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Abstract

A novel virus, severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), causing

coronavirus disease 2019 (COVID-19) worldwide appeared in 2019. Detailed scientific

knowledge of themembers of the Coronaviridae family, including theMiddle East Respira-

tory Syndrome Coronavirus (MERS-CoV) is currently lacking. Structural studies of the

MERS-CoV proteins in the current literature are extremely limited. We present here

detailed characterization of the structural properties ofMERS-CoVmacro domain in aque-

ous solution. Additionally, we studied the impacts of chosen force field parameters and par-

allel tempering simulation techniques on the predicted structural properties of MERS-CoV

macro domain in aqueous solution. For this purpose, we conducted extensive

Hamiltonian-replica exchange molecular dynamics simulations and Temperature-replica

exchange molecular dynamics simulations using the CHARMM36m and AMBER99SB

parameters for themacro domain. This study shows that the predicted secondary structure

properties including their propensities depend on the chosen simulation technique and

force field parameter.We perform structural clustering based on the radius of gyration and

end-to-end distance ofMERS-CoVmacro domain in aqueous solution.We also report and

analyze the residue-level intrinsic disorder features, flexibility and secondary structure. Fur-

thermore, we study the propensities of this macro domain for protein-protein interactions

and for the RNA and DNA binding. Overall, results are in agreement with available nuclear

magnetic resonance spectroscopy findings and present more detailed insights into the

structural properties ofMERSCoVmacro domain in aqueous solution. All in all, we present

the structural properties of the aqueous MERS-CoV macro domain using different parallel

tempering simulation techniques, force field parameters and bioinformatics tools.
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1 | INTRODUCTION

Since the first outbreak of the severe acute respiratory syndrome

(SARS) in 2003, a fatal viral disease-causing pneumonia and death was

first reported in Saudi Arabia in 2012. This virus was named Middle

East Respiratory Syndrome Coronavirus (MERS-CoV).1 The current

SARS-CoV-2 infection, coronaviruses and coronavirus-related infec-

tion aroused the attention of the entire world. A history of the SARS-

CoV outbreak justifies these high-levels of attention. By the time the

global SARS-CoV outbreak was contained, the virus spread to

26 countries, infected over 8000 people worldwide and killed almost

800. Similarly, even though MERS-CoV appeared initially in Saudi Ara-

bia, the virus—that was new to humans—spread to several other coun-

tries in or near the Arabian Peninsula, Asia, Europe, and the United

States.2 The mortality of MERS was reported to be 4-fold higher than

SARS-CoV.3 In fact, at the end of 2019, there were a total of 2494

laboratory-confirmed cases of MERS-CoV world-wide and the MERS-

CoV infection was characterized by the mortality rate of 34.4%. The

current version of coronavirus, namely SARS-CoV-2, is infecting and

killing more people per day than SARS and MERS combined during

their existence.

Despite the history of posing threats to the human health, current

knowledge of coronaviruses is rather limited. It is clear that gaining

insights into the structural properties of various proteins from MERS-

CoV, including the conserved macro domain within the non-structural

protein 3 (NSP3), can help better understanding of the Coronaviridae

family.4 Since the structural properties of MERS-CoV macro domain

in solution with dynamics are still poorly understood, a comparison to

SARS-CoV-2 macro domain in solution with dynamics cannot be pro-

vided as well.

MERS-CoV belongs to the lineage C of β-coronaviruses (β-CoVs)

