patterns may be
4 Cell Reports Medicine 4, 100928, February 21, 2023
differentially influenced by early-life exposures specific to an in-

dividual or characteristic of certain lifestyles.

Taxonomic community structure differs by mycobiome
richness pattern
To identify the specific fungal taxa responsible for the compo-

sitional differences between the decreasing and increasing

fungal richness patterns, we determined the relative abundance

of the 10 most abundant genera at 3 and 12 months of age,

which represented 82.87% ± 14.09% and 91.01% ± 12.97%

of the total communities, respectively. Overall, the mycobiome

at 3 months was dominated by Candida, Malassezia, and

Mycosphaerella and then shifted toward Saccharomyces domi-

nance at 12 months (Figure 1E), in agreement with previous re-

ports.25–31 Compositional differences by richness pattern only

reached significance at 12 months, with the increasing richness

pattern displaying increased relative abundance of Fomitopsis

(p = 0.02), Mycosphaerella (p = 0.006), and Malassezia (p =

0.006) and reduced abundance of Saccharomyces (p = 0.009)

relative to the decreasing pattern (Figures 1F and S2). The

greater maintenance of taxa abundant at 3 months in the my-

cobiome of infants with an increasing richness pattern at

12 months is suggestive of reduced mycobiome maturity in

these individuals.



Figure 3. The core gut mycobiome members Saccharomyces,

Rhodotorula, andMalassezia are differentially associatedwith early-

life BMIz

Shown is the association of centered log ratio-transformed fungal genera with

a minimum 2% mean relative abundance with BMIz from 3 months to 5 years

of age using adjusted linear regression permutation tests (n = 95). Covariates

known to influence the infant gut microbiota or infant growth (maternal

BMI, maternal HEI, breastfeeding status at 3 months, antibiotic exposure

from 6–12 months) were included in the models. �p(false discovery rate

[FDR]) < 0.10, *p(FDR) < 0.05. See Figure S6 for species-level associations with

BMIz.
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Infant BMIz, parental BMI, and bacterial diversity are
associated with mycobiome richness pattern in the first
year of life
We identified factors associated with mycobiome richness

pattern using random forest and multivariable logistic regression

analyses. Random forest analysis identified infant BMIz at 1

year, paternal BMI, maternal BMI, bacterial alpha diversity at

3 months, and bacterial beta diversity at 12 months as the top

five factors associated with an increasing fungal richness pattern

(Figure 2A). Maternal healthy eating index (HEI), bacterial alpha di-

versity at 12months, infant BMIz at 3months, bacterial beta diver-

sity at 3 months, and breastfeeding duration were also strongly

associated with fungal richness pattern (Figure 2A). Intriguingly,

BMI- and bacterial microbiome-related factors had greater pre-

dictive power of mycobiome richness pattern than those

commonly associated with bacterial microbiome development,

such as delivery mode and exclusive breastfeeding (Figure 2A).

Next,weperformed logistic regression adjusted for the confound-

ing effects of infant, early-life, maternal, and paternal factors
known to influence the microbiome and/or infant growth to try

to generate an improved understanding of the probability that a

given factor was related to fungal richness pattern. However,

we did not detect significant associations between infant BMIz,

maternal BMI, or paternal BMI and fungal richness pattern, with

only a weak positive association between introduction of solid

foods by 6 months and an increasing fungal richness pattern

emerging in the model (odds ratio [OR]: 4.363, 95% confidence

interval [CI]: 1.050–23.369, p = 0.058; Figure S3). Given logistic

regression is best used to identify simple, linear relationships,

whereas random forests can handle non-linearity and more

robustly reduce noise in the data, this suggests that the associa-

tions between an increase in mycobiome richness in the first year

of life and metabolism-related factors identified by random forest

may be driven by more complex or non-linear relationships.

Maternal factors, antibiotic exposure, and the bacterial
microbiome modify associations between mycobiome
richness pattern and early-life BMIz
To further explore the relationship between metabolism-related

factors and mycobiome richness, we first examined the distribu-

tion of early-life BMIz scores (Figures S4A–S4E), maternal BMI

(Figure S4F), maternal HEI (Figure S4G), paternal BMI (Fig-

ure S4H), and the proportion of infants classified as normal or

at risk of becoming overweight/overweight (Figure S4I) between

the increasing and decreasing fungal richness patterns. Howev-

er, we did not observe any significant differences. Given this

conflicted with the random forest findings, we carried out effect

modification analysis to determine whether more complex rela-

tionships were underlying our results. Indeed, factors linked to

fungal richness pattern were found to be effect modifiers of the

association between richness pattern and BMIz by defining

interaction terms in linear regression models (Figures 2B–2E;

