Anti-mycobacterium tuberculosis activity of polyherbal medicines used for the treatment of tuberculosis in Eastern Cape, South Africa. Elizabeth B Famewo¹, Anna M Clarke¹, Ian Wiid², Andile Ngwane², Paul van Helden², Anthony J Afolayan¹ - 1. Faculty of Science and Agriculture, University of Fort Hare, Alice 5700, South Africa - 2. DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa. ### Author details efamewo@ufh.ac.za aclarke@ufh.ac.za iw@sun.ac.za ngwane@sun.ac.za pvh@sun.ac.za Afolayanaafolayan@ufh.ac.za ### Abstract **Background:** The emergence of drug-resistant strains of *Mycobacterium tuberculosis* has become a global public health problem. Polyherbal medicines offer great hope for developing alternative drugs for the treatment of tuberculosis. **Objective:** To evaluate the anti-tubercular activity of polyherbal medicines used for the treatment of tuberculosis. Methods: The remedies were screened against Mycobacterium tuberculosis H37Rv using Middlebrook 7H9 media and MGIT BAC-TEC 960 system. They were liquid preparations from King Williams Town site A (KWTa), King Williams Town site B (KWTb), King Williams Town site C (KWTc), Hogsback first site (HBfs), Hogsback second site (HBss), Hogsback third site (HBts), East London (EL), Alice (AL) and Fort Beaufort (FB). Results: The susceptibility testing revealed that all the remedies contain anti-tubercular activity with KWTa, KWTb, KWTc, HBfs, HBts, AL and FB exhibiting more activity at a concentration below 25 µl/ml. Furthermore, MIC values exhibited inhibitory activity with the most active remedies from KWTa, HBfs and HBts at 1.562 µg/ml. However, isoniazid showed more inhibitory activity against M. tuberculosis at 0.05 µg/ml when compare to the polyherbal remedies. Conclusion: This study has indicated that these remedies could be potential sources of new anti-mycobacterial agents against M. tuberculosis. However, the activity of these preparations and their active principles still require in vivo study in order to assess their future as new anti-tuberculosis agents. Keywords: Mycobacterium tuberculosis; in vitro activity, polyherbal medicines, South Africa. ### DOI: https://dx.doi.org/10.4314/ahs.v17i3.21 Cite as: Famewo EB, Clarke AM, Wiid I, Ngwane A, Helden Pv, Afolayan AJ. Anti-mycobacterium tuberculosis activity of polyherbal medicines used for the treatment of tuberculosis in Eastern Cape, South Africa. Afri Health Sci. 2017;17(3): 780-789. https://dx.doi.org/10.4314/ahs. v17i3.21 # Corresponding author: Anthony J Afolayan Faculty of Science and Agriculture, University of Fort Hare Alice 5700, South Africa Tel.:+27 82 202 2167 Health Sciences E-mail: aafolayan@ufh.ac.za ## Introduction Mycobacterium tuberculosis, the leading causative agent of tuberculosis (TB) is responsible for the morbidity and mortality of a large population worldwide¹. TB has a long co-evolutionary history with humans. It does not exhibit any symptom of disease except when impairment of immunity arises due to malnutrition, diabetes, malignancy and AIDS²; however, about 10% of healthy individuals @ 2017 Famewo et al; licensee African Health Sciences. This is an Open Access article distributed under the termsof the Creative commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. may develop active TB in their life time due to genetic factors. The ability of TB to resist drugs and the influence of HIV epidemic has made the disease remain a devastating global public health problem³. According to WHO⁴, one-third of the world's population have been infected with *Mycobacterium tuberculosis* (MTB). In 2014, an estimated number of 9.6 million new TB infections were reported, of which 5.4 million were men; 3.2 million were women and 1.0 million children³. This disease is responsible for approximately two million deaths annually⁵. Some of the main obstacles to the global control of the disease are the HIV epidemic that has dramatically increased the risk of developing active TB, increasing emergence of multidrug resistant-TB (MDR-TB: resistance to isoniazid and rifampin) and refractory nature of latent TB treatment to conventional anti-TB drugs^{6,7,8,9}. The situation is further exacerbated by the increasing development of extensively drug-resistant (resistant to MDR-TB, all fluoroquinolones and at least one of the second-line anti-TB injectable drugs including amikacin, kanamycin and/or capreomycin)^{10,11}. According to the modes of action of these drugs, they can be grouped as cell wall inhibitors (isoniazid, ethambutol, ethionamide, cycloserine), nucleic acid synthesis inhibitors (rifampicin and quinolones), protein synthesis inhibitors (streptomycin, kanamycin) and inhibitors of membrane energy metabolism (pyrazinamide)12,13,14. For instance, Isoniazid (INH)is the most widely used treatment for TB and its latent infections¹⁵. This drug enters the cell as a pro-drug, which is activated by MTB catalase-peroxidase enzyme (KatG). The enzyme activates INH and facilitates its interaction with various toxic reactive species (oxides, hydroxyl radicals and organic moieties) in the bacterial cell¹⁶, thereby, weakening the components of the cell wall and finally, the death of the bacteria¹⁷. INH targets inhA enzyme (enoylacyl carrier protein reductase), which is involved in the elongation of fatty acids in mycolic acid synthesis¹⁸. The replacement of an amino acid in the NADH binding site of inhA results into INH resistance, preventing the inhibition of mycolic acid biosynthesis¹⁹. INH-resistant strains often lose catalase and peroxidase activities due to KatG Ser315Thr mutation²⁰. Resistance to INH can also occur through mutations in the promoter region of inhA, leading to over expression of inhA, or by mutations at the inhA active site, thereby lowering inhA affinity for INH²¹. Rifampicin (RIF) have been used as first-line drug in combination with other therapies for the treatment of TB infections. RIF is believed to inhibit bacterial DNA-dependent RNA polymerase⁹. This drug interferes with RNA synthesis by binding to the β subunit of *mycobacterial* RNA polymerase, which is encoded by