that includes CoVs isolated from bats and hedgehogs. CoVs use the

RNA genome to encode several structural proteins, including the spike

glycoprotein (S), membrane protein (M) and nucleocapsid protein (N),

and various non-structural proteins (NSPs) to facilitate its fast replica-

tion processes.5 A single large replicase gene encodes the proteins

that play a role in viral replication.4 This gene contains two open read-

ing frames; ORF1a and ORF1b encoding the polyproteins pp1a and

pp1b, with the production of pp1b requiring a � 1 ribosome frame-

shift at the 30 end of ORF1a.6 ORF1a encodes viral proteases: main

protease (Mpro) and papain like protease (PLpro). These viral proteases

play a central role in the cleavage of ORF1a and ORF1b gene prod-

ucts in order to produce functional NSPs.7

The largest NSP member of the MERS-CoV genome is the

ORF1a-encoded, multifunctional and multidomain protein NSP3 that

serves as a major evolutionary selection target in β-CoVs.8 NSP3

includes N-terminal acidic domain, macro domain, SARS-unique

domain, PLpro, nucleic acid-binding domain, marker domain (G2M),

transmembrane domain, and Y-domain. The macro domain received

its name based on the non-histone motif of the histone variant

macroH2A, which is a crucial protein module found in eukaryotes,

bacteria, and archaea. The macro-domain containing proteins and

enzymes play central roles in the regulation of various cellular

processes. For instance, the SARS-CoV and MERS-CoV macro

domains were shown to possess poly(AD)P-ribose binding affinity,

which suggested that this domain regulates cellular proteins that are

important for an apoptotic way via poly(ADP)-ribosylation to mediate

the host response to infection.4

Even though X-ray structure is available for the MERS-CoV macro

domain in complex with adenosine monophosphate (AMP), such

structure does not capture the impact of the bulk solvent environ-

ment on protein structure and dynamics and provides a rather limited

view of the underlying structural and functional residue-level charac-

teristics. A detailed understanding of the structural properties of

MERS-CoV macro domain in solution will provide the lacking struc-

tural information on CoVs and may be used for comparison with

SARS-CoV-2 macro domain. In the long run, the information gleaned

from such structural studies could help to design more efficient treat-

ments including vaccines and small molecule drugs. Therefore, we pre-

sent the characterization of the structural properties of MERS-CoV

macro domain in aqueous solution at body temperature with dynam-

ics at the atomic level via linking parallel tempering simulations to bio-

informatics. We combine these results with several residue-level

analyses that focus on the structural flexibility, presence of intrinsi-

cally disordered regions, and functional features related to the predis-

position for protein-protein and protein-nucleic acid interactions.

However, the chosen simulation techniques, simulation protocols and

force field parameters may impact the predicted aqueous MERS-CoV

macro domain structural properties. Therefore, in this study, we con-

duct Hamiltonian-replica exchange molecular dynamics simulations

and Temperature-replica exchange molecular dynamics simulations

and we also look at the impacts of CHARMM36m and AMBER99SB

parameters on the calculated structural properties of aqueous MERS-

CoV macro domain. For this study, we conducted three extensive dif-

ferent sets of parallel tempering simulations.

2 | MATERIALS AND METHODS

Many molecular simulation scenarios require ergodic sampling of con-

formations. Their energy landscapes may feature many minima and

barriers between minima that can be difficult to cross at ambient tem-

peratures over reachable simulation time scales. This means that the

corresponding findings are confounded by the choice of initial condi-

tions because such conditions determine the space region that is

explored by a simulation.9 On the other hand, replica exchange simu-

lations seek to enhance the conformational sampling by running

numerous independent replicas in different conditions, and periodi-

cally exchanging the coordinates of different ensembles (replicas).9

Usually, temperature is used as the parameters which changes among

replicas, which in turn enables conformations trapped in a local min-

ima at a low temperature to escape by passing to a higher tempera-

ture replica. Potential energy overlap is required for efficient

exchange between neighboring replicas, which results in simulations

with large number of replicas especially when we investigate proteins

in explicit water. Specifically, for covering a desired temperature
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range, replica number grows as the square root of the number of par-

ticles, which in turn introduces limitations to the method's potential

by means of computational costs. Hamiltonian replica exchange

molecular dynamics (H-REMD)10 provides a possible solution for alle-

viating temperature-replica exchange molecular dynamics (T-REMD)

simulations-based limitations in which the different replicas are

treated at a constant temperature while the Hamiltonian are used as a

parameter and is reported to be more efficient in protein conforma-

tional sampling than T-REMD. As an enhanced technique, it is based

on executing simultaneous replicas with different Hamiltonians of the

system and enabling exchanges at a given frequency between i and j

replicas at neighboring scales m and n with a probability10 of

P Xi $Xj

� �¼min 1,exp
�Hm Xj

� �þHm Xið Þ
kBT

� �
þ�Hn Xið ÞþHn Xj

� �
kBT

� �

where H is the Hamiltonian, T is the temperature and X are the coordi-

nates and

Hm Xð Þ¼ λmHppþ λmð Þ1=2HpsþHss Xð Þ

where Hm is the Hamiltonian at scale m and Hpp
, Hps and Hss represent

protein, protein-solvent and solvent-solvent interaction energies. Λm

is the scaling factor at scale m whereby λm ≤ 1.0. The Gromacs 5.1.4

simulation package11 in association with PLUMED plugin (version

2.1)12 were used to conduct the H-REMD simulations. However, the

partial tempering script in PLUMED works only for AMBER and OPLS

parameters, while for CHARMM parameters the scaling only applies

to the epsilon term of the LJ interactions, but not to the CMAP matrix,

which is an integral part of CHARMM parameters. This was corrected

by using a script (see Supplementary materials section [Appendix S1]).