Table S3). Specifically, an increasing fungal richness pattern

was associated with higher early-life BMIz when maternal BMI

or HEI were low, while it was associated with lower early-life

BMIz when maternal BMI or HEI were high (BMI: b = �0.043,

p = 0.009; HEI: b = �0.028, p = 0.030; Figures 2B and 2C). In

addition, an increasing richness pattern was associated with

lower early-life BMIz when an infant was exposed to antibiotics

from 6–12 months (b = �0.719, p = 0.007; Figure 2D). Bacterial

community composition (first principal coordinate axis

[PCoA1]) at 3 months also strongly interacted with the effect

of fungal richness pattern on early-life BMIz (b = �0.391, p =

0.031; Figure 2E). The remaining factors shown in Figure 2A dis-

played non-significant interactions with fungal richness pattern

(Table S3). It is important to note that these interactions should

be interpreted cautiously, given the limited sample size of this

sub-cohort. Together, these results highlight the complexity of

the relationship between early-life BMIz and mycobiome devel-

opment, suggesting that this relationship likely involves maternal

factors that are associated with metabolic health, such as BMI

and diet, antibiotic exposure, and multi-kingdom interactions.

Relationship between increasing richness pattern and
BMIz in early life is not sex-dependent
Infant sex is known to be associated with infant growth patterns

and microbiome development.43–46 We next explored whether
Cell Reports Medicine 4, 100928, February 21, 2023 5



Figure 4. Association between fungal richness (Chao1) and BMIz in early life is dependent on the infant bacterial microbiome

Structural equation modeling was used to differentiate the influence of fungal richness on BMIz while considering the structure of the associations between other

early-life factors and bacterial microbiome composition (n = 95). Model fit was assessed by Pearson’s Chi-squared (c2) test, the comparative fix index (CFI), root-

mean-square error of approximation (RSMEA) and its 90% confidence interval (CI), and the standardized root mean residuals (SRMR). Non-significant c2 test,

CFIR 0.9, RMSEA < 0.05, and SRMR < 0.08 were considered as indications of goodmodel fit. The edge width is proportional to standardized b coefficients. HEI,

healthy eating index; PCoA1, first principal coordinate axis; green, positive and significant; red, negative and significant; gray, statistically not significant. See also

Table S4 for b coefficients and significance by BMIz time point and related factors.
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sex-dependent associations existed between fungal richness

pattern and BMIz in early life based on infant sex assigned at

birth, but we did not detect any significant differences

(Table S1). Further, the proportion of infants of either sex that

were classified as normal or at risk of becoming overweight/

overweight between birth and 5 years of age did not differ (Fig-

ure S5A). Infant sex assigned at birth was not associated with

mycobiome richness pattern (Figures 2A and S3), and we did

not observe a significant interaction effect between richness

pattern and infant sex for early-life BMIz outcomes (Figure S5B).

This suggests that infant sex was not involved in mediating or

moderating the observed association between an increasing

fungal richness pattern and BMIz in this sub-cohort.

Abundance of specific fungal taxa in the first year of life
is associated with early-life BMIz
Next, we evaluated taxon-specific associations with BMIz in

early childhood while controlling for relevant confounding fac-

tors. Infant breastfeeding status at 3months, antibiotic exposure

from 6–12 months, maternal HEI, and maternal BMI were

included as covariates based on our initial findings (Figure 2)

and a priori knowledge.47 We found several fungal taxa at the

genus and species levels to be significantly associated with

BMIz between 1 and 5 years of age (Figures 3 and S6). The rela-

tive abundances of Saccharomyces at 3 months andMalassezia

at 12 months were positively associated with BMIz at 1 and 5

years, respectively (b = 0.122, p = 0.043 and b = 0.166, p =

0.033, respectively; Figure 3), while Rhodotorula abundance at
6 Cell Reports Medicine 4, 100928, February 21, 2023
12 months was negatively associated with BMIz at 1 and 5 years

(b = �0.099, p = 0.014 and b = �0.109, p = 0.028, respectively;

Figure 3).Candida abundance at 12 months also trended toward

being positively associated with BMIz at 3 years (b = 0.115, p =

0.055; Figure 3). Species-level analysis identified parallel nega-

tive associations for the relative abundance of R. mucilaginosa

at 12 months with BMIz at 1 and 5 years (b = �0.096, p =

0.017 and b = �0.108, p = 0.032, respectively; Figure S6). This

suggests that specific fungal genera present in the mycobiome

in the first year of life are differentially associated with BMIz out-

comes in early childhood.

