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Antibody glycosylation has been shown to change with
various processes. This review presents mass spectro-
metric approaches for antibody glycosylation analysis at
the level of released glycans, glycopeptides, and intact
protein. With regard to IgG fragment crystallizable glyco-
sylation, mass spectrometry has shown its potential for
subclass-specific, high-throughput analysis. In contrast,
because of the vast heterogeneity of peptide moieties,
fragment antigen binding glycosylation analysis of poly-
clonal IgG relies entirely on glycan release. Next to IgG,
IgA has gained some attention, and studies of its O- and
N-glycosylation have revealed disease-associated glycosy-
lation changes. Glycoproteomic analyses of IgM and IgE are
lagging behind but should complete our picture of glycosy-
lation’s influence on antibody function. Molecular & Cel-
lular Proteomics 12: 10.1074/mcp.R112.026005, 856–865,
2013.

BIOLOGICAL ROLE OF IMMUNOGLOBULIN GLYCOSYLATION

Immunoglobulins (Igs)1 are produced by the adaptive im-
mune system in order to identify and neutralize foreign anti-
gens and pathogens to which the host has been exposed. In
humans, five known classes of Igs (IgG, IgM, IgA, IgE, and
IgD) are secreted in variable amounts by B cells during an
immune response. Although these Ig classes are built from Ig
domains and are thus structurally related, they differ consid-
erably in several aspects, such as their glycosylation (1). Over
the past 30 years, numerous studies have explored the struc-
tural, biological, and clinical roles of Ig glycosylation, focusing
mainly on IgG molecules, which are the most abundant serum
Ig, occurring at 10 to 15 mg/ml (value for IgG1) in human
circulation (1). Each IgG molecule consists of two heavy and

two light chains that together form two fragment antigen
binding (Fab) portions and one fragment crystallizable (Fc)
portion (Fig. 1). Two N-glycans are linked to the heavy chains
at Asn 297 in the CH2 domain of the protein backbone (Fc
part). These Fc glycans are in part located in a cavity between
the two heavy chains and influence the conformation of the
protein (2, 3). Their removal by glycosidases or via mutation of
the glycosylation sites reduces the binding of IgG to Fc-
gamma receptors (Fc�R) (4–6). The Fc-linked carbohydrates
are complex-type biantennary N-glycans with a high level of
core-fucosylation and a variable number of galactoses (Gal)
resulting in the prevalent glycoforms G0F (no Gal), G1F (one
Gal), and G2F (two Gal). A minor proportion of these glycans
might contain a bisecting N-acetylglucosamine (GlcNAc) res-
idue and/or terminal sialic acids substituting antenna Gal (7)
(see Fig. 1).

Many reports have described variations of IgG Fc glycosy-
lation, especially of the degree of galactosylation, related to
age, sex, heritability, and pregnancy, as well as to autoim-
mune diseases, infectious diseases, and cancers (e.g. Refs.
8–15). For instance, an increase in IgG G0F is observed in the
serum of patients with rheumatoid arthritis (7) and correlates
with disease progression and severity (16, 17). These clinical
observations have led researchers to examine in detail the
relationship between Fc glycan structures, the biological
properties of IgG, and the degree of inflammation. It was
found that an absence of sialic acids and low levels of galac-
tosylation might confer important pro-inflammatory properties
to IgG by facilitating the formation of immune complexes and
favoring the binding of IgG to activating Fc�R (18–20). Simi-
larly, the absence of core-fucose or the presence of bisecting
GlcNAc improved the affinity of the Fc tail to Fc�RIIIa, thereby
enhancing antibody-dependent cellular cytotoxicity (21–23).
On this basis, new glycoengineered anti-cancer antibodies
carrying afucosylated Fc glycans are currently in clinical de-
velopment, such as the anti-CD20 monoclonal antibody
(mAb) obinutuzumab (GA101) for use against B-cell lym-
phoma (24, 25).