In the H-REMD simulations, we used the CHARMM36m parameters13

for the MERS-CoV macro domain and the TIP3P model for water.14

We isolated the initial structure for the MERS-CoV macro domain

from the publicly available crystal structure (PDB ID: 5zu7). We

applied a water layer of 10 Å with 11 827 water molecules to solvate

the macro domain using a cubic box. Energy minimization was per-

formed using both the steepest descent and the conjugate gradient

methods. After minimization, 500 ps of each NVT and NPT position

restrained dynamics were performed with a restraining force of

1000 kJ/mol�nm2 on the non-hydrogen atoms of the domain. This

allowed the water molecules to equilibrate around the macro

domain, thereby removing bad contacts and bringing the system

closer to equilibrium. The final coordinates of the NPT equilibra-

tion were used as the initial coordinates for the unrestrained pro-

duction runs. Twenty-four scaling factors ranging from λm = 1.0 to

0.4 were generated by a geometric distribution, which were used

in the H-REMD simulation, amounting to 9.6 μs of cumulative sim-

ulation time (400 ns per replica). We use counter ions to neutralize

the system. A canonical thermostat with stochastic velocity

reassignment15 with a coupling constant of 0.5 ps was used to

keep each system at their requisite temperatures. For the NPT sim-

ulations, a Parrinello-Rahman barostat16 with 1.0 bar pressure and

1.0 ps coupling constant was employed. Both van der Waals and

short-range Coulombic interactions were truncated at 12 Å, and

the long-range electrostatic interactions were calculated using the

particle mesh Ewald method.17 The neighbor list was updated

every 10 steps with a cut-off of 12 Å. The LINCS algorithm18 was

used to constrain all bond lengths during the H-REMD simulations.

An exchange between neighboring replicas was attempted every

2 ps, and the coordinates were also saved every 5 ps. The H-REMD

were tested for convergence of the replica at λm = 1.0 from H-

REMD simulations for further analysis (see Supplementary Mate-

rials section [Appendix S1]).

T-REMD simulations19 were performed between the tempera-

tures ranging from 280 to 320 K using 32 replicas distributed expo-

nentially between these temperatures. We used the CHARMM36m

parameters13 and the AMBER99SB parameters20 for the MERS-CoV

macro domain and the explicit TIP3P model for water14 for studying

the impact of these chosen force field parameters on the predicted

structural properties of the macro domain in water.21 After solvating

the macro domain in water by using a 10 Å water layer (11 827 water

molecules), we first conduct equilibration simulations for 20 ns (per

replica) using the canonical ensemble and then for additional 20 ns

(per replica) using the isothermal-isobaric ensemble. We run T-REMD

simulations for a total simulation time of 6.4 μs (200 ns per replica).

We perform exchanges between replicas every 5 ps with a time step

of 2 fs. We save trajectories every 500 steps and the LINCS algorithm

was used to constrain all bond lengths in both simulations. The elec-

trostatic and van der Waals interactions were calculated using the

particle mesh Ewald (PME) method and the real-space components

truncated at 12 Å. We controlled the temperature and pressure using

a velocity rescaling algorithm with a relaxation time of 0.1 ps and a

Parrinello-Rahman barostat16 with a relaxation time of 2 ps and we

used counterions to neutralize the charges. We calculate the struc-

tural properties of the MERS-CoV macro domain from the structures

obtained after convergence from the replica closest to physiological

temperature (310 K, see Supporting Materials section [Appendix S1]).

We calculate the content of the secondary structure components per

residue for the aqueous MERS-CoV macro domain utilizing the DSSP

program both for data obtained from H-REMD simulations and differ-

ent sets of T-REMD simulations using CHARMM36m and

AMBER99SB parameters (see above).22 Additionally, we determine

the end-to-end distances (REE) and radius of gyration (Rg) of the

MERS-CoV macro domain in water using all converged trajectories.