Association between the gut mycobiome and childhood
BMIz is dependent on bacterial gut microbiome
composition
A strong association exists between infant gut bacterial commu-

nity composition and risk of becoming overweight or obese later

in life.10–15 We also identified an association between bacterial

composition with the fungal richness pattern in the first year of

life (Figures 2A and 2B) and the potential of gut bacteria tomodify

the association between fungal richness pattern and early-life

BMIz (Figure 2E). While we observed associations between in-

fant gut fungi and BMIz in the first 5 years of life (Figure 3), the

direct versus indirect association between gut bacteria and fungi

in relation to BMIz is unclear. To address this question, we per-

formed structural equation modeling based on the theoretical

structure of the associations between the factors included. Our

model was based on the assumption of co-variation of gut
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bacterial and fungal compositions at each available time point

(Figure 4). The mycobiome, as the main focus of this study,

was modeled as fungal richness (Chao1), community composi-

tion (beta diversity) using the first principal coordinate axis

(PCoA1) based on Bray-Curtis dissimilarity or richness pattern

in the first year of life (Table S4). The bacterial microbiome was

not the focus of this study and, thus, was only modeled as

PCoA1 based on Bray-Curtis dissimilarity to represent the over-

all bacterial microbiome composition. Wemodeled the direct as-

sociation of bacteria and fungi on longitudinal BMIz measure-

ments while considering the structure of associations among

other important factors known to affect infant BMIz, the gut bac-

terial microbiome, and/or the gut mycobiome. This included

incorporation of maternal HEI, maternal BMI, breastfeeding sta-

tus at 3 months, and infant sex based on sex assigned at birth

into our theoretical framework. We confirmed that BMIz at

each time point was positively associated with subsequent

BMIz measurements in early life (Figure 4; Table S4). We did

not observe any associations between fungal richness, commu-

nity composition, or richness pattern and BMIz in early life

(Table S4). However, bacterial community composition at 1

year was negatively associated with infant BMIz at 1 year (b =

�0.241, p = 0.010; Figure 4; Table S4). Thus, our results suggest

that the mycobiome’s contribution to early-life BMIz is likely

influenced by the bacterial microbiome.

DISCUSSION

The infant gut mycobiome exhibits defined maturation patterns

over the course of early life from the perspective of taxonomic

community structure.25–33 However, our understanding of how

fungal diversity metrics change over this period remains limited,

largely due to inconsistent findings in the literature, small sample

sizes used in mycobiome studies, and the substantial inter-indi-

vidual differences observed in mycobiome composition and

maturational patterns.25,27,28,30–34 While it has been established

that the early-life bacterial microbiome plays an important role in

metabolic development and obesity risk,48–51 very few studies

have explored this from the fungal perspective. Using a variety

of modeling techniques to examine the relationship between

gut mycobiome development and infant growth, we found asso-

ciations between the maturational patterns of the mycobiome in

the first year of life and BMIz up to 5 years of age. Specifically, we

observed an overall trend toward a reduction in fungal alpha di-

versity metrics from 3–12 months, with a subset of infants devi-

ating from this maturational pattern, exhibiting an increase in

fungal richness over this period. The mycobiome of these infants

exhibited compositional and structural differences relative to

those who displayed reduced fungal richness, suggestive of

reduced mycobiome maturity at 12 months of age. The

increasing fungal richness pattern was associated with early

childhood BMIz through its interactions with maternal diet,

maternal BMI, infant antibiotic exposure from 6–12 months of

age, and bacterial community composition. Common members

of the gut mycobiome were also found to be differentially asso-

ciated with BMIz at various time points, including Malassezia

(positive), Saccharomyces (positive), and Rhodotorula (nega-

tive). Together, these findings provide insights into the matura-
tion patterns of the infant gut mycobiome and highlight the

important role of differences in maturational patterns on growth

outcomes in early life.

Characterizations of the infant gut mycobiome and the factors

influencing its development to date have been limited in scope,

with emphasis being placed on generating group-based average

descriptions of maturation patterns in early life. While succes-

sional shifts in the taxonomic structure of the mycobiome

have been comparable across studies, descriptions of alpha di-

versity changes over the course of early life are inconsis-

tent.25,27–31,33–35 This is likely in part due to differences in

geographical, cultural, and socioeconomic influences on early-

life exposures, which are already known to influence the bacte-

rial microbiome.52–54 In this study, we observed taxonomic shifts

comparable with previous reports,25–31 with a strong presence of

Candida, Malassezia, and Mycosphaerella at 3 months and a

shift toward Saccharomyces dominance at 12 months, along-

side an overall decrease in fungal alpha diversity. However,

upon assessing individual-level alpha diversity patterns, we

identified a considerable subset of infants (>25%) who displayed

an increase in fungal richness between 3 and 12 months of

age. We observed differences in mycobiome composition and

taxonomic structure at 3 months in infants with an increasing

or atypical fungal richness pattern, which became more pro-

nounced at 12 months. This included significant differences in

the relative abundance of Fomitopsis (increased), Mycosphaer-

ella (increased), Malassezia (increased), and Saccharomyces

(decreased) in participants with an increasing richness pattern

relative to a decreasing pattern at 12 months. Saccharomyces

has been previously identified as a strong predictor of microbial

community age,30 likely in part because of its ability to grow

rapidly under anaerobic conditions55,56 and broad presence in

solid foods,57 resulting in diet-induced shifts in mycobiome

composition.27,58 Given the plasticity of infant gut microbial

communities in the first 2–3 years of life,59 it is plausible that

the lower levels of Saccharomyces observed in the increasing

richness pattern at 12months are indicative of an unstable fungal

community that remains in a transitional or immature state, lack-

ing the selective pressures of a primarily anaerobic environment

or typical dietary transitions. This is further supported by the

maintenance of microbes observed in high abundance at

3 months in participants with an increasing richness pattern at

12months compared with individuals with a decreasing richness

pattern. Together, this highlights the role of early fungal colo-

nizers in influencing the ecological patterns of mycobiome

development and the importance of individual-level analyses in

generating a more nuanced understanding of the ecological dy-

namics exhibited by the gut mycobiome in early life.