In addition, Fc-linked glycans appear to modulate the acti-
vation of the complement system. Whereas the classical com-
plement pathway can be triggered by the preferential binding
of C1q to fully galactosylated IgG, the lectin pathway is re-
cruited through the recognition of agalactosylated IgG by
mannose-binding lectin (26, 27). In contrast, the presence of
terminal galactose and/or sialic acid residues on Fc glycans
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might confer anti-inflammatory properties to IgG via interac-
tion with the human lectins Dectin-1 (28) and dendritic cell-
specific intercellular adhesion molecule-3-grabbing non-in-
tegrin (19, 29, 30). Thus, variations in the structure of IgG Fc
glycans might skew the immune system toward a pro- or an
anti-inflammatory response by modulating the interaction of
IgG with several immune components, including Fc�R, com-
plement factors, and lectins. Interestingly, it was recently
established that IgG Fc glycosylation may be modulated by
factors such as hormones (e.g. estradiol and progesterone),
cytokines (e.g. IFN-� and IL-21), bacterial DNA (CpG oligode-
oxynucleotide), and food metabolites (e.g. all-trans retinoic
acid and drugs) (31–33).

The influence of glycosylation on the biological properties
of other Ig classes has been poorly explored. Some reports
have established that variations in the glycosylation of IgA and
IgE modulate the affinity for their respective receptors, Fc�R

and Fc�R (1). Results from clinical studies also support the
idea that there is some structural and functional role of gly-
cosylation in all classes of Ig. An example is IgA1, which
exhibits O-glycosylation at various sites of its hinge region
peptide (see Fig. 1). In nephropathy, lowered levels of IgA1
O-glycan sialylation and galactosylation have been observed
(34). These abnormally glycosylated IgA1s were shown to
have a longer half-life, to self-aggregate, and to form com-
plexes with other molecules of the immune system, including
IgG and mannose-binding lectin, thereby promoting IgA dep-
osition in the kidney mesangium and exacerbating inflamma-
tion (1).

ANALYTICAL APPROACHES FOR IG GLYCOSYLATION ANALYSIS

Glycosylation analysis of glycoproteins in general and of Igs
in particular may be addressed via (a) intact glycoprotein
analysis, (b) the characterization of glycopeptides, or (c) struc-

FIG. 1. Glycoproteomic analysis of human IgG and IgA. Glycosylation of IgG1 (P01857), IgG2 (P01859), IgG3 (P01860), IgG4 (P01861),
IgA1 (P01876) in secretory IgA (sIgA), and IgA2 (P01877). Heavy chains are depicted in gray, light chains in blue, secretory components
(P01833) of sIgA in purple, and joining chain (P01591) in orange. Glycosylation sites are indicated by the respective amino acid number and
schematic N- and O-glycans, respectively. Tryptic peptides for all constant region glycosylation sites are given except for the secretory
component and the joining chain of sIgA. Glycans are depicted according to CFG notation; blue square, N-acetylglucosamine; green circle,
mannose; yellow circle, galactose; red triangle, fucose; purple diamond, sialic acid. If known, further information on N-glycan structures is given
(51, 74, 100). For IgA, values in parentheses indicate the abundance in plasma IgA/sIgA. The composition of O-glycans on the IgA HR peptide
is reported according to Deshpande et al. (91).
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tural analysis of chemically or enzymatically released glycans
(15, 35, 36). Mass spectrometric analysis of glycoproteins at
the glycopeptide or released glycan level are currently the
methods of choice for obtaining sensitive and comprehensive
glycosylation information from complex biological samples
(37).

Analysis at the glycopeptide level is the most favorable
approach, as site-specific glycan heterogeneity can be char-
acterized and glycan compositions can be correlated to their
attachment sites on the protein (35). In particular, liquid
chromatography–mass spectrometry (LC/MS) has been
widely used for glycopeptide analysis. The advantage of LC-
electrospray ionization (ESI)-MS analysis is the up-front chro-
matographic separation of the (glyco)peptides prior to MS
analysis. Obviously the choice of an efficient chromatographic
separation method for a glycopeptide mixture after proteolytic
digestion is crucial. For this purpose, C18 reversed-phase
(RP) HPLC is widely used, next to hydrophilic interaction liquid
chromatography (HILIC) and graphitized carbon HPLC (15,
38, 39).

Released glycan samples are generally of lower complexity
than glycopeptide samples, and various targeted and untar-
geted glycomics approaches are commonly applied at the
released glycan level. A common high-throughput approach
involves the permethylation of C18 RP and carbon solid phase
extraction purified glycans followed by matrix-assisted lased
desorption ionization (MALDI) time-of-flight (TOF) MS analysis
(36, 40). This review focuses mainly on Ig glycosylation anal-
ysis via MS of glycopeptides, and we refer to other reviews for
more in-depth coverage of released glycan analysis (41–44).

