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Abstract: Androgen receptor (AR)-mediated transcription is critical in almost all stages of prostate
cancer (PCa) growth and differentiation. This process involves a complex interplay of coregulatory
proteins, chromatin remodeling complexes, and other transcription factors that work with AR at
cis-regulatory enhancer regions to induce the spatiotemporal transcription of target genes. This
enhancer-driven mechanism is remarkably dynamic and undergoes significant alterations during
PCa progression. In this review, we discuss the AR mechanism of action in PCa with a focus on how
cis-regulatory elements modulate gene expression. We explore emerging evidence of genetic variants
that can impact AR regulatory regions and alter gene transcription in PCa. Finally, we highlight
several outstanding questions and discuss potential mechanisms of this critical transcription factor.

Keywords: androgen receptor; enhancers; prostate cancer; gene transcription; 3D genome organization;
AR cistrome

1. Androgen Receptor in Prostate Cancer

Prostate cancer (PCa) is one of the leading causes of cancer-related death in men [1].
In almost all PCa patients, the androgen receptor (AR) is the primary driver of growth and
differentiation [2]. Given this critical role, AR pathway inhibitors (ARPI) are the standard
of care for treating patients with recurrent or metastatic forms of the disease [3,4]. However,
while treatment is initially successful, ~20% of patients develop resistance and progress
to a castration-resistant prostate cancer (CRPC) [5]. This aggressive form of the disease
is invariably lethal. Intriguingly, the AR still remains active in the majority of resistant
patients through various mechanisms, including AR point mutations [6], constitutively
active AR variants [7], and most commonly, AR gene and enhancer amplification [8–11].
Despite the importance of AR-mediated transcription in PCa, fundamental aspects of
how this nuclear receptor drives gene expression are only now being revealed. In this
review, we summarize the mechanism of AR-mediated transcription in PCa and discuss
outstanding questions.

2. Androgen Receptor-Mediated Gene Transcription

The AR is a 919 amino acids (110 kDa) protein that contains an N-terminal domain
(NTD), DNA-binding domain (DBD), and C-terminal ligand-binding domain (LBD) [12,13].
The inactive apo-form of AR primarily resides in the cytoplasm, where it is stabilized by
chaperone proteins. When activated by androgens, most commonly testosterone or the
more potent metabolite 5α-dihydrotestosterone (DHT), the AR undergoes an allosteric
modification, homodimerizes, and then translocates into the nucleus where it binds to
DNA at AR binding sites (ARBS) [14]. The location of these ARBS is influenced by nu-
merous features including the DNA primary sequence or motif, protein–protein inter-
actions, transcription factor (TF) occupancy, and chromatin accessibility. Once bound
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to enhancer cis-regulatory elements (CREs), the AR recruits coregulators [15], remodel-
ing complexes [16], and other TFs [17–20] to create a transcriptional hub that initiates
an AR-dependent transcriptional program, which impacts the expression of several hun-
dred target genes [21]. These genes contribute to proliferation, cellular differentiation,
and potentially metastasis. The specific genes associated with these complex cellular
processes are controversial, though several have been proposed, including c-Myc, EVT1,
and EIF5A2 (eukaryotic translation initiation factor) [22–24]. When looking at essentiality
from published genome-wide CRISPR screens of AR-regulated genes in PCa cells (LNCaP)
(Figure 1), we find many known and novel essential genes, including coactivators such
as GRHL2 (grainyhead-like transcription factor 2) [25]; metabolic genes such as DNM1L
(dynamin-related protein 1) [26], SREBP (sterol regulatory element-binding protein) cleav-
age activating protein SCAP [27] and mTOR (the protein kinase mammalian target of
rapamycin) [28]; and transcriptional regulators such as NFKBIA (NFKB inhibitor alpha), an
inhibitor protein of NF-κB and p53 [29].
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Figure 1. Essential and AR-upregulated genes in androgen-sensitive and PSA-positive LNCaP
cell line. Data taken from 5 LNCaP genome-wide CRISPR screens in DepMap database (DepMap
21Q4, DepMap 21Q3, GeCKO 19Q1, GeCKO CERES, Sanger CERES) and ranked based on their
essentiality. AR-upregulated genes are taken from RNA-seq samples of androgen-treated LNCaP
cells (GEO: GSE64529).