Based on the relationship between the Rg and REE values, we apply

the k-means clustering method to perform vector quantization and

consequently to partition the structural observations into five clusters.

We assign each observation to the cluster with the nearest cluster

centroid that serves as a prototype of the cluster.23 This way the

structural data space is partitioned into Voronoi cells and the k-means

clustering minimizes within cluster variances using squared Euclidean

distances. Finally, we compute the root mean square fluctuations for

each residue of the MERS-CoV macro domain in water. We compare

these results to findings secured by using disorder predictors, which

we describe next.
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In addition, we perform residue-level analysis of the intrinsic dis-

order predisposition of the MERS-CoV macro domain and selected

functional features related to its protein and nucleic acid binding

potential. We evaluate the intrinsic disorder predisposition using a set

of commonly utilized and publicly available computational tools, such

as PONDR VLXT,24 PONDR VSL2,25 PONDR FIT,26 and IUPred capa-

ble of predicting long and short disordered regions.27-29 Residue-level

predisposition of this domain to interact with proteins was evaluated

with the state-of-the SCRIBER (SeleCtive pRoteIn-Binding rEsidue

pRedictor) method.30 SCRIBER is currently the most accurate method

that predicts protein-binding residues (PBRs), and the only tool that

eliminates the recently described issue of the cross-prediction of resi-

dues that interact with nucleic acids (RNA and DNA) as PBRs.31 This

allows us to accurately predict PBRs and maintain high specificity of

our analysis by limiting contamination of the results by the cross-pre-

dictions. We also evaluate the nucleic acid binding potential of the

MERS-CoV macro domain with the DRNApred predictor.32

DRNApred is currently the only method that provides accurate results

and successfully eliminates the cross-predictions.32,33

3 | RESULTS AND DISCUSSION

Figure 1 represents a set of the selected structures of the MERS-CoV

macro domain in aqueous media that we obtained from the all-atom

H-REMD simulations using the CHARMM36m parameters (A), T-

REMD simulations utilizing the CHARMM36m parameters (B) and T-

REMD simulations using the AMBER99SB parameters (C) at 310 K

replica. Figure 2 depicts the calculated MERS-CoV macro domain sec-

ondary structure abundances per residue with dynamics using our

own script. Based on these calculations, we detect six α-helix regions

in the macro domain of MERS-CoV in water via H-REMD simulations.

These are located between Ala25-Cys31(probability; 18%-91%),

Gly50-Ser59 (probability, 90%-100%), Ala62-Lys74 (probability; 98%-

100%), Val108-Asn119 (probability; 11%-99%), Pro138-Glu148 (prob-

ability; 27%-100%) and Gln160-Thr167 (probability; 11%-100%). We

detect four 310-helix conformation regions via H-REMD simulations

located at Pro5-Asn8 (probability; 6%-7%), Ala25-Cys31 (probability;

0.1%-7%), Ala102-Ala104 (probability; all at 36%), Val108-Ala120

(probability; 0.6%-9%). Seven β-sheet regions exist based on H-REMD

simulations; Glu10-Thr15 (probability; 29%-100%), Val18-Ile22 (prob-

ability, all at 100%), Glu34-Ala41 (probability; 61%-100%),

Asp81-Gln86 (probability; 23%-100%), Asn93-Val97 (probability; all

at �100%), Leu123-Pro127 (probability; 45%-100%) and

Arg152-Val157 (probability; 70%-100%). Additionally, we detect ten

turn structure regions via H-REMD simulations with higher

abundancies and these are Gly1-Glu10 (probability, 9%-95%),

Ile14-Cys17 (probability; 7%-100%), Asp24-Gly33 (probability; 2%-

100%), Asn42-Leu45 (probability; all at �100%), Ala58-Gly61 (proba-

bility; 1%-100%), Ala73-Asp81 (probability; 0.2%-100%),

Gly87-Asn93 (probability; 1%-100%), Asp101-Lys105 (probability; all

at �64%), Ala117-Leu123 (probability; 17%-100%) and

Leu128-Gly135 (probability; 94%-100%). While the six α-helices were

also observed in the NMR measurements,34 they also annotate adja-

cent residues as helical, but this might be related to the buffer used in

the experiments. NMR measurements34 also detected seven β-sheet

structure regions in MERS-CoV macro domain. However, we should

mention here that the abundancies of α-helix conformations are

higher with H-REMD simulations using the CHARMM36m parameters

in comparison to NMR experiments.