Total IgG Glycosylation Analysis—Polyclonal human IgG
N-glycosylation has been studied extensively at the level of
released N-glycans. A seminal 1985 work by Parekh et al.
demonstrated increased levels of agalactosylated glycans as-
sociated with rheumatoid arthritis and osteoarthritis (7). That
paper represents a major milestone in IgG research and gave
rise to a continuing range of studies on human IgG glycosy-
lation using a diverse range of methods for glycan analysis
such as HILIC with fluorescence detection, capillary gel elec-
trophoresis with laser-induced fluorescence detection, and
MS, demonstrating IgG glycosylation changes with age, sex,
pregnancy, and diseases (14, 15).

A high-throughput isolation and glycosylation analysis of
IgG was published recently by Pucic et al. (10): IgGs of 2298
individuals were efficiently isolated from plasma using a 96-
well protein G monolithic plate. The N-glycans were released
using PNGase F, labeled with 2-aminobenzamide, and ana-
lyzed by means of HILIC HPLC with fluorescence detection.
High variability in IgG glycosylation among individuals was
observed and was found to be approximately three times
higher than in the total plasma N-glycome. Heritability in this
case was found to be between 30% and 50%, and gender
appeared not to be an important predictor for any IgG gly-
cans. Sialylation was found to be the most endogenously

defined glycosylation feature, with up to 60% of variance
explained by heritability.

Analysis of total IgG glycosylation at the level of released
glycans registers mixtures of Fc and Fab glycans from the
different subclasses of IgG. Approaches that provide more
specific information on IgG glycosylation are presented in the
following two sections.

IgG Fc Glycosylation Analysis—Mass spectrometric analy-
sis of tryptic Fc glycopeptides allows the discrimination of
different human IgG subclasses based on minor differences in
amino acid sequences (Fig. 2). For IgG3, different allotypes
appear to prevail in different ethnic groups (45, 46). Analysis of
IgG3 from Caucasians mainly revealed allotype G3m(b*),
which exhibits a phenylalanine (F) in position 296 (47). As a
consequence, the resulting tryptic Fc glycopeptides of IgG2
and IgG3 show identical peptide moieties. In contrast, IgG3
from Asian donors was reported to exhibit a tyrosine (Y) in
position 296, resulting in identical peptide moieties for IgG3
and IgG4 (45). Thus, allotypic variations have to be taken into
account when comparing subclass-specific IgG Fc-glycosy-
lation profiles of genetically different groups.

A very convenient approach for IgG Fc glycosylation anal-
ysis is the measurement of (tryptic) Fc glycopeptides, which is
generally performed via RP-LC-MS/MS (37, 48–50). Chro-
matographic separation is observed on the basis of small
structural differences in a single amino acid side chain. Tryptic
Fc glycopeptides of IgG1 carrying tyrosine residues in posi-
tions 296 and 300 elute in front of tryptic IgG3/4 glycopep-
tides (F296 and Y300), which again elute in front of tryptic
IgG2/3 Fc glycopeptides (F296 and F300). In contrast,
changes in the glycan structure with regard to galactosylation,
fucosylation, and bisection hardly affect RP retention times.
Consequently, IgG1, IgG2/3, and IgG3/4 glycopeptide clus-
ters are observed in distinct retention time windows. Isomeric
tryptic Fc glycopeptide species belonging to different IgG
subclasses (i.e. fucosylated IgG1 and non-fucosylated
IgG3/4, or fucosylated IgG3/4 and non-fucosylated IgG2/3)
are consistently separated by RP-LC, allowing their unambig-
uous assignment to specific IgG subclasses upon mass spec-
trometric detection. Sialic acid, however, can have a strong
influence on IgG Fc glycopeptide retention, depending on the
solvent system. The use of an acetonitrile gradient in aqueous
0.1% formic acid results in greater retention of sialylated
species than neutral glycopeptides (48, 50). We recently op-
timized an RP-nano-LC-ESI-MS setup for fast and robust
subclass-specific Fc-glycosylation profiling in large sets of
IgG samples (51). Tryptic (glyco)peptides of protein A or pro-
tein G affinity-purified polyclonal IgG were collected onto a
porous particle C18 trap column and separated on a fused-
core C18 column using a short gradient of aqueous 0.1%
trifluoroacetic acid and acetonitrile (16 min total analysis
time). When formic acid was replaced with trifluoracetic acid,
sialylated glycopeptides eluted together with their non-sialy-
lated counterparts. Long-term stable and robust mass spec-

Glycoproteomic Analysis of Antibodies

858 Molecular & Cellular Proteomics 12.4



trometric analysis was achieved by employing a sheath-flow
ESI sprayer with isopropanol:water:propionic acid (50:30:20;
v:v:v) as a sheath liquid. The relative standard deviations for
the eight major observed glycopeptide species remained less
than 4% over a time range of several months, thereby allow-
ing the analysis of thousands of samples with high precision.