3. Pioneer Factors and DNA Binding

Before the AR binds to DNA, the ARBS is first “primed” by pioneer factor (PF) proteins
that interact with heterochromatin and increase chromatin accessibility [30]. Given that PFs
determine where the AR can potentially bind, these proteins strongly influence ARBS loca-
tions [31,32]. PFs engage with nucleosomes [33] that are dynamically transitioning between
fully wrapped and transient exposure states [34,35]. The window of exposure is sufficient
to allow binding of PFs as well as other TFs [36]. PFs typically bind to poised/active
enhancers containing histone marks such as histone 3 lysine 4 mono/di-methylation
(H3K4me1/me2) [37,38] and histone 3 lysine 9/27 acetylation (H3K9/27ac) [39,40]. There
is limited PF binding at regions with strong silencing/repressive histone marks and DNA
methylation [41,42]. While not reported with AR, other steroid receptors have been shown
to recruit ATP-dependent modifiers that can interact with closed chromatin independent of
PFs [43,44] and recruit these to target sites [45]. PFs are classified based on their protein
domains and mechanism of action [45–47]. FOXA1 (forkhead box transcription factor a1)
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plays a critical role in the activity of AR and other nuclear receptors [48]. FOX proteins
contain a winged helix DBD domain that allows recognition of full/partial DNA motifs
in the nucleosome [49–51]. The C-terminal of FOXA1 is necessary for both unwrapping
the chromatin through an ATP-independent mechanism and recruiting ATP-dependent
chromatin modifiers [52]. In AR-mediated transcription, FOXA1 both opens chromatin
for direct AR binding and also acts as an anchor for AR to indirectly bind CREs [53].
Demonstrating its critical role, knockdown of FOXA1 causes a decrease in overall AR
binding with a massive redistribution of ARBS at tens of thousands of new sites [32]. This
is strongly influenced by AR itself, as those sites that are unaffected following FOXA1
knockdown generally have higher AR occupancy [54]. GATA2 (GATA-binding factor 2)
is another well-characterized PF that increases accessibility at ARBS [36,55]. Although
GATA2 chromatin accessibility induction is less effective than FOXA1 [52], GATA proteins
facilitate binding of AR and estrogen receptor (ER) in prostate [56] and breast cancer [57],
respectively. Different from FOXA1, the GATA family of TFs requires other chromatin
remodeling proteins, such as the SWI/SNF complex, to alter accessibility [45,58,59]. Lastly,
HOXB13 (Homeobox b13), a member of the HOX family of proteins, has been speculated
to have potential PF activity due to its preference to bind methylated DNA that is found at
heterochromatin [60,61]. However, further work is needed to demonstrate this potential
function. While the hierarchy of PFs is not clearly defined during AR activation, >70% of
ARBS overlap with either GATA2, FOXA1, or HOXB13 binding sites [53,56,59,62]. Given
that PF activity is critical for the oncogenic transformation of several cancers, including
prostate and breast, there is ongoing research to develop therapeutics that target these
PFs [63,64].

4. Plasticity of the AR Cistrome in Prostate Cancer Progression

AR induces gene transcription by binding to specific CREs in the genome. Identifying
the location of ARBS is therefore critical to understand how AR functions. The first
ARBS identified were found at the promoter of the rat probasin [65,66] and KLK3/PSA
(kallikrein related peptidase 3/prostate specific antigen) gene [67–69]. The identification of
subsequent ARBS, most prominently the AREIII (AR regulated enhancer III) upstream of
KLK3/PSA, demonstrated that AR primarily drives transcription through enhancers rather
than promoters [70,71]. Enhancers are non-coding regulatory elements that are required
for gene expression, as they “enhance” transcription of target genes [72,73]. AR-driven
enhancer activity has been confirmed with various genes including PSMA (prostate-specific
membrane antigen) [74] and p21 [75]. Large-scale functional genomic studies, first with
ChIP-on-chip (chromatin immunoprecipitation followed by microarray) and then ChIP-seq
(chromatin immunoprecipitation followed by sequencing), provided additional support
that AR activity occurred through enhancer CREs as these studies demonstrated that the
vast majority of ARBS (>95%) are located in non-coding intronic or intergenic regions, with
few binding sites found at promoters (<2%) [76–78].