rpoB, thereby killing the organism. Resistance to RIF arises due to missense mutations in the gene. Mtb resistance to RIF occurs at a frequency of 10–7 to 10–8 as a result of mutations in rpoB²². About 96% of all mutations are found in the 81-bp core region of the gene between codons 507 and 533, with the most common changes occurring in codons Ser531Leu,His526Tyr and Asp516Val²³. Pyrazinamide (PZA) is another vital first-line drug used for the treatment of TB. It plays an important role in reducing the duration of TB treatment²⁴. PZA is a pro-drug that requires conversion to its active form, pyrazinoic acid (POA) by the *mycobacterial* enzyme pyrazinamidase/nicotinamidase. The efflux system of the mycobacterial cell enables massive accumulation of POA in the bacterial cytoplasm, leading to disruption of the bacterial membrane potential^{25,26}. The exact mechanism of PZA resistance remains unknown⁹. However, PZA resistance has been associated with defective pyrazinamidase/nicotinamidase activity which results from mutations that might occur at different regions (3-17, 61-85 and 132-142) of pyrazinamidase/nicotinamidase Ethambutol (EMB) is a first-line drug used in combination with INH, RIF and PZA preventing the emergence of drug resistance mycobacterium. This drug interferes with the cell wall of MTB through a synthetic mechanism thereby inhibiting arabinosyl-transferase (embB), an enzyme involved in cell wall biosynthesis28. The enzyme has been proposed as the target of EMB in Mtb11. Mutation is the cause of EMB resistance and it occurs at a rate of approximately 1 in 107 organisms. It increases the production of arabinosyl-transferase, which overwhelms the inhibitory effects of EMB. Studies have revealed five mutations in codon 306 accounting 70-90% of all EMB resistant strains²⁹. The resistance of Mtb to TB-drugs is mostly due to mutation which is a cause for concern. Therefore, it is important to search for new anti-tuberculosis agents, preferably those that can be readily and simply produced from medicinal plants. It has been estimated that about 80% of South African population is infected with tuberculosis, with 88% highest prevalence of latent TB among the age group of 30-39 years old living in the rural settlements³⁰. However, the strains of drug resistant tuberculosis have been on increase yearly in the country³¹. Polyherbal remedies have been used extensively for the treatment of various diseases for many centuries. They are mixtures of various herbs which contain multiple active constituents and act synergistically against infections³². Natural products and/or their semi-synthetic derivatives are important sources of new chemical compounds that might play an important role in the chemotherapy of tuberculosis³³. Several studies on the use of polyherbal medicines have revealed that these therapies possess pharmacological functions. For instance, Rajanyamalakadi, a polyherbal preparation which contains three herbal ingredients has been proven to show significant anti-diabetic, hypolipidemic and anti-oxidant properties³⁴. Also, Polyherbal health tonic tea used for the treatment of an array of diseases affecting humans and Sanjivani Vati used for the treatment of cough and cold have been shown to possess significant pharmacological activities^{35,36}. Other Polyherbal remedies such as Livina, Rhumapar tablet, Diakyur and Sugar Remedy have been proven to contain pharmacological activities 37,38,39,40. Many researchers have reported on the inhibitory properties of medicinal plants against *Mycobacterium tuberculosis* both in South Africa and in other countries^{33,41,42} but there is a dearth of information on the inhibitory properties of polyherbal medicines against this organism. The aim of the present study therefore was to evaluate polyherbal remedies used for the treatment of TB for anti-Mycobacterium tuberculosis activities. # Materials and methods Collection of polyherbal medicines A total of nine polyherbal medicines evaluated in this study were purchased from herbal sellers in five communities namely; Alice, Fort Beaufort, Hogsback, King Williams Town and East London in Amathole District Municipality of the Eastern Cape Province, South Africa (Figure 1). Each remedy was labelled and coded according to the place of collection; viz: King Williams Town site A (KWTa), King Williams Town site B (KWTb), King Williams Town site C (KWTc), Hogsback first site (HBfs), Hogsback second site (HBss), Hogsback third site (HBts), East London (EL), Alice (AL) and Fort Beaufort (FB). The small number of remedies obtained in this study was due to the fact that only a few traditional healers treat and sell remedies for TB. They claim to have acquired the knowledge from their ancestors; and this knowledge is been transferred from one generation to another. The herbal ingredients present in each of the remedies are shown in Table 1. The remedies were already prepared with water by the herbal sellers into clean 2-litre containers. They were then transported to Medicinal Plants and Economic Development Research Centre, University of Fort Hare for analysis. Figure 1: Map of Amathole District Municipality⁴³ Table 1: Herbal ingredients present in each of the polyherbal medicines used for the treatment of tuberculosis in Amathole district municipality, | Name/code | Local name | Botanical name | Parts used | |----------------|--|---|---| | AL | Mountain garlic Mlomo mnandi Red carrot Inongwe Mnonono River pumpkin Herbal menthol leaf Herbal buchu water | Allium sativum (L.) Glycyrrhiza glabra (L.) Daucus carota (L.) Hypoxis argentea (Fiscand) Strychnos decussata (Pappe) Gilg Gunnera perpensa (L.) Mentha piperita (L.) Agathosma betulina (Berg) | Rhizome
Root
Root
corms
Bark
Rhizome
Leaf
Leaf | | EL | Inongwe
Intelezi
Ngcambumvuthuza
Inqwebeba
Iqwili | Hypoxis argentea (Fiscand) Haworthia reinwardtii (Haw) Ranunculus multifidus (Forssk) Albuca flaccid (Jacq.) Alepidea amatymbica (Eckl. & Zeyh.) | corms
Leaf
Root
Leaf
Rhizome | | FB | Buchu leaf
Mountain garlic
Ginger
Chilli pepper | Agathosma betulina (Berg)
Allium sativum (L.)