HILIC-LC-MS also has been reported as a versatile tool for
the separation of glycans and glycopeptides (52–54). Tryptic
IgG1 Fc glycopeptides experience more retention than IgG2
Fc glycopeptides as a result of the additional oxygen atoms
presented by the tyrosine residues at positions 296 and 300
(54). Furthermore, greater retention is observed with increas-
ing glycan size/complexity, and chromatographic distinction
between the 3-arm and 6-arm isomers of monogalactosylated
species is often possible because of the slightly greater re-
tention of the 3-arm isomer (54, 55). The high organic modifier
content applied in HILIC mobile phases makes this separation
technique particularly well suited for MS interfacing.

Fast and straightforward analysis of IgG Fc glycosylation is
achieved by enriching the tryptic Fc glycopeptides using
HILIC solid phase extraction followed by direct-infusion ESI-
MS(/MS) (56, 57). Alternatively, MALDI-MS of purified Fc-

glycopeptides can be performed with either positive- or neg-
ative-mode ionization (37, 58–60). When combined with
delayed-extraction TOF detection, MALDI analysis of sialy-
lated Fc-glycopeptides might result in a vast degree of in-
source decay, largely dependent on the matrix chosen for
sample preparation. When �-cyano-4-hydroxycinnamic acid
is used, sialylated species are almost completely degraded. In
contrast, the analysis of sialylated Fc glycopeptides is possi-
ble with 2,5-dihydroxybenzoic acid and 4-chloro-�-cyanocin-
namic acid, especially when combined with negative-mode
ionization (61). Interestingly, MALDI Fourier transform ion cy-
clotron resonance (FTICR) MS, which features an intermedi-
ate-pressure ion source, allows the registration of sialylated
glycopeptides with both 2,5-dihydroxybenzoic acid and
�-cyano-4-hydroxycinnamic acid (59). This may be attributed
to the efficient cooling of nascent ions, which limits in-source
decay (62). Although direct infusion-ESI-MS and MALDI-MS
have superior throughput relative to LC/MS approaches, the
accurate relative quantification of polyclonal human IgG Fc
glycoforms might be compromised by the presence of iso-
meric tryptic glycopeptides of different IgG subclasses. How-
ever, this is not an issue with mAbs. These high-throughput

FIG. 2. Murine and human plasma IgG Fc glycosylation differences. Tryptic glycopeptides (A) of murine (IgG1, BAE25911, BAC30871;
IgG2a, P01863, P01864; IgG2b, P01867; IgG3, P03987) and human (Fig. 1) polyclonal IgG were analyzed via RP-nano-LC sheath-flow ESI-MS
using a gradient of aqueous 0.1% trifluoroacetic acid and acetonitrile. Spectra represent the sum of a 45-s elution window depicting [M�3H]3�

species of murine IgG2a/b (B) and human IgG1 (C) Fc glycoforms.
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approaches show particularly high potential for biopharma-
ceutical quality control and fermentation monitoring (57). It
has to be taken into account, however, that unlike human
polyclonal IgG, which is over 99% glycosylated in the Fc
moiety, biotechnologically produced IgG might contain Fc
peptides holding the consensus N-glycosylation sequence
but lacking glycosylation. As most non-glycosylated peptides
will be lost upon HILIC solid phase extraction, RP and porous
graphitized-carbon-based sample preparations might be ad-
vantageous for such samples in order to allow the simultane-
ous analysis of glycosylated and non-glycosylated versions of
the Fc peptide covering the N-glycosylation site.