The AR cistrome, or genome-wide binding sites, is not static, and clinical ARBS display
remarkable plasticity and significant reprogramming during both tumor initiation and
disease progression [79]. During neoplastic development, there is a dramatic expansion
(3×) of ARBS in primary PCa compared to normal prostate [53]. Similarly, in metastatic
CRPC samples, the AR gains an additional > 17,000 distinct binding sites that are associated
with prostate development [79]. This suggests that CRPC regains an AR-driven early
developmental transcription signature to potentially increase survival and proliferation
during ARPI treatment. Interestingly, the changes in the AR cistrome seem unlikely to
be solely due to chromatin accessibility as in both normal prostate and primary PCa
most gained sites are already accessible euchromatin bound by PFs [79]. The reason
why AR does not bind to these accessible regions in primary PCa remains an active
area of research. While speculative, the increased expression of AR or coregulators in
advanced stages of the PCa may influence where and for how long AR binds to chromatin.
Supporting this potential mechanism, overexpression of AR in vitro has been shown to
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sensitize binding and alter ARBS [80]. Further, changes in FOXA1 expression alter the global
chromatin accessibility and generate both pseudo-AR hypersensitivity and an increase in
open chromatin ARBS [54]. This correlates with the broad increase in chromatin accessibility
that is observed during the progression from primary PCa to CRPC [81,82]. Potentially,
these newly accessible regions primed by FOXA1 or other coregulatory proteins may
require increased expression of AR to compensate for the gained regions.

5. Impact of Motifs on AR Binding and Activity

ARBS are enriched for a conserved androgen response element (ARE) binding mo-
tif that is made up of two 6-bp asymmetrical elements separated by a 3-bp spacer (5′-
AGAACAnnnTGTTCT-3′) [12,69,83]. This specific motif has been extensively validated
by various studies, including an in vitro SELEX-seq (systematic evolution of ligands by
exponential enrichment followed by sequencing) with recombinant AR-DBD protein [84].
Nonetheless, it remains unclear how important an ARE motif is to AR binding in situ [85].
Whole-genome AR ChIP-seq shows that only 8–30% of ARBS contain a canonical ARE, while
most binding sites have a more common ARE half-motif (5′ -AGAACA-3′) [53,56,78,79,86].
However, the importance of ARE half-motifs is itself subject to discussion. A previous study
found no evidence for binding at half-motif sites [87], whereas other work has proposed
two modes of AR binding that include both half- and full-motif stabilized by FOXA1 in-
teractions [30,88]. Further, there is contradicting data on the impact of motifs on enhancer
activity. Studies with glucocorticoid receptor (GR) observed higher enhancer activity and
target gene expression at those regions with GR motifs [89]. However, this was not binary,
and many enhancers harboring weak GR motifs also had similar enhancer activity as those
with strong motifs [89]. Our recent work did not report a strong correlation between any
specific ARE motifs and AR enhancer activity [90]. These findings suggest that there is mixed
evidence supporting the prerequisite of an ARE motif for AR binding and enhancer activity.
Incorporating datasets such as chromosome accessibility (ATAC-seq, DNA-seq, FAIRE-seq)
or alternative methodologies such as CUT&RUN may potentially help to reduce noise in
defining in situ AR motifs.

6. Impact of Chromatin Modifying Enzymes on AR Activity

Once bound to DNA, the AR recruits chromatin-modifying enzymes that stabilize
accessibility and provide a platform for coregulators and TFs [91]. This includes histone
methyltransferases such as EZH2 [92–94], SET9 [95], and MLL complex (MLL, MLL4,
WDR5, ASH2L) [96]; histone acetyltransferases (HAT) such as p160, SRC-1, TIF2/GRIP1-1,
ACTR/AIB1/RAC3/pCIP [97–101], CBP [102], p300 [103], and pCAF [104]; and histone
deacetylases (HDAC) such as HDAC1-3 (class I), HDAC4-10 (class II), and SIRT1-7 (class III)
and HDAC11 (class IV) [105]. Characterization of the AREIII enhancer demonstrated the
sequential recruitment of p160 and p300, was then followed by CBP and pCAF [21]. HAT
and HDAC work antagonistically to acetylate the lysines on histone N-terminal tails that
promote the formation of heterochromatin through electrostatic interactions [106]. Further,
BRM (SMARCA2), a member of the SWI/SNF chromatin remodeling complex, has been
shown to be essential for KLK3/PSA and rat probasin expression [107]. Overexpression of
the related BRG1 (SMARCA4) in BRM/BRG1 mutant cell lines showed limited AR activity
at KLK3/PSA and rat probasin enhancers [108]. In ER-mediated transcription, FOXA1 has
also been shown to recruit MLL3 to promote H3K4me3 at ER binding sites in breast cancer
cell lines [109]. The kinetic hierarchy of regulation still needs further characterization given
the intricacies of this dynamic transcriptional complex.