From the T-REMD simulations using the CHARMM36m parame-

ters (Figure 2), we find again six α-helix regions and these are located

at Ala25-Tyr32 (probability; 1%-100%), Gly50-Ser59 (probability;

91%-100%), Ala62-Lys74 (probability; 95%-100%), Val108-Asn119

(3%-98%), Pro138-Glu148 (probability; 84%-100%) and

Gln160-Thr167 (11%-100%). We note that results yield the same resi-

dues adopting α-helix conformation with H-REMD simulations (see

above). The abundancies deviation is insignificant and the

CHARMM36m parameters yield highly abundant α-helix conforma-

tions with T-REMD simulations in comparison to NMR experiments.34

310-helix conformation - obtained from T-REMD simulations using

the CHARMM36m parameters - differs than the one obtained from

H-REMD simulations. Specifically, we find only two regions that adopt

310-helix conformation in MERS-CoV macro domain via T-REMD sim-

ulations with probabilities higher than 1% and these are located at

Ala102-Ala104 (probability; all at �46%) and Val108-Ala120 (proba-

bility; 1% - 25%). The probabilities obtained from T-REMD simulations

differ from those obtained from H-REMD simulations using the same

parameters. We detect seven β-sheet regions in the macro domain of

MERS-CoV by T-REMD simulations using the CHARMM36m parame-

ters, which is in accord with H-REMD simulations and experiments.

These are located at Glu10-Thr15 (probability; 34%-100%),

Val18-Leu22 (probability; all at 100%), Ser35-Ala41 (probability; 6%-

100%), Asp81-Gln86 (probability; 27%-100%), Asn93-Val98 (probabil-

ity; 97%-100%), Leu123-Pro127 (probability; 25%-100%) and

Arg152-Val157 (probability; 77%-100%). Moreover, we find 13 turn

regions with high abundancies from these T-REMD simulations and

these are located at Gly1-Glu10 (probability; 1%-99%), Ile14-Cys17

(probability; 5%-100%), Lys30-Ser35 (probability; 2%-100%),

Asn42-Gly48 (probability; 3%-100%), Ser59-Gly61 (probability; 7%-

100%), Gln78-Gly80 (probability; all at 100%), Gly87-Asn93 (probabil-

ity; 3%-100%), Asp101-Lys105 (probability; all at 54%),

Asp107-Ser109 (probability; 19%), Lys116-Leu123 (probability; 7%-

98%), Leu128-Gly135 (probability; 94%-99%), Arg147-Thr151 (proba-

bility; 1%-3%) and Ser126-Thr167 (probability; 6%-7%). The turn

structure abundancies per residue obtained from these T-REMD simu-

lations vary from results obtained from our H-REMD simulations (see

above).

We find again six α-helix regions in the structures of MERS-CoV

macro domain, which agree with NMR experiments, by T-REMD sim-

ulations using the AMBER99SB parameters (Figure 2). These are

located at Ala25-Tyr32 (probability; 9%-99%), Gly50-Ser59 (probabil-

ity; 71%-100%), Ala62-Lys74 (probability; 91%-100%),

Val108-Ala120 (probability; 1%-94%), Pro138-Glu148 (probability;

37%-100%) and Gln160-Leu166 (67%-100%). The abundancies of

α-helix are slightly smaller at some residues (Pro138-Glu148) using
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the AMBER99SB parameters rather than the CHARMM36m parame-

ters for the macro domain (see above) and show slightly better agree-

ment with NMR experiments. The 310-helix conformation is located at

Pro5-Asn8 (probability; 31%), Ala102-Ala104 (probability; 58%),

Val108-Ala120 (probability; 1%-50%), Gly132-Phe134 (probability;

7%) and represents four regions in the structures of the macro domain

by T-REMD simulations using the AMBER99SB parameters. The 310-

helix conformation at Pro5-Asn8 and Gly132-phe134 could not be

obtained by T-REMD simulations utilizing the CHARMM36m parame-

ters. Residues Glu10-Thr15 (probability; 49%-78%), Val18-Leu22

F IGURE 1 Selected structures
from our H-REMD simulations using
the CHARMM36m parameters, A;
T-REMD simulations using the
CHARMM36m parameters, B; and
T-REMD simulations using the
AMBER99SB parameters, C
representing conformations of the
MERS-CoV macro domain in
aqueous media
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(probability; 99%-100%), Ser35-Asn42 (probability; 2%-100%), Lys46

and Hsd47 (probability; 2%), Asp81-Gln86 (probability; 16%-100%),

Asn93-Val98 (probability; 99%-100%), Leu123-Pro127 (probability;