We discovered factors relating to metabolism and multi-

kingdom dynamics to be most strongly associated with fungal

richness patterns when assessed by random forest. These

included infant BMIz at 3 months and 1 year, maternal and

paternal BMI, maternal diet, breastfeeding duration, and bacte-

rial alpha and beta diversity in the first year of life. Although pre-

vious studies have linked these factors with the infant gut bacte-

rial community and obesity or BMI,47,60–67 it is unclear whether

their association with the gut fungal community is direct or indi-

rect via modulation of bacteria and/or host-intrinsic obesogenic
Cell Reports Medicine 4, 100928, February 21, 2023 7
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pathways. Other factors known to influence the bacterial micro-

biome, such as birth mode and exclusive breastfeeding, were

less strongly associated with fungal richness pattern, suggesting

that our knowledge of factors influencing early-life bacterial mi-

crobiome maturation may not equally apply to infant gut myco-

biome establishment. Alternatively, it is plausible that these fac-

tors weakly influence the infant mycobiome via their impact on

the bacterial microbiome. Our finding of bacterial community

composition at 3 months modifying the association between

early-life BMIz and fungal richness pattern is supportive of this

hypothesis. While we cannot establish causality in our study,

the association of infant BMIz with fungal richness patterns high-

lights the potential and underexplored role of gut fungi in child-

hood obesity.

Given that infant, maternal, and paternal BMI emerged as fac-

tors strongly associated with mycobiome richness pattern, we

sought to better understand the relationship between these

measures and the infant mycobiome. While we did not observe

direct associations between BMIz and fungal richness pattern,

potentially because of the size of the cohort studied, we discov-

ered that maternal BMI and maternal diet modified the associa-

tion between fungal richness pattern and early-life BMIz.

Maternal BMI and diet are known to play an influential role in

the infant microbiome and obesity.60–64 Intriguingly, we

observed that an increasing fungal richness pattern was associ-

ated with lower early-life BMIz when maternal BMI was high or

when the maternal diet was deemed less healthy. While it is un-

clear whether these factors directly impact the composition of

the infant mycobiome, their effect on the bacterial microbiome

and independent effect on obesity-inducing pathways may

modify the association between gut fungi and early-life BMIz.

Further, infant dietary practices during complementary feeding

and after weaning are influenced by maternal and paternal diets,

which likely also impacts gut mycobiome development. The in-

crease in Saccharomyces abundance from 3 to 12 months likely

reflects the transition to solid food, especially considering the ev-

idence that the presence of this genus is strongly influenced by

diet.58 The reduced relative abundance of Saccharomyces in in-

fants with an increasing fungal richness pattern at 12 months

suggests that this could be indicative of dietary differences,

which, in turn, may have consequences for obesity develop-

ment. However, further research is needed to confirm this asso-

ciation. Interestingly, the increasing fungal richness pattern also

displayed significantly higher relative abundance of Fomitopsis

at 12 months, a fungal genus that has been linked to improved

insulin sensitivity in rodent models.68,69 While speculative, it is

possible that the greater presence of Fomitopsis in the myco-

biome of infants with an increasing richness pattern has a post-

natal buffering effect against the potential influences of maternal

BMI and diet on fetal programming of obesogenic pathways that

may lead to higher BMIz in infancy. Together, our results suggest

that the association between gut fungi and childhood obesity

varies depending on other contributing factors; in this case,

maternal BMI and diet.

Given that infant growth and the microbiome are affected by

infant sex,43–46 we examined whether the association of the

gut mycobiome with early-life BMIz was modified by infant sex

assigned at birth. While there is some evidence that the gut my-
8 Cell Reports Medicine 4, 100928, February 21, 2023
cobiomemay exhibit sex-dependent features,35 we did not iden-

tify infant sex to be associated with BMIz in our cohort. This may

be in part due to the subset of infants selected for this study and

the early BMIz measurements examined, with greater potential

for sex differences to arise later in childhood and adolescence,

as evidenced by our observation of sex differences in BMIz

beginning to emerge at 5 years of age. Additionally, the charac-

teristics of our sub-cohort, including elevated BMIz, increased

maternal consumption of artificially sweetened beverages, and

elevated parental BMI, may be contributing to these outcomes.