7. AR-Coregulators and Gene Transcription

Once bound to chromatin, AR forms a complex with numerous coregulatory pro-
teins to activate enhancers and alter the expression of target genes (Figure 2) [89,110–112].
This process involves many different proteins, including coactivators such as CBP/p300
(CREB binding protein) and SRC-1 [21]; chromatin modifying enzymes that alter accessi-
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bility [108]; and proteins that stabilize AR binding [16,113]. Overall, this is an extremely
dynamic process, and to date >250 proteins have been identified that interact with the AR
and have potential coregulatory activity [114]. Further, AR interacts with MED1 (mediator
complex subunit 1) and other members of the Mediator complex to stabilize AR-mediated
enhancer–promoter interactions [17]. Recent work has suggested that these AR–MED1 in-
teractions may induce the formation of phase condensates at super-enhancer regulatory ele-
ments [115]. These super-enhancers have higher transcriptional output of target genes than
individual enhancers and play a pivotal role in cell identity and tumor progression [116]. In
CRPC, several gained super-enhancers were proposed to activate oncogenes such as CHPT1
(choline phosphotransferase 1) and drive resistance [117]. In addition to these coregulatory
proteins, long non-coding RNAs (lncRNAs) and enhancer RNAs have also been reported
to impact AR-mediated gene transcription [8,118]. Although this is a current subject of
research, these RNA species are proposed to recruit protein complexes to the transcription
target sites [119]. For example, the PCA3 (prostate cancer antigen 3) lncRNA interacts with
AR and stabilizes androgen-induced transcription [120]. However, there is considerable
diversity in the mechanism of action. AR-upregulated ARLNC1 (androgen receptor reg-
ulated long noncoding RNA 1) has been shown to stabilize AR mRNA transcripts and
alter expression through a transcriptional feedback loop [121]. Further, SChLAP1 (second
chromosome locus-associated with prostate-1) is highly expressed in CRPC and induces
proliferation through interactions with the SWI/SNF chromatin-modifying complex [122].
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Figure 2. Cartoon representation of ARBS enhancer activity on AR-mediated gene. Upon AR binding,
coactivators, mediator complex, cohesin proteins, and transcriptional machinery are recruited to
initiate gene expression.

While poorly understood, AR-mediated gene downregulation has been proposed to
occur through both direct repression and indirect coactivator sequestering, also known
as squelching [123]. In direct repression, corepressor proteins such as homologous pro-
teins SMRT and NCoR (nuclear receptor corepressor) interact with AR and recruit histone
deacetylases such as HDAC4 that cause chromatin compaction and transcriptional repres-
sion (Figure 3) [124]. Specific corepressors include RIP140 (receptor-interacting protein
140), which directly binds to C-terminus of AR protein [125]. Others such as LCoR (ligand
dependent corepressor), inhibit AR-mediated transcription by interacting with HDACs
and CtBP (C-terminal binding protein), which suppress tumor growth in vivo [126,127].
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Calcium-binding protein calreticulin inhibits AR activity through its DBD [128,129]. In
contrast with these mechanisms, the squelching model of repression proposes that the
activated AR, which previously resided in the cytoplasm, binds to numerous coregulatory
proteins that impact the activity of non-AR TFs by limiting access to these critical proteins.
AR and other nuclear receptors are also the subject of auto-squelching, which can repress
target genes [130].
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a corepressor complex and facilitating HDAC activity to suppress gene activation.

