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Metal-free intermolecular formal cycloadditions
enable an orthogonal access to nitrogen
heterocycles
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Nitrogen-containing heteroaromatic cores are ubiquitous building blocks in organic chemistry.

Herein, we present a family of metal-free intermolecular formal cycloaddition reactions that

enable highly selective and orthogonal access to isoquinolines and pyrimidines at will.

Applications of the products are complemented by a density functional theory mechanistic

analysis that pinpoints the crucial factors responsible for the selectivity observed, including

stoichiometry and the nature of the heteroalkyne.

DOI: 10.1038/ncomms10914 OPEN

1 Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria. 2 Institute of Theoretical Chemistry, University of Vienna,
Währinger Strasse 17, 1090 Vienna, Austria. Correspondence and requests for materials should be addressed to N.M. (email: nuno.maulide@univie.ac.at).

NATURE COMMUNICATIONS | 7:10914 | DOI: 10.1038/ncomms10914 | www.nature.com/naturecommunications 1

mailto:nuno.maulide@univie.ac.at
http://www.nature.com/naturecommunications


H
eteroarenes constitute one of the privileged core structural
motifs in organic chemistry1. Among them, isoquinolines
and pyrimidines represent two big families in

pharmaceutical agents, natural products and functional
materials2–9. Therefore, continued effort is devoted to the
exploration of new and efficient synthetic strategies for these
backbones.

The classical strategies to prepare isoquinolines (Fig. 1a)
generally focus on the crucial textbook disconnections C1-C8a
(Bischler-Napieralski and Pictet-Spengler syntheses) or C4-C4a
(Pomeranz-Fritsch synthesis). Recently developed routes centred
on the bond-forming events N2–C3 or N2–C3/C4–C4a, employ-
ing electrophile-triggered annulation and transition metal-
catalysed C–H or C–halogen bond activation, respectively1,10–
17. A strategy relying on the simultaneous formation of N2–C3/
C1–C8a is much less documented18.

Conversely, most of the known avenues towards pyrimidine
synthesis rely on the condensation of N–C–N subunits (mostly
amidines or guanidines) with 1,3-dicarbonyl derivatives or the
stoichiometric activation of carbonyl moieties with triflic
anhydride (Fig. 1a) (refs 19–23). Ynamides have recently shown
to be suitable candidates for regioselective cycloaddition
with nitriles in the presence of a gold catalyst, leading
to 4-aminopyrimidine cores24. Although the reactivity of
ynamides has received considerable recent attention25–33,

analogous investigation of the potential enclosed in the triple
bond of thioalkynes is surprisingly rare34–37, even though the
resulting sulfide is a useful38 and versatile substituent39–42.

Herein we report a family of reactions that enable a high
yielding, orthogonal access to either isoquinolines or pyrimidines
at will (Fig. 1b), by Brønsted acid-mediated regioselective formal
cycloaddition of ynamides and thioalkynes with nitriles (for a
review of transition-metal mediated [2þ 2þ 2] cycloadditions)
(ref. 43). Mechanistic studies reveal the subtle differences that are
responsible for selectivity.

Results
Synthesis. Initial experiments involving the reaction of ynamide
1a with various Brønsted acids in the presence of varying
amounts of acetonitrile led to moderate yields of isoquinoline
3aa. After optimization of conditions (see Supplementary Table 1
for details), we found that essentially equimolar amounts of 1a, 2a
and TfOH in dichloroethane as solvent sufficed to enable
preparation of 3aa in 89% yield (for a discussion of stoichiometry
in these reactions, vide infra).

Holding suitable conditions in hand, we then examined several
nitriles 2a-j under the optimized conditions. As shown in Fig. 2a,
this direct formal cycloaddition is applicable to a broad range
of substrates, generally affording good to excellent yields
of isoquinoline products. Remarkably, alkyl nitriles bearing
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Figure 1 | Synthetic disconnections. (a) Known synthetic disconnections for the isoquinoline and pyrimidine backbone. (b) Proposed direct disconnections

through intermolecular metal-free alkyne/nitrile cycloadditions.
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functional groups such as an ester (2c), aryl rings (2h and 2i) or
C–C double bonds (2j) are compatible with the reaction
conditions. It is worth mentioning that the isolated double bond
in product 3aj does not migrate into conjugation with the
isoquinoline ring under these conditions. Aryl nitriles (2d–g) and
a,b-unsaturated nitrile 2f are also viable partners delivering the
corresponding substituted isoquinoline products in good to very
good yields.