It is also plausible that infant sex modifies the association of

fungal richness pattern with early-life BMIz, but our study was

underpowered to statistically demonstrate this interaction.

Further research is required to examine the dynamic relationship

between the gut mycobiome, maternal factors, and potential

sex-dependent variations in relation to infant growth.

Very few studies have explored the relationship between the

mycobiome and infant growth in early life. However, a recent

publication found absolute fungal abundance at 1 year to be

negatively correlated with infant BMIz from birth to 1 year and

absolute fungal abundance at 2 years to be positively associated

with height at 2–9 years25; although, the reliability of these results

is limited by the small number of samples with detectable fungi in

this study. We found that the relative abundance of common

fungal colonizers may be differentially associated with early-life

BMIz outcomes, providing better-defined implications for myco-

biome community dynamics on BMIz in early life. We identified

associations between core members of the infant mycobiome,

Saccharomyces (positive), Rhodotorula (negative), andMalasse-

zia (positive)28,34,35 and BMIz between 1–5 years of age in our

cohort. While causal associations between obesity development

and Rhodotorula and Malassezia have yet to be reported,

Saccharomyces boulardii has displayed anti-obesogenic prop-

erties in mice,70 and studies in human adults have also pointed

to beneficial outcomes for obesity management.71 Given

Saccharomyces is found in several food products and certain

strains are employed as probiotics,72 further explorations clari-

fying its role in early-life weight gain are needed. Based on our

initial findings, translational studies aimed at understanding the

causal contributions of common mycobiome members to child-

hood obesity development are strongly warranted.

While we have provided evidence of the role of the early-life

gut mycobiome in infant growth, it remains to be demonstrated

how this relationship is influenced by the infant gut bacterial

community. We have shown previously that the gut microbiome

of the infants included in this study was linked to infant BMI

downstream of maternal consumption of artificially sweetened

beverages during pregnancy.13 In the current study, we found

that bacterial beta diversity at 3 months modified the effect of

fungal richness pattern on early-life BMIz, where an increasing

fungal richness pattern was associated with lower BMIz when

bacterial community dissimilarity was increased. We also found

that an increasing fungal richness pattern was associated with

lower BMIz when an infant was exposed to antibiotics between

6 and 12 months. These findings are consistent with the well-

known ability of antibiotics to disrupt the gut microbiome and

provide an opportunity for fungal community alterations,73 which

may be involved in the relationship between early-life antibiotic



Report
ll

OPEN ACCESS
exposure and obesity risk later in life.74 This suggests a role of

inter-kingdom interactions in mediating infant growth trajec-

tories, such as cross-kingdom competitive exclusion and selec-

tive pressures. We further modeled the complex inter-relation of

bacteria and fungi at 3 and 12 months with BMIz to investigate

this relationship. Using several microbiome features, including

bacterial microbiome composition (PCoA1), fungal richness,

and fungal richness pattern, we found that bacterial community

composition and infant BMIz were associated with each other at

12months, whereas fungal diversity metrics were not associated

with BMIz. Together, this suggests an inter-dependent role of the

gut mycobiome and bacterial microbiome in early-life BMIz out-

comes alongside a role of cross-kingdom microbiome features

in mediating infant growth trajectories. Changes in the metabolic

activity of gut bacteria during childhood obesity can result in

altered nutrient bioavailability in the gut,75 potentially impacting

the physiological and ecological fitness of fungi. This highlights

the need to consider inter-kingdom interactions between bacte-

ria and fungi when evaluating the role of the infant gut myco-

biome in childhood obesity.

The main strength of our study was our multi-method analysis

incorporating longitudinal infant, maternal, paternal, and envi-

ronmental factors to assess individual maturation patterns of

the mycobiome and its association with BMIz in the first 5 years

of life. Many explorations of the infant gut mycobiome and infant

growth trajectories lack maternal and paternal data, but by

leveraging the CHILD Cohort Study, we were able to perform an-

alyses involving relevant factors. Further, the assessment of fac-

tors extending into gestation, such as maternal HEI, provides

valuable insights into the importance of pre-partum exposures

that may be modified to influence infant health outcomes.

Overall, our findings suggest that early-life and maternal fac-

tors may collectively influence growth dynamics in the first 5

years of life, in association with mycobiome maturational pat-

terns and specific fungal taxa. Further characterization of myco-

biome maturational patterns in large infant cohorts is warranted

because right now, our understanding of mycobiome establish-

ment and its relationship with infant development is very limited.

Future evaluations of the role of differences in the directionality of

fungal richness patterns in early life on BMIz and metabolism will

be crucial to understanding this intriguing relationship. In partic-

ular, it will be important to validate these findings at the general

population level to determine whether specific patterns of myco-

biomematuration may predispose infants to metabolism-related

health outcomes. In parallel, mechanistic studies are needed to

draw conclusions about the exact role of the mycobiome in

early-life determinants of growth and metabolism.