Another strategy for analyzing IgG Fc glycosylation on bio-
pharmaceuticals involves ESI-high-resolution-MS(/MS) of in-
tact mAbs or Fc portions prepared via reduction or enzymatic
digestion (57, 63, 64). The high mass accuracy obtained with
current high-resolution mass spectrometers allows one to
determine the glycoform composition on intact monoclonal
antibodies based on accurate mass with a typical 15-ppm (63)
to 2-ppm (64) mass accuracy error. Moreover, up to 33%
peptide sequence coverage has been reported for an intact
commercial recombinant IgG using an LC-ESI-electron trans-
fer dissociation high-resolution MS/MS approach in which
time-domain transients recorded in different LC-MS/MS ex-
periments were averaged prior to Fourier transform signal
processing (64). Although intact glycoprotein analysis works
well to profile Fc glycoforms on mAbs, it might not be appli-
cable for highly complex samples such as human polyclonal
IgG.

To elucidate the role of IgG Fc glycosylation in autoimmu-
nity, inflammatory diseases, and cancer, many studies use
murine disease models. Fc glycosylation of murine IgGs, how-
ever, considerably differs from that of human IgGs with regard
to sialylation, fucosylation, and bisection (Fig. 2). The sialic
acid on murine IgG appears to be exclusively N-glycolyl-
neuraminic acid, whereas human IgG exclusively exhibits N-
acetylneuraminic acid (27, 65). Moreover, serum-derived mu-
rine IgG1 and IgG2a/b both show high levels of disialylated Fc
glycopeptides (signal at m/z 1127.41; Fig. 2A) (65–67). On
human IgG, disialylated Fc N-glycopeptides have only re-
cently been reported for recombinantly expressed mAb at a
low relative abundance (57), but they can also be found on
polyclonal IgG from human circulation, albeit at a low relative
intensity (signal at m/z 1180.79; Fig. 2B). Fucosylation on
murine IgG is even higher than on human IgG, with non-
fucosylated glycoforms being almost completely missing.
Also, bisected species are lacking on murine IgG Fc portions,
making the overall glycoform repertoire of murine IgG much
more restricted than that of human IgG. Thus, IgG Fc glyco-
sylation variation observed in murine models might not di-
rectly translate to the human situation.

IgG samples that are biotechnologically produced or de-
rived from human circulation are generally available in rela-
tively large amounts (often microgram quantities), and the

sensitivity of MS methods is therefore not an issue. It has
been demonstrated, however, that IgG subpopulations might
diverge considerably from total serum IgG in terms of Fc
glycosylation profiles (68–71). Thus, the analysis of specific
subpopulations of IgG has been found to be rewarding and
has repeatedly revealed skewed glycosylation profiles that
might have a profound influence on the biological activity of,
for example, pathogenic autoantibodies and alloantibodies
(68, 69, 71). Notably, these antibodies often may be obtained
in only minute amounts by means of affinity purification, and
conventional nano-LC/MS has in some cases been found to
have insufficient sensitivity to analyze their Fc glycosylation. A
recently reported transient-isotachophoresis separation in
neutrally coated capillaries with a porous sheathless sprayer
interfaced with an ultra-high-resolution TOF mass spectrom-
eter addressed this issue, bringing the lower limit of detection
down to �20 amol (72). This high sensitivity was reached as
a result of reduced ion suppression, which is typical of ESI at
very low flow rates such as those used with capillary electro-
phoresis sheathless ESI-MS (73).

Fab Glycosylation Analysis—Besides the conserved N-gly-
cosylation sites on the Fc portion, additional carbohydrate
chains can be linked to the hypervariable regions of Ig. For
instance, between 15% and 25% of IgG molecules isolated
from the serum of healthy human subjects have been reported
to carry N-glycans on their variable domains (74–76). IgG
populations with Fab glycans have been called asymmetric
antibodies and were found to be bound by the lectin conca-
navalin A (77, 78). Interestingly, the amount of asymmetric IgG
was found to increase during pregnancy, as well as after the
treatment of antibody-producing cells with hormones (e.g.
progesterone, estrogen) and cytokines (e.g. IL-6) (79–81).
More recently, HPLC and MS analyses of Fab-linked glycans
from human serum IgG have revealed primarily complex-type
biantennary N-glycans with high contents of core-fucose
(�80%), bisecting GlcNAc (�50%), and sialic acid (�80%)
(74, 75, 82). Depending on their structures and locations, the
Fab glycans may influence IgG effector functions by increas-
ing or decreasing the affinity for the antigen (1). One report
furthermore suggests that Fab glycosylation could modulate
antibody half-life (83). Therefore, a better understanding of
IgG functionality requires a detailed analysis of Fab specific
glycosylation.