Regardless of the mechanism, gene downregulation is believed to be important for
the growth and progression of advanced stage PCa [131]. Importantly, the activation of
AR leads to the downregulation of c-Myc [132], which has an antagonistic transcriptional
network with AR [133]. c-Myc repression by AR is largely independent of AR binding to its
target sites and primarily occurs via the redistribution of AR coactivators [134]. Further,
c-Myc regulation by histone methyltransferase, DOT1L (disruptor of telomeric silencing
1-like), and AR through an enhancer has also been reported [135]. Decreased AR expression
upon the inhibition of DOT1L, which coregulates AR and MYC pathways, leads to increased
expression of AR-target genes by other TFs such as c-Myc. AR has also been shown to
alter the expression of other known tumor-suppressors such as p53, PTEN (phosphatase
and tensin homolog deleted on chromosome 10), and LRIG (leucine-rich repeats and
immunoglobulin-like domains). AR inhibits p53 expression, while p53 directly represses
the expression of AR by binding to target promoters [136,137]. PI3K (phosphoinositide3-
kinase) signaling is altered in PCa through loss of PTEN and is associated with aggressive
PCa prognosis [138]. Expression of PTEN is inversely correlated with AR in PCa tumors,
and AR is reported to directly inhibit PTEN expression [139]. Finally, elevated expression
of the AR-stimulated tumor-suppressor LRIG is associated with increased overall survival
in PCa cohorts [140,141]. LRIG expression is also affected by SUMOylation of AR in
which small ubiquitin-related modifiers (SUMOs) covalently bind to the AR and alter the
downstream transcription events [142]. Interestingly, motif analysis of corepressor-bound
AR and coactivator-bound AR showed a similar binding motif, which suggests there may
be competition between these two complexes for gene activation/repression [143].
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8. AR Enhancers in Gene Transcription

AR primarily drives gene expression through enhancer CREs. Located at euchro-
matin [144], enhancers commonly correlate with histone marks such as H3K27Ac and
H3K4me1 [145]. Enhancers are also typically bound by multiple TFs [89,90,146–148],
RNA polymerase II [149], transcriptional coactivators [150–152], and CEBP/p300 [153].
Nonetheless, these features only broadly correlate with activity, and there are numerous
enhancer CREs that do not contain some or any of these specific modifications [90,154–156].
Functional annotation is needed to understand how ARBS work together to drive gene tran-
scription. This is particularly important in AR-mediated transcription, as there are 10–100×
more ARBS (tens of thousands) than differentially expressed genes (hundreds). The devel-
opment of novel high-throughput enhancer assays such as STARR-seq (self-transcribing
active regulatory region sequencing) have enabled researchers to test the enhancer ac-
tivities of thousands of genomic regions in a single experiment [157–160]. Recently, all
high-confidence clinical ARBS were tested using STARR-seq and revealed three different
classes of binding sites—named as inducible, inactive, and constitutive enhancers. Only
a fraction of the regions showed AR-activated or inducible enhancer activity (7%), and
instead the majority of ARBS did not demonstrate any enhancer activity (81%). Further, ap-
proximately 12% of ARBS exhibited constitutive enhancer activity that was independent of
AR binding. Inducible AR enhancers were found to correlate with both high-AR occupancy
and an increase in chromatin loops to other CREs and gene promoters. While it could be
argued that these differences in activity are either contextually or temporally dependent,
a strong correlation was observed between these in vitro annotations and H3K27Ac in
clinical PCa samples. Unexpectedly, when these ARBS classes were functionally tested,
both inactive and constitutively active enhancers, in addition to inducible enhancers, were
frequently required for AR-mediated gene transcription. Supporting this functional role,
each ARBS class demonstrated equivalent evolutionary conservation, suggesting that each
enhancer type is required for gene transcription [90]. Apart from AR inducible enhancers,
different mechanisms have been proposed for constitutive and inactive ARBS enhancers.
Inactive sites could support long-range chromatin interactions or increase the local AR
concentration to trigger gene transcription. A similar stabilization may occur with con-
stitutive enhancers where multiple TFs support looping following AR binding. In this
model, these genomic regions would produce enhancer reporter signals in an episomal
assay with non-AR TF binding but would only contribute to gene transcription when the
AR is bound. Large-scale functional testing of these distinct ARBS enhancer classes is
needed to interrogate their role in AR-mediated gene transcription.

There is increasing evidence that multiple ARBS work together to drive gene transcrip-
tion. More than 60% of the AR-regulated genes have >2 ARBS within 200 kb proximity
(Figure 4a). For example, TMPRSS2 (transmembrane serine protease 2) is regulated by
several enhancers bound by AR/FOXA1/p300 that loop to the gene promoter and induce
transcription [161]. How this occurs is poorly understood, but several distinct biological
models have been proposed to explain the collaborative mechanism between multiple
bound TFs [162,163]. Recent studies of ER binding sites have shown both hierarchical
and synergistic interactions between enhancers [164]. The hierarchical model suggests
that a dominant motif-containing enhancer can activate gene expression by itself, and a
nearby weak motif-containing enhancer only contributes secondarily to gene activation.
In contrast, the synergistic model proposes that a motif-containing binding site only con-
tributes to gene expression if a neighboring binding site is also bound. However, it remains
to be determined whether a single model can explain all interactions between different
ARBS enhancers.