Zingiber officinalis (L.)
Capsicum annuum (L.) | Leaf
Rhizome
Rhizome
Fruit | | KWTa | Maphipha
Mnonono
Ixonya
Inongwe
Sicimamlilo
Iphuzi | Rapanea melanophloeos (L.) Strychnos decussate (Pappe) Gilg Kniphofia drepanophylla (Baker) Hypoxis argentea (Fiscand) Pentanisia prunelloides (Klotzsch) Centella eriantha (Rich.) | Bark
Bark
Root
Corms
Rhizome
Rhizome | | KWTb | Umdlavuza
Mnonono
Inceba emhlophe | Lauridiatetragonia (L.F.) Strychnos decussate (Pappe) Gilg Hermannia sp. (L.) | Root
Bark
Root | | | meesa emmopne | Tresmanna sp. (E.) | | | Name/code | Local name | Botanical name | Parts used | | Name/code KWTe | _ | | | | | Local name | Botanical name | Parts used | | KWTe | Local name Mnonono Red carrot Mlungu mabele Calmoes | Botanical name Strychnos decussate (Pappe) Gilg Daucus carota (L.) Zanthoxylum capense (Thunb.) Acorus calamus (L.) | Parts used Bark Root Bark Rhizome | ## Sample preparation The already prepared water remedies were put in 2-liter containers. Each remedy was filtered with a Buchner funnel and Whatman No. 1 filter paper. The filtrate obtained was frozen at -40°C and freeze dried for 48h using a freeze dryer (Vir–Tis benchtop K, Vir–Tis Co., Gardiner, NY). The resulting sample was dissolved in 100% dimethylsulfoxide (DMSO) to a concentration of 50 mg/ml to make a stock solution⁴⁵. # Microbial strain and medium used for the assays Reference MTB strain H37Rv (ATCC 25618) was used for the anti-*Mycobacterium tuberculosis* assay. It was obtained from American Type, MD, USA Culture Collection. Bacterial culture with DMSO (1.2%), isoniazid (INH) at MIC99 (0.05 μg/ml) and bacterial culture only were used as controls⁴⁶. # Bacterial culture and drug preparation Suspensions of Mycobacterium tuberculosis H37Rv were grown using mycobacterial growth indicator tubes (MGIT). The inocula were prepared from Lowenstein-Jensen slants. To prepare an inoculum that was less than 15 days old from a culture grown on Lowenstein-Jensen medium, a suspension was prepared in saline and adjusted to a 1.0 McFarland standard. The suspension was vortexed for several minutes and was allowed to stand for 20 min for the initial settling of larger particles. The supernatant was transferred to an empty sterile tube and was allowed to stand for an additional 15 min. After being transferred to a new sterile tube, it was then adjusted to a 0.5 McFarland turbidity standard by visual comparison. A 1:5 dilution of the bacterial suspension was prepared, and 0.5 ml was inoculated into MGIT 7H12® (MGIT 960 system, Becton Dickinson, Sparks, USA) tubes containing test and control compounds⁴⁶. The growth of the organism was monitored through fluorescent changes due to oxygen consumption in the medium during active growth. Aliquots (100 μ l) of each herbal medicine was added to the MGIT tubes containing bacteria in Middlebrook 7H12® media, with the final DMSO concentration not exceeding 1.2%. The tubes were incubated at 37°C in MGIT system, and growth units (GU) were monitored for six days. All the remedies were tested at concentrations of 50 and 25 ug/ml⁴⁶. For MIC99 evaluations, a 1% bacterial control culture was prepared in a drug-free MGIT tube and the MIC₉₉ of the compound determined relative to the growth units of the control (GU–400). The MIC was determined as the lowest drug concentration that equals or lower than GU of the 1% bacterial culture. Controls that were also included are bacterial culture with DMSO (1.2%), isoniazid (INH) and bacterial culture only. All the herbal preparations were tested at two-fold decreasing concentration⁴⁶. #### Results In the present study, the susceptibility and minimum inhibitory concentration (MIC) of nine polyherbal medicines were determined against *M. tuberculosis* H37Rv, in vitro. The susceptibility testing revealed that all the remedies have anti-tubercular activity against *M. tuberculosis* H37Rv at concentrations below 50 ug/ml. Seven of these polyherbal preparations, namely; KWTa, KWTb, KWTc, HBfs, HBts, AL and FB showed activity at concentrations below 25 ug/ml, with the remaining remedies showing activity at concentrations between 25 and 50 ug/ml (Table 2). All the remedies exhibited inhibitory activity against *M. tuberculosis* H37Rv with KWTa, HBfs and HBts as the most active remedies at 1.562 µg/ml, followed by AL remedy