The choice of an appropriate strategy for the analysis of IgG
Fab glycosylation is determined by the biological source
(monoclonal IgG versus polyclonal IgG antibodies). Monoclo-
nal IgGs, which exhibit well-defined Fab glycosylation sites,
can be analyzed at the level of glycopeptides and IgG portions
(Fc, Fab, heavy and light chains), as well as after the selective
release of Fab-glycans using glycosidases. LC/MS allows the
analysis of both Fc- and Fab-glycopeptides at the same time,
thereby revealing site-specific N-glycan microheterogeneity
on therapeutic antibodies (84). Alternatively, the glycosylation
of heavy and light chains of IgG mAbs can be studied via
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LC/MS or direct-infusion ESI-MS after reduction (85, 86). The
separation of Fab and Fc fragments of IgG is generally ac-
complished using the enzymes papain (75, 83, 86, 87) or
pepsin (75). Papain cleaves IgG just above the disulfide
bridges between the two heavy chains, resulting in two Fab
portions and an Fc portion of similar molecular weight (�50
kDa each). Pepsin cleaves below the disulfide bridges, gen-
erating a F(ab�)2 (�100 kDa) and two 1⁄2 Fc portions (�25 kDa
each). In 2002, a streptococcal cysteine proteinase, IdeS, was
reported to cleave IgG specifically at a unique site below the
hinge region, leading to the formation of F(ab�)2 fragments
with great yield and specificity (88). A recombinant version of
this enzyme is now commercially available under the brand
name FabRICATOR (Genovis, Lund, Sweden). A multitude of
approaches have been used to purify F(ab) and F(ab�)2 frag-
ments. After pepsin digestion, Fc glycopeptides and F(ab�)2
portions were separated using size exclusion (75). Papain
digestion was followed by ion exchange chromatography (75)
or affinity chromatography using Protein A (82, 87). In all
cases, the Fab-linked N-glycans were released using PNGase
F and analyzed via HPLC or MS.

Another way to separately analyze Fc and Fab glycans of a
mAb is to release them from the entire IgG molecule using
discriminating glycosidases and/or enzymatic conditions. For
example, PNGase F and endoglycosidase F2 were reported
to selectively release, in native condition, the Fc and Fab
glycans, respectively (86).

Polyclonal IgGs exhibit a vast diversity of amino acid se-
quences of the variable regions created during somatic hy-
permutation, resulting in a multitude of Fab-glycosylation
sites differing in number and location, as well as in the nature
of their glycans. This enormous heterogeneity complicates, if
not precludes, Fab glycosylation analysis at the glycopeptide
level. Consequently, Fab glycosylation analysis of polyclonal
IgG has hitherto relied on the analysis of released glycans
from parts of IgG or from entire IgG molecules.

Recently, a method using sequential enzymatic release of
Fc glycans and Fab glycans has been reported (74). Fab
glycans, but not Fc sugars, were found to be resistant to
PNGase F cleavage under native conditions (74). Therefore,
IgG Fc glycans were first released under native conditions,
and after IgG isolation, denaturing conditions allowed the
liberation of Fab glycans.

For all techniques that use released glycans, a major draw-
back is that samples have to be extremely pure. Fc glycosy-
lation is close to 100%, whereas Fab glycosylation is found on
a only minor portion of polyclonal IgGs. Minor Fc contamina-
tion in Fab samples can bias the results. Fab and Fc glyco-
sylation analysis at the released glycan level might be similarly
compromised by the presence of other glycoprotein contam-
inants. This underlines the importance of highly specific puri-
fication methods.

Immunoglobulin A Glycosylation Analysis—Immunoglobulin
A has several N- (IgA1 and 2) and O-glycosylation sites (IgA1

only; see Fig. 1), and both N- and O-glycosylation have been
analyzed at the released glycan level (89, 90). In secretory
fluids, such as mucosa and milk, two IgA molecules are
dimerized by the N-glycosylated secretory component and
the joining (J-)chain (91).