9. 3D Genome Organization

AR-regulated enhancers are brought in close physical proximity to the target gene
promoter by chromatin looping [165]. These ARBS enhancer–promoter loops occur within
topologically associated domains (TADs) that are formed by both insulator protein CTCF
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(CCCTC-binding factor) and cohesin [166]. TADs segment the genome into regions that
contain high contact frequency loops and similar histone modification patterns [167,168].
Within each TAD, most ARBS loops are distributed between 10 kb to 1 mb (Figure 4b),
though there are notable exceptions, including the gene STEAP4 (six-transmembrane
epithelial antigen of prostate 4) that interacts with an ARBS found >2 MB from the target
promoter [169]. Enhancer–promoter loops in PCa cell lines are enriched for numerous
binding motifs, including AR, FOXA1, and the coregulator GRHL2 [170]. These enhancer–
promoter interactions are proposed to either be pre-existing or formed de novo [171,172].
Pre-existing links are convenient for rapid transcriptional activation [173], whereas de
novo loops can be formed through TF interacting structural proteins such as YY1 (Yin
Yang 1) [174,175]. Gene expression and loop strength are independent of the distance
between an enhancer and its target promoter [176]. Work from the ENCODE project
demonstrated that the average distance of enhancer–promoter loops is around 120 kb with
almost four enhancers for any given active gene [177]. However, these regulatory networks
are complicated by the significant alterations found in PCa at almost all hierarchical levels
of chromosomal organization [178]. A recent study conducted HiC, a whole genome
chromosome conformation capture assay, in multiple PCa cell lines, including RWPE-1,
LNCaP, DU145, 22Rv1, VCaP, PC3, MDAPCa2a, MDAPCa2b, and C4-2B, identified 387
TAD gene compartments that were distinct for each cell line [179]. Similarly, in situ HiC
maps of RWPE1, C4-2B, and 22Rv1 cell lines showed that common TADs found in all
cell lines were much smaller than those TADs unique to a single cell line [170]. Using
“normal” prostate epithelial cells and models of PCa (LNCaP and PC3), those so-called
“normal” TADs were much larger, higher in number, and located in distinct positions [180].
However, low-input HiC from both primary PCa (n = 12) and benign prostate tissues (n = 5)
demonstrated that, unlike cell lines, there was no significant difference in the number
of TADs called or in TAD borders between samples [181]. Combining these data with
whole-genome sequencing, they found only one structural variant (out of 260) with altered
gene expression in an intra-TAD region. While spatial organization of the genome affects
gene transcription, it remains to be determined how these changes in chromatin looping
affect AR-mediated gene expression.
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10. Enhancer CRE Mutations

PCa has a relatively low somatic mutation frequency compared with other cancer
types [184]. Common oncogenic drivers include TP53 (tumor protein 53) and PTEN
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(phosphatase and tensin homolog), as well as prostate-specific recurring mutations such
as SPOP (speckle type BTB/POZ protein) and FOXA1 [185]. Given the critical role of AR
signaling in CRPC, late-stage PCa commonly harbors AR somatic mutations including
gene duplications, single nucleotide variants (SNV), or structural variants (SV) [10]. Several
excellent reviews have discussed protein coding mutations in PCa and their role to stratify
patients for treatment [186–188]. However, protein coding regions make up only ~1% of
the whole genome [189–191], and there is increasing evidence that non-coding mutations at
enhancer CREs contribute to PCa progression. This is particularly important as while the
mutational burden is relatively low in PCa, there is a high frequency of SVs that can cause
enhancer-driven dysregulation of transcriptional networks [192]. For instance, duplication
of an upstream enhancer that regulates the AR gene is commonly found in most advanced
PCa patients (81%) and can act as the sole driver of ARPI-resistance in CRPC [193,194].
Further, there are several common fusion events where AR-driven regulatory elements
induce transcription of oncogenic driver genes through enhancer hijacking [195–197]. This
was first reported with TMPRSS2-ERG fusions [198] and then later TMPRSS2-ETV1/ETV4
fusions [199]. TMPRSS2 is a prostate-specific AR-regulated gene, whereas ERG is a critical
regulator of proliferation, differentiation, and apoptosis [198,200]. As a result of the fusion,
the ERG gene expression becomes regulated by AR signaling and is highly expressed in PCa.
Similar complex rearrangements between the AR-regulated gene NRF1 and BRAF have also
been observed [201]. n-Myc and c-Myc expression have also been attributed to enhancer
hijacking of distal enhancers in neuroblastoma [202,203]. Changes in gene expression
can also occur by mutations that alter TAD structures. A commonly found deletion in
the 17p13.1 locus that contains the tumor-suppressor p53 gene separates a well-defined
TAD that occurs in normal cells into two distinct TADs, with significant changes in CRE
usage [180]. Further, a recent study demonstrated that disruption of a single CTCF binding
site in the KLK locus alters transcription of the gene cluster [204]. However, it is not known
exactly which enhancer regions play a role in this activation. Further, this potentially
may be locus-specific, as there is evidence that CTCF depletion is not affecting enhancer–
promoter connections [205]. Large-scale chromosomal alterations can also cause circular
extrachromosomal DNA (ecDNA) that leads to the expression of numerous oncogenes
through changes in enhancer usage [206,207]. Given the highly unstable genomic landscape
of PCa, ecDNA is increasingly being found [208,209]. Further, enhancer retargeting caused
by promoter somatic mutations can also lead to gene reactivation [210].