Subsequently, a broad range of ynamides were submitted to
this protocol (Fig. 2b). In the event, both electron-donating
(1b–d) and -withdrawing (1f) substituents were tolerated on the
ynamide partner, leading to smooth isoquinoline assembly in
good yields. Halogenated ynamides (1e–f) were also amenable to
this reaction, delivering isoquinoline products ripe for subsequent
divergent functionalization. Thienopyridine skeletons could be
obtained in reasonable yields (3ga and 3gh). Interestingly,
N-tosyl-N-benzyl ynamide (1j) directly generated the correspond-
ing debenzylated product: the tosyl-protected, pharmacologically
relevant 3-aminoisoquinoline (3ja) (refs 44,45). Moreover, the
use of an alkenyl-substituted ynamide (1k) led to the annulated
pyridine product (3ke).

After this initial success, we hypothesized that other
heteroatom-substituted alkynes might prove amenable to a
similar modular assembly of isoquinolines. In particular, we were

drawn to the use of thioalkynes such as 4b, with the expectation
of obtaining an (alkylthio)-isoquinoline 6ba where the sulfur
residue could serve as a useful synthetic handle (Fig. 3a).

Much to our surprise, treatment of 4b with acetonitrile 2a
under conditions identical to those employed previously led
exclusively to the pyrimidine 5ba in 52% yield (Fig. 3a).
Remarkably, product 5ba is the result of a formal, regioselective
cycloaddition of one molecule of 4b with two molecules of 2a.
This dramatic shift in product selectivity between ynamides and
thioalkynes eventually presented us with a versatile cycloaddition
route towards pyrimidines. Reaction optimization showed
that this transformation proceeds most effectively at room
temperature in the presence of an excess of acetonitrile
(see Supplementary Table 2 for details).

Figure 3b depicts the full scope of nitriles 2b–v compatible with
this metal-free pyrimidine synthesis. Secondary aliphatic (2k) and
alicyclic (2m-2p) carbonitriles smoothly coupled with thioalkyne
4a under the reaction conditions. This formal cycloaddition was
also tolerant of nitriles bearing triple (2q) and double bonds (2j),
including conjugated olefins (2f). Both electron-rich (2d and 2s)
and electron-deficient (2t and 2u) substituted benzonitriles could
be employed, providing the desired pyrimidine products in good
to excellent yields. It is worth noting that heteroarylnitriles such
as 3-cyanothiophene (2r) were also tolerated. The possibility
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of using dimethylcyanamide (2v), delivering an aminated
pyrimidine in excellent yield, further highlights the generality of
this synthetic method. Pyrimidine 5ae yielded crystals suitable
for X-ray diffraction analysis, unambiguously confirming its
structure (see Supplementary Fig. 64 and Supplementary Tables 4
and 5 for details).

Further studies focused on the scope of heteroalkynes for this
pyrimidine synthesis (Fig. 4a). We were pleased to find that a
cyclopropyl substituent (4c) was tolerated, as a cyclopropyl
appended to a pyrimidine ring is a common feature in drug-like,
biologically active cores46–48. Both electron-rich (4e and 4g) and
electron-poor (4d and 4f) arylalkynes afforded the corresponding
pyrimidine products in good yields. Furthermore, considerable
flexibility can be exerted, concerning the location of substituents
on the aryl ring (4d–g).

Strikingly, we found that 4-aminosubstituted pyrimidines can
also be obtained by exposing ynamides (1l, 1a and 1m) to the
standard conditions developed for pyrimidine synthesis. A distal
nitrile group carried by the ynamide partner could be successfully
introduced into the pyrimidine product (7ma). Remarkably,
when phenyl-substituted ynamide 1a was submitted to these
conditions, a 4-amino-5-aryl pyrimidine product (7aa) was
obtained in good yield (Fig. 4b). Together with the reactions
described previously (cf. Figures 2–3), these results offer an
entirely new orthogonal access to either isoquinoline or
pyrimidine motifs at will, while unifying this novel, powerful
family of formal cycloaddition reactions.