Site-specific N-glycosylation analysis of IgA has been done
at the glycopeptide level after employing Asp-N endoprotei-
nase (92). Two N-glycopeptides were identified, and the pep-
tide sequences were obtained by means of Edman degrada-
tion. Based on the calculated masses of these sequences,
different glycan compositions were deduced from MALDI-
TOF-MS of desialylated glycopeptides. Differential treatment
with galactosidase and fucosidase, as well as two-dimen-
sional HPLC on released glycans using C18 and amide col-
umns, revealed fully galactosylated complex-type bianten-
nary structures with or without bisecting GlcNAc and fucose
(92). More recently, tryptic glycopeptides of size-exclusion-
chromatography-purified IgA1 have been analyzed using LC-
FTICR-MS, with sequence confirmation using electron capture
dissociation (ECD)-FTICR-MS/MS (93). Glycan compositions
and linkages were established via gas-liquid chromatography.
Interestingly, bi-, tri- and tetra-antennary complex type gly-
cans were observed (93). N-glycosylation analysis of secre-
tory IgA from human colostrum has recently been performed
at the glycopeptide level using in-gel trypsin digestion and
subsequent LC/MS and LC-MS/MS (91), revealing pro-
nounced site-specific differences in glycosylation.

Also, the O-glycosylation of IgA has been extensively stud-
ied at the glycopeptide level (91, 94–98). Specific O-glycosy-
lation changes were found in IgA nephropathy (34). More
specifically, aberrantly glycosylated IgA1, with Gal-deficient
hinge region (HR) O-glycans, plays a pivotal role in the patho-
genesis of IgA nephropathy (95, 96, 99). Renfrow and cowork-
ers showed IgA1 O-glycan heterogeneity via the use of
FTICR-MS and LC-FTICR-MS to obtain accurate mass pro-
files of IgA1 HR glycopeptides from three different IgA1 my-
eloma proteins (95). Additionally, in that study, the first ECD
fragmentation approach on an individual IgA1 O-glycopeptide
from an IgA1 HR preparation that was reproducible for each
IgA1 myeloma protein was obtained (Fig. 3). These results
suggest that future analyses of IgA1 HRs from IgA nephrop-
athy patients and healthy controls should be feasible.

Novel strategies for the analysis of clustered O-glycans
involve the use of a combination of IgA-specific proteases and
trypsin and ECD-FTICR-MS/MS. They provide a variety of
IgA1 HR fragments that allow the unambiguous localization of
all O-glycosylation sites for the six most abundant glyco-
forms, leading to the identification of Gal-deficient sites (96).
Additionally, the published protocol was adapted for on-line
LC-ECD-MS/MS and LC–electron transfer dissociation–
MS/MS analysis. This work appears to be a relevant clinical
approach for defining the molecular events leading to the
pathogenesis of a chronic kidney disease, and at the same
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time it might be generally applicable for the analysis of clus-
tered sites of O-glycosylation (96).

PERSPECTIVES

As demonstrated extensively for IgG, as well as for some
IgA, a detailed structural analysis of N- and O-glycosylation is
required in order for one to understand their three-dimen-
sional structures and immune functions. To our knowledge,
the glycosylation of other Igs (IgD, IgE, IgM) has hitherto not
been addressed at the glycoproteomic level. The numerous
O-glycosylation sites in the IgD HR and N-glycosylation sites
(�5 N-glycosylation sites) in IgM and IgE make their compre-
hensive glycosylation analysis at the glycopeptide level chal-
lenging. Additionally, the analysis of IgE and IgD from human
circulation is particularly demanding, as these antibodies are
generally present only in minute amounts (100). For IgE, gly-
coproteomic analysis would be needed in order to allocate its
complex type and oligomannosidic glycans to their specific
site(s) and analyze the NxS site on position 383, which has
been predicted to be unoccupied (101). A particular analytical
challenge will be the analysis of the variable region glycosy-
lation of Ig subclasses other than IgG.

Ig glycosylation studies are routinely done in many different
labs, and thus the amount of data produced is increasing
tremendously. A recent approach combining genome-wide
association and high-throughput glycomics analysis of
plasma samples from 2705 individuals in three population
cohorts showed that common variants in certain genes can
influence N-glycan levels in human plasma (102). Based on a
follow-up study, a high-throughput isolation and glycosylation

analysis of IgG variability and heritability of the IgG glycome in
three different populations was published (10). Although a
variety of associations of clinical and physiological parame-
ters with Ig glycosylation have been established, we believe
that many more processes and diseases are marked by Ig
glycosylation changes and that we have seen only the tip of
the iceberg. Future Ig glycosylation profiling at the site-spe-
cific level by means of the mass spectrometric analysis of
glycopeptides, when applied to human disease cohorts as
well as in vitro and in vivo models of immunological pro-
cesses, is expected to provide valuable new insights into the
modulatory role of Ig glycosylation.
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