which showed growth inhibition at 3.125 µg/ml. The remaining preparations from KWTb, KWTc, HBss, EL and FB showed growth inhibition against *M. tuberculosis* at 25 µg/ml. However, isoniazid showed more inhibitory activity against *M. tuberculosis* H37Rv at 0.05 µg/ml when compared to the polyherbal remedies (Table 2). Table 2. Susceptibility testing and minimum inhibition concentration (MIC₉₉₎ of nine polyherbal remedies against *M. tuberculosis* H37Rv using MGIT BACTEC 960 system | Polyherbal remedies | Susceptibility activity (µg/ml) | MIC ₉₉ of the remedies (µg/ml) | |---------------------|---------------------------------|-------------------------------------------| | KWTa | < 25 | < 1.562 | | KWTb | < 25 | 25 | | KWTc | < 25 | 25 | | HBfs | < 25 | < 1.562 | | HBss | > 25 | 25 | | HBts | < 25 | < 1.562 | | AL | < 25 | 3.125 | | EL | > 25 | 25 | | FB | < 25 | 25 | | Isoniazid (INH) | - | 0.05 | ### Discussion Tuberculosis has been a major health problem for developing countries including South Africa. The increasing resistance of the disease to first and second line drugs has demanded the need for a new search for anti-*mycobacteri- al* agents that could be effective, efficient, non-toxic and cost effective⁴⁷. The herbal preparations from KWTa, HBfs, HBts and AL showed a greater anti-mycobacterial activity, resulting in lower susceptibility patterns and MIC values observed. From observation, the aforementioned remedies contain a mixture of two or more of the following herbs: Allium sativum, Strychnos decussata, Daucus carota, Hypoxis argentea, Rapanea melanophloeo together with other herbs. Species of these plants have been investigated and shown to contain anthraquinones, glycosides, saponins, tannins, terpenoids, aloin, saponins, steroids and flavonoids 48,49,50. Other compounds include alkaloids, terpenes, resin, monoterpenoids, sesquiterpenoids and phenols which show activity against Mycobacterium tuberculosis^{51,15,52}. Allium sativum is a plant that has been reported as an established remedy for the treatment of tuberculosis⁵³. It possesses variety of biological properties such as anti-cancer, anti-microbial, antioxidant, immunomodulatory, anti-inflammatory, hypoglycaemic and anti-cardiovascular properties⁵⁴. Several studies conducted on the in vitro activity of Allium sativum against Mycobacterium tuberculosis revealed that this plant possesses anti-tubercular properties^{41,42,53,53}. The presence of sulphur compounds such as allicin, ajoene, allylmethyltrisulfide, diallyltrisulfide, diallyldisulphide has been associated with the anti-tubercular activity of this Allium sativum⁵⁵. Information on the use of Strychnos decussate as an anti-tubercular agent has not been reported. This study is the first to report the use of this plant as a remedy for the treatment of TB. However, it has been reported to possess anti-fungal activity⁵⁶. *Daucus carota* is a root vegetable. There are only a few reports on the anti-tubercular activity of this plant^{57,58}. However, it has been reported to be used as an anti-bacterial⁵⁹, anti-fertility⁶⁰, anti-oxidant⁶¹, ophthalmic and stimulant⁶², anti-septic, diuretic, hepatoprotective, anti-inflammatory^{63,64}, anti-helmintic, carminative⁶⁵, deobstruent, diuretic and galactogogue. According to the reports, phenolics, polyacetylenes, carotenoids, ascorbic acid and tocopherol are the most abundant phytonutrients present in this plant⁶⁶. Hypoxis argentea has also been reported to be used as a remedy for the treatment of TB⁵⁸. Species of the genus *Hypoxis* have been used as anti-bacterial, anti-fungal, anti-viral, anti-oxidant, anti-inflammatory, anti-diabetic, cardiovascular, anti-convulsant and anti-cancer^{67,68,69,70,71}. The presence of several compounds, especially glucosides, sterols and sterolins could be responsible for the different activities found in Hypoxis⁷². Rapanea melanophloeo has been screened for activity and found active against drug-resistant and drug-sensitive strains of *Mycobacterium tuberculosis*^{73,74}. This plant has been reported to contain bioactive compounds such as benzoquinones, saponins and tannins which could probably contribute to its activity⁷³. The high activity of these polyherbal remedies against *M. tuberculosis* could be attributed to the presence of multiple active