Density functional theory study. We approached the mechan-
istic study of this reaction performing density functional theory
(DFT) calculations of two reaction manifolds: the first leading to
isoquinoline products (by modelling the entire pathway intro-
ducing a single acetonitrile molecule, see Fig. 5a) and the second
leading to pyrimidine adducts (by computing the mechanism
with two acetonitrile molecules, see Fig. 5b). The first question
that arises is what occurs when all these species are in the
presence of the TfOH promoter, as there are many potential
protonation sites. DFT calculations (see Computational details in
the Supplementary Figs 65–67) show that protonation would take
place preferably on the heteroalkyne partner. Indeed, calculated
transition states for the oxazolidinone (þ 7.6 and þ 6.0) and
methylthio (þ 5.3 and þ 10.7) derivatives (in the presence of
either one or two acetonitrile molecules, IIi and IIp, respectively)
are much lower than the acetonitrile protonation
(þ 17.0 Kcal mol� 1). Furthermore, we confirmed that this
protonation takes place regioselectively b- to the heteroatom as
anticipated, leading to either a keteniminium IIIi or ketenethio-
nium IIIp species, as the TfO� anion is stabilized by acetonitrile
(which in these reactions coincides with the nucleophilic species).
In the second mechanistic step, a nucleophilic attack by
acetonitrile takes place stereoselectively from the face opposite to
the b-proton due to shielding by TfO� (see IVi and IVp in
Fig. 5). In fact, in both cases the introduction of acetonitrile,
giving respectively Vi and Vp, is more stable than the corre-
sponding TfO� bonded derivative by 6.1 and 7.7 Kcal mol� 1 for
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the oxazolidinone and methylthio derivatives, respectively.
Interestingly, and very important for the reaction outcome, in the
absence of acetonitrile the TfO� species readily adds to the
positively charged intermediate effectively blocking further
reaction with acetonitrile. Moreover, we verified that nucleophilic
attack by acetonitrile can only take place after the first protona-
tion event as the highest occupied molecular orbital of acetonitrile
(� 0.3264 H) and the neutral ynamide’s lowest unoccupied
molecular orbital (� 0.0242 H) are energetically too far apart.
The protonation process, however, results in an alkyne-centred
lowest unoccupied molecular orbital turned by 90� at � 0.2443
H, whereas the highest occupied molecular orbital of the TfO�

counteranion lies at � 0.0742 H (see Supplementary Figs 65 in
the Computational details section of the Supplementary
Information). A similar trend is observed for the methylthio
derivative. These two first processes (protonationþ nucleophilic
attack of acetonitrile) are common to both pathways. At this
juncture, we can separately analyse the mechanisms leading to the
isoquinoline and the pyrimidine scaffolds.

Isoquinoline formation. Following the addition of acetonitrile,
the TfO� anion immediately adds to the resulting carbocation
(as the former lost its prior stabilization by acetonitrile) delivering
a neutral and highly stable imino-triflate Vi. The last step consists
of a Friedel–Crafts-like cyclization, VIIi, with further elimination
of TfOH giving rise to the isoquinoline skeleton (VIIIi). This final
addition process is characterized by high energy-transition states:
þ 30.6 and þ 34.5 Kcal mol� 1, respectively, for the oxazolidi-
none and methylthio derivatives (VIi; Fig. 5a). This is why
heating is necessary in this case. The higher enthalpic barrier for
the methylthio derivative stands in agreement with the

experimental findings, as no isoquinoline product is observed for
this derivative. In addition, nuclear magnetic resonance studies
carried out with the starting heteroalkynes in the presence of
TfOH suggest that the thermal stability of the methylthio-
derivative is notably low. This could be a determining factor
towards the experimental observations.