There is conflicting evidence for the role of non-coding SNVs in PCa initiation and
progression. The vast majority of PCa point mutations are non-coding and found in inter-
genic (46%), intronic (44%), and promoter (9%) regions [211]. Most of these SNVs are likely
passenger mutations. In the large-scale Pan-Cancer Analysis of Whole Genomes (PCAWG),
only 0.3% (986 of 276,892) of patients had recurrent non-coding mutations, suggesting that
there is little selective pressure [211]. However, this interpretation is complicated by the na-
ture of gene transcription, where multiple CREs commonly work together and a mutation
at independent enhancer regions could potentially cause the same alteration in gene ex-
pression [212]. Therefore, instead of recurrent individual mutations causing transcriptional
dysregulation, they could occur at multiple sites in a local regulatory network (plexuses)
and alter the expression of critical genes [211]. Supporting a potential role of CRE SNVs in
PCa development, the majority of single nucleotide polymorphisms (SNPs) identified from
PCa-associated genome-wide association studies (GWAS) occur in non-coding regulatory
regions and are proposed to alter TF binding at enhancer regions [213–215]. While the
impact of these mutations is unclear, we and others have demonstrated that the binding
sites of lineage-specific TFs have an increased rate of somatic mutations [211,216]. However,
interpretation of these SNVs is limited by poor understanding of enhancer “grammar” that
prevents the identification of potential pathogenic variants.
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11. Targeting AR and Coregulators

Current PCa therapies target AR through either direct antagonism (bicalutamide,
enzalutamide, apalutamide, etc.) or by reducing the synthesis of androgenic steroids
(LHRH agonists, abiraterone, etc.) [217]. However, while initially effective, almost all
tumors eventually develop resistance to treatment [5]. While a subset of these resistant
tumors differentiates into a neuroendocrine state (<15%), the vast majority of CRPC tumors
still remain dependent on AR signaling. Given their critical function, AR-coactivator
interactions have been proposed as an alternative pharmacological target for overcoming
many common mechanisms of resistance [218].

12. Conclusions

In this brief review, we discuss the mechanism of AR-regulated gene expression
in PCa. Numerous studies characterizing the AR cistrome have revealed that the vast
majority of ARBS are located at enhancer CREs that regulate the transcriptional activity
via chromatin looping. However, while these ARBS are well characterized, there are still
many outstanding questions, particularly, related to the expansion of ARBS in CRPC where
there is a broad reactivation of early developmental transcriptional processes. There is
emerging evidence that ARBS can influence gene transcription even without episomal
enhancer activity, suggesting that AR directly or via other TFs can potentially stabilize CRE
chromatin interactions and influence transcription. From this perspective, there is a need
for additional chromosomal genome organization datasets to improve our understanding
of phenotypic events in the different stages of PCa. With high-throughput dataset initiatives
such as ENCODE [191,219] and 4D-Nucleome Project [220], as well as several large-scale
clinical projects, these datasets will help to contribute to our knowledge of this complex
process. By understanding AR-mediated gene transcription, we can both begin to stratify
potential non-coding driver mutations and identify therapeutic vulnerabilities to better
treat late-stage PCa patients.
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