13%-100%) and Arg152-Val157 (probability; 77%-100%) adopt

β-sheet structure in the T-REMD simulations using the AMBER99SB

parameters. In total we find eight regions of β-sheet structures. These

regions—except Lys46 and Hsd47—are in accord with H-REMD and

T-REMD simulations using the CHARMM36m parameters but proba-

bilities differ from each other. The turn structure conformation is

located at Gly1-Glu10 (probability; 4%-67%), Ile14-Cys17 (probability;

2%-100%), Lys30-Ser35 (probability; 7%-100%), Ala40-Gly49 (proba-

bility; 2%-100%), Ser59-Gly61 (probability; 15%-100%), Ala73-Gly80

F IGURE 2 Secondary structure elements and their residue-level probabilities recovered from the MERS-CoV macro domain structures
calculated with dynamics in aqueous media: A, α-helix structure formation along with its abundances obtained from H-REMD simulations using
the CHARMM36m parameters (blue), T-REMD simulations using the CHARMM36m parameters (green) and T-REMD simulations using the
AMBER99SB parameters (yellow); B, 310-helix structure formation along with its abundances obtained from H-REMD simulations using the
CHARMM36m parameters (blue), T-REMD simulations using the CHARMM36m parameters (green) and T-REMD simulations using the
AMBER99SB parameters (yellow); C, β-sheet structure formation along with its abundances obtained from H-REMD simulations using the
CHARMM36m parameters (blue), T-REMD simulations using the CHARMM36m parameters (green) and T-REMD simulations using the
AMBER99SB parameters (yellow); D, turn structure formation along with its abundances obtained from H-REMD simulations using the

CHARMM36m parameters (blue), T-REMD simulations using the CHARMM36m parameters (green) and T-REMD simulations using the
AMBER99SB parameters (yellow)
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(probability; 2%-100%), Gly87-Lys92 (probability; 97%-100%), Gly99

(probability; 6%), Asp101-Ser109 (probability; 1%-42%),

Cys114-Leu123 (probability; 1%-98%), Leu128-Gly135 (probability;

73%-100%) and Leu145-Arg152 (probability; 1%-28%) and represents

12 regions of turn structures using the AMBER99SB parameters in T-

REMD simulations. The largest discrepancies - depending on chosen

simulation techniques and force fields—are detected for the 310-helix

and turn structures of the macro domain in water. A comparison with

available experiments states that the simulation results obtained from

T-REMD simulations using the AMBER99SB parameters for MERS-

F IGURE 3 Rg vs Ree values of
the MERS-CoV macro domain in
solution from REMD simulations
that we processed with the k means
clustering. 5 k values were used and
centroids are located at (A) H-REMD
simulations using the CHARMM36m
parameters; Rg = 15.50 Å,
Ree = 29.24 Å (Centroid1),
Rg = 15.47 Å, Ree = 32.10 Å
(Centroid 2), Rg = 15.77 Å,
Ree = 20.52 Å (Centroid 3),

Rg = 15.74 Å, Ree = 23.54 Å
(Centroid 4), and Rg = 15.65 Å,
Ree = 26.42 Å (Centroid 5). B)
T-REMD simulations using the
CHARMM36m parameters;
centroids are located at
Rg = 15.45 Å, Ree = 25.79 Å
(Centroid1), Rg = 15.44 Å,
Ree = 30.95 Å (Centroid 2),
Rg = 15.39 Å, Ree = 19.22 Å
(Centroid 3), Rg = 15.44 Å,
Ree = 33.03 Å (Centroid 4), and
Rg = 15.43 Å, Ree = 29.12 Å
(Centroid 5). C) T-REMD simulations
using the AMBER99SB parameters;
centroid are located at
Rg = 15.43 Å, Ree = 25.70 Å
(Centroid1), Rg = 15.44 Å,
Ree = 30.33 Å (Centroid 2),
Rg = 15.43 Å, Ree = 28.22 Å
(Centroid 3), Rg = 15.43 Å,
Ree = 33.57 Å (Centroid 4), and
Rg = 15.37 Å, Ree = 21.01 Å
(Centroid 5)
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CoV macro domain and the TIP3P water model agree slightly better

with experiments.