Pyrimidine formation. In this case, with two acetonitrile
molecules (used for simplicity of the model, although the
experimentally optimized molar ratio is higher), a different
situation arises as a second addition becomes a more probable
event. In fact, this process takes place through low energy-
transition states (þ 6.5 and þ 7.1 Kcal mol� 1, respectively, for
the oxazolidinone and methylthio derivatives), VIp, giving rise to
rather stable intermediates (VIIp; see Fig. 5b). Once the second
molecule is added, the system could conceivably undergo a
polymerization process with continued further addition of more
acetonitrile molecules to the newly generated carbocationic
species (þ 0.546 and þ 0.529 e� , respectively, for the
oxazolidinone and methylthio derivatives). Instead, the negatively
charged (–0.208 and –0.210 e� , for the oxazolidinone and
methylthio derivatives, respectively) b-carbon atom can attack
(VIIIp) the newly generated carbocation to form an entropically
favoured, six-membered pyrimidine ring (after a very exothermic
re-aromatization promoted by TfO� , IXp-Xp). This is the
driving force for pyrimidine formation.

A comparative analysis of both calculated mechanisms reveals
at a glance that those involving the oxazolidinone derivative
proceed generally with lower energies than the thioalkyne one.
The main reason for that is the greater stabilization of the positive
charge in the former case. In addition, although pathways for
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formation of either heterocycle could exist for both heteroalkynes,
the pathway for isoquinoline formation through the thioalkyne
derivative (Fig. 5a) has a prohibitive energy barrier when
considering the addition of a single acetonitrile molecule. This
barrier is much lower in the case of pyrimidine formation
(Fig. 5b). This is due to the fact that in the latter case, there is a
significant stabilization of the corresponding transition state
introduced by the presence of the second acetonitrile molecule.
Yet, the transition state for the first acetonitrile attack is
5.2 Kcal mol� 1 higher in the case of isoquinoline formation. In
this value, 3.2 Kcal mol� 1 are purely due to the stabilization
offered by the second acetonitrile molecule, as calculations made
considering cationic structures (namely just the substrate and the

acetonitrile molecule(s) without the TfO� species) show this
same energy difference. Therefore, the remaining 2 Kcal mol� 1

should derive from stabilization by the counteranion (which is
present in our mechanistic studies) through cooperative cyclic
dþ � d� interactions between the different molecular units (see
Fig. 6). In fact, we expect this transition state to be very low-lying,
taking into account more solvent molecules. The preceding
mechanistic analysis also permits a rationalization of why
isoquinoline synthesis (formal [4þ 2]; (refs 49–52)) requires
high temperatures (highest energy barriers), whereas pyrimidine
formation (formal [2þ 2þ 2]) typically occurs at room
temperature.

In both cases, stoichiometry plays a crucial role and imposes
the final result, as both pathways are irreversible. In the presence
of several molecules of acetonitrile (Fig. 5b), the corresponding
transition state for a real [2þ 2þ 2] approximation is either
transition state IVp or VIp, depending on the initial geometry
conditions. These transition state also appear in a sequential
pathway (as described in Fig. 5), thus indicating a natural
direction for this molecular set. In the case of isoquinoline
formation (Fig. 5a), the reaction of the unique acetonitrile
molecule (imposed by stoichiometry) creates a positive charge
that is readily neutralized by the negatively charged triflate
present in the surrounding (as a remnant from the initial
protonation event). The latter reaction should be faster than the
time required for another acetonitrile molecule to approach, to
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(left) and pyrimidine (right) pathways, the latter presenting additional

cyclic, electrostatic stabilizing interactions.

NH

MeO

MeO
OMe

OMe

N

MeO

MeO
OMe

OMe

N

O
O

H-Cube
AcOH, 40 °C, 6 h

quantitative

3di

m-CPBA 2.1 eq.

5ba 9

10

N

N

Ph

S

N

N

Ph

S
O O

MeONa 4.0 eq.

MeOH 0.05 M
Reflux, 24 h

N

N

Ph

OMe

87%

110 °C, 12 h

BnNH2 40 eq.

N

N

Ph

NHBn

96%

PhMgCl 2.0 eq.

THF 0.05M
Reflux, 24 h

N

N

Ph

Ph

71%

11

12

a

b

c

Acetone, rt, 5 h
87%

5aa 13

N

N SMe

C7H15

N

N

C7H15

d

TfOH 1.0 eq.