constituents which may act in synergy and produce greater anti-*mycobacterial* activity. This is an indication that many natural products are potential source of antimycobacterial agents⁴². ### Conclusion This study has revealed that polyherbal remedies have the potential to cure tuberculosis. This is the first research work on the anti-tuberculosis activity of polyherbal medicines used for the treatment of tuberculosis in South Africa. The remedies might be potential sources of new anti-mycobacterial agents as they all showed activity against M. tuberculosis. However, the activity of these remedies and their active principles still require in vivo study in order to validate their potential as anti-tuberculosis agents. ## Acknowledgement The work was supported by the National Research Foundation, South Africa. ### Conflict of interest The authors declare no conflict of interest. ### References - 1. Baldwin PR, Reeves AZ, Powell KR, Napier RJ, Swimm AI, Sun A, Giesler K, Bommarius B, Shinnick TM, Snyder JP, Liotta DC. Monocarbonyl analogs of curcumin inhibit growth of antibiotic sensitive and resistant strains of Mycobacterium tuberculosis. *European Journal of Medicinal Chemistry* 2015; 6 (92): 693 9, doi:10.1016/j.ej-mech.2015.01.020 - 2. Antony M, James J, Misra CS, Sagadevan LDM, Veettil AT, Thankamani V. Anti-*mycobacterial* activity of the plant extracts of Alstonia scholaris. *International Journal of Current Pharmaceutical Research* 2012; 4 (1): 40 42. - 3. Tang J, Yam WC, Chen Z. *Mycobacterium tuberculosis* infection and vaccine development. *Tuberculosis* 2016; 98: 30 41, doi:10.1016/j.tube.2016.02.005 - 4. WHO. Global tuberculosis report. World Health Organization; Geneva 2015. - 5. Ibekwe NN, Ameh SJ. Plant natural products research in tuberculosis drug discovery and development: A situation report with focus on Nigerian biodiversity. *African Journal of Biotechnology* 2015; 13 (23): 2307 2320, doi:10.5897/AJB2013.13491. - 6. Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC, Dye C. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. *Archives of Internal Medicine* 2003; 163: 1009 1021, doi:10.1001/archinte.163.9.1009. - 7. Gomez JE, McKinney JD. *Mycobacterium tuberculosis* persistence, latency, and drug tolerance. *Tuberculosis* (Ed- - inb) 2004; 84: 29 44, doi:10.1016/j.tube.2003.08.003. PubMed - 8. Smith CV, Huang CC, Miczak A, Russell DG, Sacchettini JC, Honer zu Bentrup K Biochemical and structural studies of malate synthase from *Mycobacterium tuberculosis*. *Journal of Biological Chemistry* 2003; 278: 1735 1743, doi: 10.1074/jbc.M209248200 - 9. Shehzad A, Rehman G, Ul-Islam M, Khattak WA, Lee YS. Challenges in the development of drugs for the treatment of tuberculosis. *Brazilian Journal of Infectious Diseases* 2013; 17 (1): 74 81, http://dx.doi.org/10.1016/j. bjid.2012.10.009. - 10. Centers for Disease Control and Prevention (CDC). Emergence of *Mycobacterium tuberculosis* with extensive resistance to second-line drugs--worldwide, 2000-2004. MMWR. Morbidity and mortality weekly report 2006; 55 (11): 301 305 - 11. Zhang Y, Yew WW. Mechanisms of drug resistance in *Mycobacterium tuberculosis* [State of the art series. Drug-resistant tuberculosis. Edited by CY. Chiang. Number 1 in the series]. *The International Journal of Tuberculosis and Lung Disease*. 2009; 13 (11): 1320 1330, PubMed. - 12. Al-Deeb AO, Alafeefy AM. Synthesis of some new 3H-quinazolin-4-one derivatives as potential anti-tuber-cular agents. *World Apply Science Journal* 2008; 5 (1): 94 99. - 13. Trivedi AR, Siddiqui AB, Shah VH. Design, synthesis, characterization and antitubercular activity of some 2-heterocycle-substituted phenothiazines. *Arkivoc.* 2008; 1 (2): 210- 217. PubMed - 14. Islam M, Siddiqui AA, Rajesh R. Synthesis, antitubercular, antifungal and anti-bacterial activities of 6-substituted phenyl-2-(3í-substituted phenyl pyridazin-6í-yl)-2,3,4,5-tetrahydropyridazin-3-one. *Acta Poloniae Pharmaceutica* 2008; 65 (3): 353 362. - 15. Heym B, Saint-Joanis B, Cole ST. The molecular basis of isoniazid resistance in *Mycobacterium tuberculosis*. Tubercle and Lung Disease 1999; 79: 267 271, doi:10.1054/tuld.1998.0208. - 16. Barry CE, Lee RE, Mdluli K, Sampson AE, Schroeder BG, Slayden RA, Yuan Y. Mycolic acids: structure, biosynthesis and physiological functions. *Progress in lipid research* 1998; 37: 143 79, doi:10.1016/S0163-7827(98)00008-3 - 17. Winder F. Mode of action of the antimycobacterial agents and associated aspects of the molecular biology of mycobacteria. In: Ratledge C, Stanford J, editors. *The biology of mycobacteria*, vol. 1. New York: Academic Press; 1982. p. 354 438. - 18. Zhang Y, Telenti A. Genetics of drug resistance in Mycobacterium tuberculosis. In: Hatful GF, Jacobs Jr WR, editors. Molecular genetics of mycobacteria. Washington DC: ASM Press; 2000. p. 235 54. - 19. Telenti A, Imboden P, Marchesi F. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. *Lancet* 1993; 341: 647-50 PubMed , doi:10.1016/0140-6736(93)90417-F. - 20. Hazbon MH, Brimacombe M, Bobadilla del Valle M, Cavatore M, Guerrero MI, Varma-Basil M. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. *Antimicrobial agents and chemotherapy* 2006; 50 (8): 2640 2649, doi: 10.1128/AAC.00112-06. - 21. Rozwarski DA, Grant GA, Barton DH, Jacobs WR, Jr, Sacchettini JC. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. *Science* 1998; 279 (5347): 98-102, doi: 10.1126/science.279.5347.98. - 22. Dye C, Williams BG. The population dynamics and control of tuberculosis. *Science* 2010; 328: 856 861 PubMed, doi:10.1126/science.1185449. - 23. Zhang Y, Wade MM, Scorpio A, Zhang H, Sun Z. Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. *Journal of Antimicrobial Chemotherapy* 2003; 52: 790 795, doi: 10.1093/jac/dkg446. - 24. Salfinger M, Crowle AJ, Reller LB. Pyrazinamide and pyrazinoic acid activity against tubercle bacilli in cultured human macrophages and in the BACTEC system. *Journal of Infectious Diseases* 1990; 162: 201 207, doi: 10.1093/infdis/162.1.201. - 25. Zhang Y, Scorpio A, Nikaido H, Sun Z. Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide. *Journal of Bacteriology* 1999; 181: 2044 2049. - 26. Sheen P, Ferrer P, Gilman RH, López-Llano J, Fuentes P, Valencia E, Zimic MJ. Effect of pyrazinamidase activity on pyrazinamide resistance in Mycobacterium tuberculosis. *Tuberculosis* 2009; 89: 109 113 PubMed, doi:10.1016/j.tube.2009.01.004. - 27. Scorpio A, Zhang Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. *Nature Medicine* 1996; 2 (6): 662 667, doi:10.1038/nm0696-662. - 28. Telenti A, Philipp WJ, Sreevatsan S, Bernasconi C, - Stockbauer KE, Wieles B, Musser JM, Jacobs WR. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. *Nature Medicine* 1997; 3 (5): 567 570, doi:10.1038/nm0597-567. - 29. Van Niekerk C, Ginsberg A. Assessment of global capacity to conduct tuberculosis drug development trials: do we have what it takes? *The International Journal of Tuberculosis and Lung Disease* 2009; 13: 1367 1372. - 30. TB Statistics South Africa. TB Statistics for South Africa National & provincial 2015. - 31. Hughes J, Osman M. Diagnosis and management of drug-resistant tuberculosis in South African adults. SAMJ: *South African Medical Journal* 2014; 104: 0 0, http://dx.doi.org/10.7196/SAMJ.9097. - 32. Bhope, SG, Nagore DH, Kuber VV, Gupta PK, Patil MJ. Design and development of a stable polyherbal formulation based on the results of compatibility studies. *Pharmacognosy Research* 2011; 3: 122, doi: 10.4103/0974-8490.81960. - 33. Pavan FR., Leite CQF, Coelho RG, Coutinho ID, Honda NK, Cardoso CAL, Sato DN. Evaluation of anti-Mycobacterium tuberculosis activity of Campomanesia adamantium (Myrtaceae). Química Nova 2009; 32: 1222-1226 PubMed, http://dx.doi.org/10.1590/S0100-40422009000500026. - 34. Faizal P, Suresh S, Kumar RS, Augusti KT. A study on the hypoglycaemic and hypolipidemic effects of an ayurvedic drug Rajanyamalakadi in diabetic patients. *Indian Journal of Clinical Biochemistry* 2009; 24 (1): 82 87, doi: 10.1007/s12291-009-0014-1. - 35. Adeneye AA, Benebo AS. Pharmacological evaluation of a Nigerian polyherbal health tonic tea in rat. *African Journal of Biomedical Research* 2007; 10 (3). - 36. Gairola S, Gupta V, Bansal P, Maithani M, Krishna CM. Pharmacological activities of polyherbal formulation: Sanjivani Vati. *International Journal of Ayurvedic Medicine* 2011; 11: 2 (1). - 37. Joshi CS, Priya ES, Venkataraman S. Acute and subacute toxicity studies on the polyherbal antidiabetic formulation Diakyur in experimental animal models. *Journal of Health Science* 2007; 53 (2): 245 249, http://doi.org/10.1248/jhs.53.245. - 38. Gulati K, Ray A, Vijayan VK. Assessment of protective role of polyherbal preparation, Livina, against anti-tubercular drug induced liver dysfunction. 