Limitations of the study
We recognize that this study was constrained by the lack of

repeated mycobiome measures into early childhood and the

small sample size of our cohort, which was reflected in the

limited number of infants exhibiting an increasing fungal richness

pattern and/or at risk of becoming overweight or obese. This hin-

dered the strength of our analysis, making it difficult to generalize

our results to the pediatric population, particularly given that the

cohort used was specifically selected for a previous nested

case-control study assessing gestational artificially sweetened
beverage consumption.13 It is also possible that mycobiome

measures at later time points may provide alternative insights

into the relationship between the gut mycobiome and BMIz tra-

jectories in early childhood. However, this analysis was per-

formed with the intention of exploring the relationship between

early-life mycobiome maturation patterns and infant growth,

given the recognized role of the early-life microbiome in the

developmental origins of health and disease.1–3 Despite our

limited sample size and lack of mycobiome measures beyond

the first year of life, we were still able to find significant associa-

tions between themycobiome and BMIz in the first 5 years of life,

highlighting the need for further evaluations in large cohort

studies that include gut mycobiome sampling extending into

childhood.
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Claire Arrieta (marie.arrieta@ucalgary.ca).
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Materials availability
This study did not generate new unique reagents.

Data and code availability
d Demultiplexed ITS2 and 16S rRNA gene sequencing data were deposited into the Sequence Read Archive (SRA) of NCBI and

can be accessed via BioProject accession numbers PRJNA814728 and PRJNA624780. This information can also be found in

the key resources table.

d All code (R scripts) has been deposited at: https://github.com/ArrietaLab/CHILD_Mycobiome_BMI_CellReportsMedicine_

Files. The software and packages used for this analysis are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Inclusion and exclusion criteria of study participants
We studied 100mother-infant dyads which represents a subset of the population-based prospective CHILD Cohort Study.40 Women

with singleton pregnancies were enrolled between 2008 and 2012 across four Canadian provinces into the CHILD Cohort Study and

remained eligible if they delivered a healthy infant at >35 weeks’ gestation (n = 3,264).40 Recruitment occurred at four sites: Vancou-

ver (British Columbia), Edmonton (Alberta), Toronto (Ontario), and Manitoba (Winnipeg and two adjacent rural towns, Morden and

Winkler). The mother-infant dyads included in this study were previously selected for a nested case-control study, equally divided

between mothers who reported little to no artificially sweetened beverage consumption (less than one per month) or high artificially

sweetened beverage consumption (one or more per day) during pregnancy.13 Each artificially sweetened beverage exposure group

was balanced for six factors known to influence the gutmicrobiome: infant sex (assigned at birth), mode of birth, breastfeeding status

at 3 and 12months, infant antibiotic exposure before 12months (those exposed prior to 3months were excluded), andmaternal BMI.

Ethics approval
The study was approved by the University of Calgary Conjoint Health Research Ethics Board and ethics committees at the Hospital

for Sick Children, and the Universities of Manitoba, Alberta, and British Columbia. Written informed consent was obtained from

mothers during study enrollment.

Anthropometric measurements
Weight and length/height weremeasured at birth, 3months, 1, 3, and 5 years by trained study staff to the nearest 0.1 unit according to

a standardized protocol. Age- and sex-specific BMI Z scores (BMIz) were calculated according to the 2011 World Health Organiza-

tion (WHO) standards.95 Infants were grouped into BMI categoriesmodified fromBMIz cutoffs established by theWHO.41 Infants with

BMIz%1.0were classified as normal, while infants with BMIz >1.0 were classified as at risk of overweight/overweight (also referred to

as high BMI). As BMI Z score is a more accurate predictor of childhood obesity compared to weight-for-length Z score,96 the former

was used as the main outcome in this work.

Infant, early life, maternal, and paternal factors
Infant sex (assigned at birth), birthweight, gestational age, mode of birth, parity, and intrapartum antibiotic use were documented

from hospital records. We focused on early-life factors known to influence the gut microbiome, including mode of birth, intrapartum

antibiotics, antibiotic exposure from 6 to 12 months of age, and infant feeding. Infant feeding was reported using a standardized

questionnaire at 3, 6, and 12 months. Infant feeding included breastfeeding status at 3 months, total breastfeeding duration, and

introduction of solid foods into the infant diet by 6 months. Breastfeeding status was classified as ‘‘exclusive’’ (human milk only)

or ‘‘zero/partial’’ (no humanmilk or humanmilk supplemented with formula milk or solid foods). Prenatal, intrapartum, and infant anti-

biotic exposure was obtained from maternal and infant medical records. Maternal BMI was calculated from measured height and

self-reported pre-pregnancy weight. Paternal BMI was calculated from weight and height measurements collected during clinic

visits. Maternal Healthy Eating Index (HEI) was used as an indication of maternal diet quality. Maternal diet was assessed using a

validated semi-quantitative food frequency questionnaire during the second or third trimester of pregnancy, as previously

described,40 and maternal HEI was derived based on the 2010 guidelines.97 Consumption of artificially sweetened beverages during