7aa
(1.06 g)

N

N N

O
O

MeCN
76%

N

O
O

1a
(1 g.)

H2 (100 bar)/Pd(OH)2

(±)-Norlaudanosine 8

DCM 0.03 M
rt, 5 h
98%

Raney Ni, H2 (balloon)

Figure 7 | Synthetic application and modification. (a) Preparation of norlaudanosine 8 by hydrogenation of 3di. (b) Transformations of compound 5ba.

(c) Reductive desulfurization of compound 5aa. (d) Pyrimidine 7aa can be prepared in gram scale.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10914 ARTICLE

NATURE COMMUNICATIONS | 7:10914 | DOI: 10.1038/ncomms10914 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


follow pathway B. Once triflate blocks this position, a quite stable
intermediate (Vi) is formed and no additional acetonitrile
molecules can be added.

It is noteworthy that although all the computed reaction
pathways would only require a catalytic amount of TfOH to
proceed (owing to its regeneration on aromatization, vide supra),
the most stable final product in either pathway is the
corresponding nitrogen-protonated heterocycle (readily con-
verted into the experimentally isolated products following basic
workup). This neatly accommodates the experimental need for
stoichiometric amounts of acid, to obtain high yields.

Further studies. Given the prevalence of isoquinoline motifs in
the core of bioactive molecules53–55, we were eager to showcase
the synthetic utility of our products (Fig. 7). The tetramethoxy
adduct 3di, carrying two electronically differentiated fused rings
in its isoquinoline system, could be hydrogenated in acetic acid to
deliver (±)-norlaudanosine 8 (Fig. 7a). Removal of the
oxazolidinone takes place under these conditions analogously to
previous work by Glorius et al.56 on related pyridines and
quinolones57. It is noteworthy that the use of a chiral
2-oxazolidone analogue, as in 3hi, enabled the hydrogenation to
proceed with some level of asymmetric induction (55% e.e.).
See Supplementary Fig. 60 for more detail.

The (methylthio)pyrimidine 5ba could be easily oxidized to
the corresponding methylsulfonyl derivative 9, in which the
methylsulfonyl group is available for substitution. As shown in
Fig. 7b, this can be achieved by the action of alcohols, amines or
Grignard reagents, delivering substituted pyrimidines 10–12 in
very good to excellent yields.

In addition, Raney-Ni-mediated hydrogenation of 5aa
smoothly excises the sulfide residue to afford the 2,5,6-
trisubstituted pyrimidine 13 in 87% yield (Fig. 7c). These simple
transformations outline the versatility and usefulness of the
methods reported herein. Moreover, the reaction can be readily
carried out in gram scale (Fig. 7d).

Discussion
A family of reactions selectively leading to isoquinoline and
pyrimidine motifs has been developed, by Brønsted acid-
promoted regioselective merger of alkynes and nitriles. These
methodologies benefit from the strategic use of readily available
nitriles as the C–N sources. Most importantly, the orthogonality
of the methods enables the preparation of either family of
heterocycles from the same starting materials. The practicality of
these metal-free formal cycloadditions is illustrated by the large
scope of alkynes and nitriles that can be employed. DFT
calculations reveal the crucial role of TfOH and the reaction
stoichiometry in these processes. With one equivalent of
acetonitrile, the preferred pathway leads to isoquinoline products
through a Friedel–Crafts-like process; with larger amounts of
nitrile, a second addition is allowed en route to the formation of a
pyrimidine derivative. Furthermore, subtle differences between
the classes of heteroalkynes employed control which products can
be formed. We believe that the simple yet powerful heterocycle
syntheses presented here will be eagerly adopted into the
repertoire of synthetic chemistry.

Methods
Full experimental details, characterization of compounds, Cartesian coordinates
and energies of all the structures appearing in Supplementary Figs 66 and 67, and
computational details can be found in the Supplementary Information
(Supplementary Figs 1–67 and Supplementary Methods).
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22. Herrera, A., Martı́nez-Álvarez, R., Chioua, M., Chioua, R. & Sánchez, Á. On the
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