2010, http://imsear.hellis.org/handle/123456789/144975. - 39. Patil VP, Rajput AP, Chaudhari PM, Chaudhari SP, Baviskar DT. Pharmacological evaluation of marketed - polyherbal formulation. Asian Journal of Pharmaceutical and Clinical Research 2013; 6 (4): 80 85. - 40. Singhal S, Rathore AS, Lohar V, Dave R, Dave J. Pharmacological Evaluation of "Sugar Remedy," A Polyherbal Formulation, on Streptozotocin-Induced Diabetic Mellitus in Rats. *Journal of Traditional and Complementary Medicine* 2014; 4 (3): 189, doi: 10.4103/2225-4110.127800. - 41. Green E, Samie A, Obi CL, Bessong PO, Ndip RN. Inhibitory properties of selected South African medicinal plants against Mycobacterium tuberculosis. *Journal of Ethnopharmacology* 2010; 130 (1): 151 157, doi:10.1016/j. jep.2010.04.033 - 42. Gupta P, Bhatter P, D'souza D, Tolani M, Daswani P, Tetali P, Birdi T. Evaluating the anti-Mycobacterium tuberculosis activity of Alpinia galanga (L.) Willd. axenically under reducing oxygen conditions and in intracellular assays. *BMC Complementary and Alternative Medicine* 2014; 14: 1. doi: 10.1186/1472-6882-14-84. - 43. Famewo EB, Clarke AM, Afolayan AJ. Identification of bacterial contaminants in polyherbal medicines used for the treatment of tuberculosis in Amatole District of the Eastern Cape Province, South Africa, using rapid 16S rRNA technique. *Journal of Health, Population and Nutrition*, 2016; 35 (1): 27, doi: 10.1186/s41043-016-0064-y. - 44. Famewo EB, Clarke AM, Afolayan AJ. Ethno-medicinal documentation of polyherbal medicines used for the treatment of tuberculosis in Amathole District Municipality of the Eastern Cape Province, South Africa. *Pharmaceutical Biology* 2017; 55 (1): 696 700, http://dx.doi.org/10.1080/13880209.2016.1266670. - 45. Koduru S, Grierson DS, Afolayan AJ. Antimicrobial Activity of Solanum aculeastrum. *Pharmaceutical Biology* 2006; 44: 283 286, doi:10.1080/13880200600714145. - 46. Askun T, Satil F, Tumen G, Yalcin O, Modanlioglu S. Antimycobacterial activity some different Lamiaceae plant extracts containing flavonoids and other phenolic compounds. *INTECH Open Access Publisher* 2012. - 47. Kirimuhuzya C, Waako P, Joloba M, Odyek O. The anti-mycobacterial activity of Lantana camara a plant traditionally used to treat symptoms of tuberculosis in South-western Uganda. *African Health Sciences* 2009; 9: 40 -45. - 48. Chah KF, Muko KN, Oboegbulem SI. Antimicrobial activity of methanolic extract of Solanum torvum fruit. *Fitoterapia* 2000; 71: 187 189, doi:10.1016/S0367-326X(99)00139-2. - 49. Okunade AL, Elvin-Lewis MP, Lewis WH. Natural antimycobacterial metabolites: current status. Phy- - tochemistry 2004; 65: 1017-1032, doi:10.1016/j.phytochem.2004.02.013. - 50. Ali BH, Blunden G, Tanira MO, Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. *Food and Chemical Toxicology* 2008; 46: 409 -420, doi:10.1016/j.fct.2007.09.085. - 51. Arunkumar S, Muthuselvam M. Analysis of phytochemical constituents and antimicrobial activities of Aloe vera L. against clinical pathogens. *World Journal of Agricultural Sciences*. 2009; 5 (5): 572 576. - 52. Kose LS, Moteetee A, Van Vuuren S. Medicinal plants used for the treatment of tuberculosis in Lesotho: An ethnobotanical survey. *South African Journal of Botany* 2015; 98: 183, doi:10.1016/j.sajb.2015.03.059. - 53. Hannan A, Ullah MI, Usman M, Hussain S, Absar M, Javed K. Anti-mycobacterial activity of garlic (Allium sativum) against multi-drug resistant and non-multi-drug resistant Mycobacterium tuberculosis. *Pakistan Journal of Pharmaceutical Sciences* 2011; 24 (1): 81 85. - 54. Reuter HD, Koch HP, Lawson LD. Therapeutic effects and applications of garlic and its preparations. Garlic: The Science and Therapeutic Application of Allium sativum L. In: Koch HP, Lawson LD, editors. Baltimore, MD, USA: Williams and Wilkins; 1996. pp. 135–512. - 55. Viswanathan V, Phadatare AG, Mukne A. Antimy-cobacterial and antibacterial activity of Allium sativum bulbs. *Indian Journal of Pharmaceutical Sciences*. 