pregnancy was assessed based on consumption of diet sodas (serving = 355mL/one can) or artificial sweetener added to tea or cof-

fee (serving = 1 packet), as previously described.13

METHOD DETAILS

Sample collection and processing
Stool samples (n = 200) were collected from soiled diapers by CHILD Cohort Study staff at the 3-month home visit and 12-month

clinic visit using standardized methods and were stored at �80�C until further processing.98
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DNA extraction of infant stool samples
Genomic DNA was extracted from fecal samples using the DNeasy PowerSoil Pro Kit (Qiagen, Germany) following the manufac-

turer’s instructions. Following extraction, DNA concentration and quality were quantified using a NanoDrop spectrophotometer

(Thermo Scientfic). DNA was stored at �20�C until downstream analysis.

ITS2 and 16S rRNA gene sequencing
In-house extracted DNAwas sent to Microbiome Insights (Vancouver, Canada), where PCRwas used to amplify the V4 region of 16S

rRNA gene with 515F/806R primers76 and the internal transcribed spacer region 2 (ITS2) rRNA gene with ITS1F/ITS4 primers42 for

bacteria and fungi, respectively, using Phusion Hot Start II DNA Polymerase (Thermo Scientific). This generated ready-to-pool,

dual-indexed amplicon libraries, as described previously.99 Controls without template DNA and mock communities with known

amounts of selected bacteria or fungi were included in the PCR and downstream sequencing steps to control for microbial contam-

ination. The pooled and indexed libraries were denatured, diluted, and sequenced in paired-end modus on an Illumina MiSeq

(Illumina Inc., San Diego, USA). For additional details, bacterial sequencing methods have been previously reported.13

QUANTIFICATION AND STATISTICAL ANALYSIS

Sequencing processing
Sequence processing was conducted in R v.4.1.1.77 Sequences were checked for quality, trimmed, merged, and checked for chi-

meras using theDADA2 v1.20.0 pipeline for ITS2 or 16S data.80 Taxonomywas assigned as amplicon sequence variants (ASVs) using

the UNITE v.8.0 (fungi)78 and SILVA v.132 (bacteria)79 databases at 99% sequence similarity. Preprocessing of the ASV table was

performed using the phyloseq package v.1.36.0.81 Overall, 3,328 unique fungal ASVs were detected. ASVs belonging to kingdom

Plantae (n = 673) were removed, leaving 2,655 unique fungal ASVs. Samples with less than 2,000 sequencing reads were excluded

(n = 10) and ASVs appearing in only one sample were removed (n = 59). The remaining dataset was filtered for ASVs appearing at least

two times in the dataset, leaving 604 unique fungal ASVs. This dataset was used for all subsequent analyses. Bacterial sequence

processing methods have been previously reported13 and only alpha- and beta-diversity metrics derived from published results

are used in this analysis.

Handling missing data
Missing paternal BMI (n = 23) and infant BMIz data at 3 months (n = 3) and 1 year (n = 2) was imputed for random forest andmultivari-

able logistic regression usingmultivariate imputation by chained equations (MICE) package v.3.13.0.82 Samples withmissing data for

other covariates were excluded from multivariable analyses. These included bacterial alpha-diversity at 3 months (n = 1) and

12 months (n = 1), bacterial beta-diversity (PCoA1) at 3 months (n = 1) and 12 months (n = 1), and prenatal (n = 2) and intrapartum

(n = 2) antibiotics exposure, resulting in the exclusion of 5 infants from analyses. Missing data for BMIz measurements in the first

5 years of life (birth: n = 28; 3 months: n = 3; 1 year: n = 2; 3 years: n = 14; 5 years: n = 11) was maintained in regression interactions

and multivariable linear regression permutation analyses, as the models employed were capable of handling missing data.

Exclusion of data
Infants lacking samples at one or both time points (n = 9) or having an unchanging fungal richness pattern (n = 3) were excluded from

all downstream analysis involving fungal richness pattern and/or associations with early-life BMIz. Additionally, samples were

excluded frommultivariable analyses if they were missing essential covariate data (n = 5). BMIz values <�2.0 and >4.0 were consid-

ered outliers and excluded from all analyses (birth: n = 4; 3 months: n = 4; 1 year: n = 1; 3 years: n = 1).

Statistical analysis
Fungal alpha-diversity was assessed by Chao1 (richness) and Shannon (diversity) and reported as mean and SD. Association of

alpha-diversity with infant age was assessed by theMann-Whitney U test, after determining data was non-normally distributed using

the Shapiro-Wilk test. Chao1 and Shannonmetrics were categorized according to their pattern over the first year of life into increase,

decrease, and unchanged categories and assessed by paired t-test. Bray-Curtis dissimilarity (beta-diversity) with variance-stabiliz-

ing transformation of the infant gut mycobiome by age and alpha-diversity pattern was assessed by permutational ANOVA

(PERMANOVA) using the vegan package v.2.5.7.83 The relative abundance of the ten most abundant fungal genera were compared

by age and alpha-diversity pattern. Relative abundances were center log-ratio (CLR) transformed following zero-replacement using

zCompositions v.1.3.4 and CoDaSeq v.0.99.684,85 to control for compositionality before statistically assessing differential abun-

dance. Differences in CLR-transformed abundance between 3 and 12 months of age were assessed by Mann-Whitney U test for

non-normally distributed data, as determined by the Shapiro-Wilk test.