Figure 3 presents the results that we generate with the k-means

clustering of the structures of MERS-CoV macro domain in water with

dynamics from H-REMD simulations and from T-REMD simulations

using the CHARMM36m and AMBER99SB parameters for the macro

domain. We base this calculation on the radius of gyration (Rg) and

end-to-end distance (REE) values. Based on H-REMD simulations using

the CHARMM36m parameters for MERS-CoV macro domain, the Rg

values vary between 15.28 Å and 16.15 Å with a mean value of

15.61 ± 0.20 Å (Figure 3A). The REE values range between 16.71 and

36.27 Å with an average value of 26.81 ± 4.45 Å (Figure 3A). Based

on T-REMD simulations using the CHARMM36m parameters,

Figure 3B, the Rg values vary between 15.19 and 15.78 Å with a mean

value of 15.43 ± 0.10 Å. The REE values range between 15.38 and

36.27 Å with an average value of 29.06 ± 4.19 Å. Based on T-REMD

simulations utilizing the AMBER99SB parameters, the Rg values vary

between 15.10 Å and 15.66 Å with a mean value of 15.43 ± 0.10 Å

(Figure 3C). Based on these T-REMD simulations using the

AMBER99SB parameters, REE values range between 16.22 and

37.00 Å with an average value of 29.32 ± 3.43 Å (Figure 3C). Experi-

mental structural studies on MERS CoV macro domain in solution are

extremely limited and therefore we could not compare these results

to data generated by the experiments. However, we use a set of inde-

pendently computed residue-level predictions and the secondary

structure analysis based on an NMR structure to contextualize and

compare with our all-atom results.

The gray line in Figure 4 presents the calculated RMSF values for

each residue of the MERS-CoV macro domain in aqueous media at

310 K. Based on these values, we notice more significant fluctuations

(higher flexibility) in the C-terminal region of the domain even with

such an extensive H-REMD and T-REMD simulation using varying

parameters. The average RMSF value for the macro domain (all resi-

dues) is 1.19 ± 0.73 Å from H-REMD simulations. However, the most

flexible residues are characterized by the RMSF values of up to

6.62 Å in H-REMD simulations using the CHARMM36m parameters.

From T-REMD simulations—utilizing the CHARMM36m parameters—

the average RMSF values for the macro domain is 1.21 ± 0.84 Å and

F IGURE 4 Comparison of the structural flexibility of MERS-CoV macro domain in aqueous media with its intrinsic disorder predisposition, A
and propensity for protein and nucleic acid binding, B. Structural flexibility in the aqueous media is reflected in root mean square fluctuations
(RMSF) of the protein backbone as a function of the MERS-CoV macro domain residue number. Intrinsic disorder predisposition was evaluated
using PONDR VLXT, PONDR VSL2, PONDR FIT, IUPred_short, and IUPres_long, A. Predisposition of this domain to interact with proteins and
nucleic acids was evaluated by SCRIBER and DRNApred, respectively, B
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the most flexible residues possess RMSF values up to 7.98 Å. Based

on the T-REMD simulations using the AMBER99SB parameters, the

average RMSF value is 1.13 ± 0.76 Å with the most flexible residues

having a RMSF value up to 7.02 Å.

Figure 4A shows that some of the structural dynamic features

observed in our parallel tempering simulations are correlated with the

residue-level intrinsic disorder predisposition of the MERS-CoV macro

domain. This is reflected in the fact that several peaks in disorder pro-

file serve as envelopes that enclose the local RMSF peaks. However,

there also some regions (eg, residues 20-38), which are predicted as

mostly ordered, but which show noticeable structural fluctuations.

This indicates that part of the structural fluctuations of the MERS-

CoV macro domain in aqueous medium can be rooted in the intrinsic

disorder predisposition of this domain, whereas other structural fluc-

tuations are independent of the intrinsic disorder predisposition of

this amino acid sequence.