2014, doi: 10.4103/0250-474X.135018. - 56. Samie A, Tambani T, Harshfield E, Green E, Ramalivhana JN, Bessong PO. Antifungal activities of selected Venda medicinal plants against Candida albicans, Candida krusei and Cryptococcus neoformans isolated from South African AIDS patients. *African Journal of Biotechnology* 2010; 17: 9 (20). - 57. Fitzpatrick FK. Plant substances active against Mycobacterium tuberculosis. *Antibiotics and Chemotherapy* 1954; 4: 528 536, PubMed. - 58. Lawal IO, Grierson DS, Afolayan AJ. Phytotherapeutic information on plants used for the treatment of tuberculosis in Eastern Cape Province, South Africa. Evidence-Based Complementary and Alternative Medicine 2014; 22: 2014, http://dx.doi.org/10.1155/2014/735423. 59. Ahmed AA, Bishr MM, El-Shanawany MA, Attia EZ, Ross SA, Paré PW. Rare trisubstituted sesquiterpenes daucanes from the wild Daucus carota. *Phytochemistry*. 2005; 66 (14): 1680 PubMed 1684, doi:10.1016/j.phytochem.2005.05.010. - 60. Majumder PK, Dasgupta S, Mukhopadhaya RK, Mazumdar UK, Gupta M. Anti-steroidogenic activity of the petroleum ether extract and fraction 5 (fatty acids) of carrot (Daucus carota L.) seeds in mouse ovary. *Journal of Ethnopharmacology* 1997; 57 (3): 209 212, doi:10.1016/S0378-8741(97)00056-1. - 61. Arabshahi-D S, Devi DV, Urooj A. Evaluation of antioxidant activity of some plant extracts and their heat, pH and storage stability. *Food Chemistry* 2007; 100 (3): 1100 PubMed 1115, doi:10.1016/j.foodchem.2005.11.014. - 62. Ghisalberti EL. The daucane (carotane) class of sesquiterpenes. *Phytochemistry* 1994; 37 (3): 597–623, doi:10.1016/S0031-9422(00)90327-3. - 63. Foster S, Duke JA. A field guide to medicinal plants and herbs of eastern and central North America. Houghton Mifflin Harcourt; 2000. - 64. Porchezhian E, Ansari SH, Ali M. Analgesic and anti-inflammatory activity of volatile oil from Daucus carota Linn seeds. *Indian Journal of Natural Products* 2000; 16 (1): 24 26. - 65. Bishayee A, Sarkar A, Chatterjee M. Hepatoprotective activity of carrot (Daucus carota L.) against carbon tetrachloride intoxication in mouse liver. *Journal of Ethnopharmacology* 1995; 47 (2): 69 74, doi:10.1016/0378-8741(95)01254-B. - 66. Sharma KD, Karki S, Thakur NS, Attri S. Chemical composition, functional properties and processing of carrot—a review. *Journal of Food Science and Technology* 2012; 49 (1): 22 32, doi: 10.1007/s13197-011-0310-7. - 67. Ker JA. Ventricular tachycardia as an adverse effect of the African Potato (Hypoxis sp.). Cardiovascular journal of South Africa: Official Journal for Southern Africa Cardiac Society [and] South African Society of Cardiac Practitioners 2005; 16 (1): 55, PubMed. - 68. Buwa LV, Van Staden J. Antibacterial and antifungal activity of traditional medicinal plants used against venereal diseases in South Africa. *Journal of Ethnopharmacology* 2006; 103 (1): 139 142, DOI:10.1016/j.jep.2005.09.020. 69. Steenkamp V, Gouws MC. Cytotoxicity of six South African medicinal plant extracts used in the treatment of cancer. *South African Journal of Botany* 2006; 72 (4): 630 633, doi:10.1016/j.sajb.2006.02.004. - 70. Steenkamp V, Gouws MC, Gulumian M, Elgorashi EE, Van Staden J. Studies on antibacterial, anti-inflammatory and antioxidant activity of herbal remedies used in the treatment of benign prostatic hyperplasia and prostatitis. *Journal of Ethnopharmacology* 2006; 103 (1): 71 75, doi:10.1016/j.jep.2005.07.007. - 71. Drewes SE, Hall AJ, Learmonth RA, Upfold UJ. Isolation of hypoxoside from Hypoxis rooperi and synthesis of (E)-1, 5-bis (3', 4'-dimethoxyphenyl) pent-4-en-1-yne. *Phytochemistry* 1984; 23 (6): 1313-1316, doi:10.1016/S0031-9422(00)80449-5. PubMed - 72. Ncube B, Ndhlala AR, Okem A, Van Staden J. Hypoxis (Hypoxidaceae) in African traditional medicine. *Journal of Ethnopharmacology* 2013; 50 (3): 818 827, doi: 10.1016/j.jep.2013.10.032. - 73. Lall N, Meyer JJ. In vitro inhibition of drug-resistant and drug-sensitive strains of Mycobacterium tuberculosis by ethnobotanically selected South African plants. *Journal of Ethnopharmacology* 1999; 66 (3): 347 354, doi:10.1016/S0378-8741(98)00185-8. - 74. Dzoyem JP, Aro AO, McGaw LJ, Eloff JN. Antimy-cobacterial activity against different pathogens and selectivity index of fourteen medicinal plants used in Southern Africa to treat tuberculosis and respiratory ailments. *South African Journal of Botany* 2016; 31 (102): 70 74, doi:10.1016/j.sajb.2015.08.002.