Random forest was performed to determine relevant clinical and early-life factors predictive of fungal richness (Chao1) pattern us-

ing 10-fold cross-validation, 500 trees, and 1,000 permutations with the randomForest v.4.6.14 and caret v.6.0.90 packages.86,87

Factors known to be associated with bacterial microbiome maturation in early-life and/or infant growth were included,100–106 along-

side bacterial microbiome diversity measures to examine for inter-kingdom influences. The factors most strongly associated with

fungal richness pattern were identified by mean decreasing Gini index. Multivariable logistic regression examining factors related
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to an increasing fungal richness pattern was performed using the package stats v.4.1.1,77 and the absence of multi-collinearity was

confirmed using the package performance v0.8.0.88 Bacterial microbiome diversity measures were excluded from this analysis to

preventmodel overfitting and enable explorations of factors influencingmycobiomematuration in isolation, given limited understand-

ings exist in this realm. Results are reported for each factors as log-transformed odds ratio and 95% confidence interval. The

decreasing fungal richness pattern was set as the reference level for both random forest and logistic regression analyses.

To assess differences in early-life BMIz from birth to 5 years between increasing and decreasing fungal richness patterns, normality

was first assessed by Shapiro-Wilk’s test, homogeneity of variance was assessed by F-test, and differences were determined by

two-sample t-test or Mann-Whitney U test, accordingly. Associations betweenmycobiome richness pattern or sex (assigned at birth)

and early-life BMI categories were assessed using Pearson’s Chi-squared (c2) test with Yates’ continuity correction. Regression in-

teractions between infant, early life, paternal, and maternal factors, and mycobiome diversity pattern for early-life BMIz was per-

formed with car v.3.0.10,89 effects v.4.2.0,90 and stargazer v.5.2.291 packages. BMIz was modeled as the outcome, and BMIz

time point, fungal richness (Chao1) pattern, and the variable of interest were specified as explanatory variables. The former two vari-

ables were modeled as individual or crossing variables. These models were inputted into stargazer91 and plotted with effects.90

Multivariable linear regression permutation tests were performed using lmPerm v.2.1.092 for genera or species with greater than

2% mean relative abundance. As described above, relative abundances were CLR-transformed following zero-replacement using

zCompositions v.1.3.4 and CoDaSeq v.0.99.684,85 to control for the compositionality. The model included maternal BMI, breastfeed-

ing status at 3 months, infant antibiotic exposure from 6 to 12 months, and maternal HEI as covariates. The Benjamini-Hochberg

procedure was used to correct p values for multiple comparisons.

Structural equation modeling (SEM) was performed using the lavaan package v.0.6.6.93 Multivariate normality was verified using

MVN package v.5.9.94 The model was estimated using maximum likelihood (ML) parameter estimation and NLMINB optimization

methodwith bootstrapping (N = 1,000).107Model fit was assessed by c2 test, the comparative fix index (CFI), root-mean-square error

of approximation (RSMEA) and its 90% confidence interval (CI), and the standardized root mean residuals (SRMR). Non-significant

c2 test, CFIR0.9, RMSEA<0.05, and SRMR<0.08 were considered as indications of good model fit.107
Cell Reports Medicine 4, 100928, February 21, 2023 e4


	Maturational patterns of the infant gut mycobiome are associated with early-life body mass index
	Introduction
	Results
	Participant characteristics
	Divergent maturational patterns are observed in the gut mycobiome in the first year of life
	Taxonomic community structure differs by mycobiome richness pattern
	Infant BMIz, parental BMI, and bacterial diversity are associated with mycobiome richness pattern in the first year of life
	Maternal factors, antibiotic exposure, and the bacterial microbiome modify associations between mycobiome richness pattern  ...
	Relationship between increasing richness pattern and BMIz in early life is not sex-dependent
	Abundance of specific fungal taxa in the first year of life is associated with early-life BMIz
	Association between the gut mycobiome and childhood BMIz is dependent on bacterial gut microbiome composition

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	Acknowledgments
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Inclusion and exclusion criteria of study participants
	Ethics approval
	Anthropometric measurements
	Infant, early life, maternal, and paternal factors

	Method details
	Sample collection and processing
	DNA extraction of infant stool samples
	ITS2 and 16S rRNA gene sequencing

	Quantification and statistical analysis
	Sequencing processing
	Handling missing data
	Exclusion of data
	Statistical analysis