We also assess propensity of this protein to interact with other

proteins and nucleic acids interactions. Similar to the aforementioned

disorder analysis, we annotate these interactions at the level of indi-

vidual amino acids. Figure 4B illustrates that the MERS-CoV macro

domain is expected to have several protein binding regions, such as

residues 1-12, 32, 43-47, 51, 86-88, 133-134, 137-144, 147, and

162-168. The predicted likelihood of the protein-protein interactions

for these residues exceeds the 0.5 threshold. Some of these protein-

binding residues are located within the disordered or flexible regions;

that is, regions characterized by the predicted disorder score exceed-

ing 0.5 or ranging from 0.2 to 0.5, respectively. Curiously, although all

highly flexible residues coincide or are located in the close proximity

to the protein-binding regions/residues, not all regions with the

highest protein binding potential are characterized by the highest

RMSF values. Furthermore, our residue-level analysis does not find

any DNA-or RNA-binding regions in the MERS-CoV macro domain.

Experimental structural studies on MERS CoV macro domain in solu-

tion are extremely limited and therefore we could not compare these

results to data generated by the experiments. However, we use a set

of independently computed residue-level predictions and the second-

ary structure analysis based on an NMR structure to contextualize

and compare with our results.

4 | CONCLUSION

We conduct H-REMD and T-REMD simulations using the

CHARMM36m and AMBER99SB parameters for the MERS CoV

macro domain in water and present here the results for the 310 K rep-

lica. We cover several structural properties including RMSF values

with dynamics, secondary structure, and the k-means clustering based

on radius of gyration (Rg) and end-to-end distance (REE) of the struc-

tures of MERS CoV macro domain in water with dynamics. Our find-

ings, which rely on the RMSF values, REE values and deviations, show

that some of the residues are flexible. Furthermore, the global struc-

ture is compact, not very flexible, and varies only by �1.0 Å in water

(in terms of the scale of Rg fluctuations). We detected six α-helical

regions and seven β-strand regions, which are in good agreement with

the available NMR measurements by H-REMD and T-REMD simula-

tions using the CHARMM36m parameters for the macro domain. T-

REMD simulations utilizing the AMBER99SB parameters for the

macro domain yield six α-helical and eight β-sheet regions for

the macro domain. The largest dependence on simulation techniques

and force field parameters is detected for 310-helix and turn structure

formations of the MERS-CoV macro domain in water. We notice

about 10 regions (H-REMD simulation using the CHARMM36m

parameters), 13 regions (T-REMD simulations using the

CHARMM36m parameters) and 12 regions (T-REMD simulations

using the AMBER99SB parameters) with turn structure in the com-

puted conformations of MERS CoV macro domain in water with

dynamics. Additionally, we detect four (H-REMD simulations using

the CHARMM36m parameters), two (T-REMD simulations using the

CHARMM36m parameters) and four (T-REMD simulations using the

AMBER99SB parameters) regions of 310-helix in the structures of the

macro domain in aqueous solution. We should mention here that the

results depend on chosen simulation techniques and force field

parameters regarding the abundancies and locations of secondary

structure elements (especially 310-helix and turn structures) and Rgg

and REE values. Further experiments are required to assess the quality

of simulation techniques and force field parameters because a direct

comparison of all these structural properties could not be provided

due to the lack of experiments in the current literature.

Based on the results of the comparison of the independently gen-

erated intrinsic disorder analysis of the MERS-CoV macro domain

with the H-REMD and T-REMD simulations, we also show that only

part of the structural fluctuations of this protein in aqueous medium

can be attributed the local intrinsic disorder predisposition. The other

structural fluctuations are independent of the local propensity of the

MERS-CoV macro domain to the intrinsic disorder.

Our residue-level analysis provides some functional clues. Based

on putative propensities for protein and nucleic acids interactions, we

suggest that while the MERS-CoV macro domain appears not to show

DNA- or RNA-binding potential, it contains several protein binding

regions. Many of the corresponding PBRs are located within the disor-

dered or flexible regions. Also, some PBRs overlap with the regions

with the turn structure. Furthermore, some of the α-helices found in

the MERS-CoV macro domain, especially located within the C-

terminal half of the protein, were predicted to contain PBRs. Cur-

rently, we are studying the structural dynamics of various regions of

different proteins from the CoV family ranging from SARS-CoV to

SARS-CoV-2 with MERS-CoV in between. All in all, this study demon-

strates the structural properties of the MERS-CoV macro domain in

aqueous solution using different parallel tempering simulation tech-

niques and force field parameters as well as bioinformatics.
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