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Abstract

In the face of multiple sensory streams, there may be competition for processing resources in 

multimodal cortical areas devoted to establishing representations. In such cases, alpha oscillations 

may serve to maintain the relevant representations and protect them from interference, whereas 

theta band activity may facilitate their updating when needed. It can be hypothesized that these 

oscillations would differ in response to an auditory stimulus when the eyes are open or closed, 

as intermodal resource competition may be more prominent in the former than in the latter case. 

Across two studies we investigated the role of alpha and theta power in multimodal competition 

using an auditory task with the eyes open and closed, respectively enabling and disabling visual 

processing in parallel with the incoming auditory stream. In a passive listening task (Study 1a), 

we found alpha suppression following a pip tone with both eyes open and closed, but subsequent 

alpha enhancement only with closed eyes. We replicated this eyes-closed alpha enhancement in an 

independent sample (Study 1b). In an active auditory oddball task (Study 2), we again observed 

the eyes open/eyes closed alpha pattern found in Study 1 and also demonstrated that the more 

attentionally demanding oddball trials elicited the largest oscillatory effects. Theta power did not 

interact with eye status in either study. We propose a hypothesis to account for the findings in 

which alpha may be endemic to multimodal cortical areas in addition to visual ones.
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1. Introduction

We constantly encounter complex sensory information from multiple sensory streams and 

must process this information to navigate the world. Regardless of whether the sights 

and sounds we perceive are relevant to us, in most cases they are processed at least 

to some extent, and may engender competition for processing resources. Two seemingly 

contradictory lines of research have investigated the oscillatory brain activity associated with 

this processing. On the one hand, in task-based electroencephalographic (EEG) recordings, 

an increase in the power of pre-stimulus posterior alpha oscillations (8–12 Hz) has been 

linked to the dampening of irrelevant information (e.g., Mathewson et al., 2009; Cosmelli 

et al., 2011; Vissers et al., 2016; for a review see Mathewson et al., 2011). The re-direction 

of attention to an unpredicted incoming stimulus is instead associated with the suppression 

of alpha activity (Feng et al., 2017) to allow for new representations to form. On the 

other hand, higher post-stimulus alpha power has been linked to increased memory for the 

stimulus itself (e.g., Jensen et al., 2002). As proposed by Gratton (2018), it is possible to 

accommodate both of these findings by assuming that increased alpha power represents 

a mechanism that helps the maintenance of existing representations in the presence of 

competing processing streams. Alpha activity is instead suppressed when new incoming 

stimuli need to be processed. In other words, whether alpha is suppressed or enhanced, and 

whether this is beneficial or detrimental to performance, depends on fine-grained dynamics 

that interact with the timing of incoming stimuli and the required processing. In this article 

we present a series of studies in which we examine these fine-grained dynamics in the 

context of multimodal processing.

1.1. The role of multimodal competition

A long tradition in cognitive psychology refers to the processing of multiple stimuli as 

involving a competition for resources (Houghton and Tipper, 1984; Kahneman, 1973; Lavie, 

1995; van der Heijden et al., 1988; Wickens, 1980, 2008). Indeed, it has been shown that 

stimuli compete for representation in the same cortical region (Desimone and Duncan, 

1995; Reynolds et al., 1999) and it is suggested that competition may underlie all resource 

limits (Scalf and Beck, 2010; Scalf et al.,2013). When multiple sensory systems, such 

as the visual and auditory modalities, receive unrelated information, competition would 

presumably occur in multimodal cortical regions, where it may lead to the visual and 

auditory signals attempting to establish competing representations in the same areas (e.g., 

Low et al., 2009; but see Talsma et al., 2010, for conditions where the convergence and 

integration of multimodal stimuli improves stimulus processing). When our eyes are open, 

this competition may happen at any moment in time, as both the visual and auditory 

modalities can potentially receive new information at any time. In contrast, with closed eyes 

the visual processing stream is likely to be interrupted or suppressed at an early peripheral 

level and therefore unlikely to compete with the auditory modality in multimodal regions. 

A similar peripheral suppression is not necessarily easy to obtain for the auditory stream, 

since humans lack similar methods for switching off auditory input. We can therefore 

hypothesize that the maintenance of existing representations, the re-direction of attention, 

Clements et al. Page 2

Neuroimage. Author manuscript; available in PMC 2022 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and the establishment of new sensory representations may differ when auditory stimuli occur 

while our eyes are closed compared to when they are open.

1.2. The role of alpha

In task-based settings, it is well established that alpha suppression occurs immediately 

after the presentation of both task-relevant and task-irrelevant stimuli across a variety 

of paradigms (e.g., Yamagishi et al., 2005; Thut et al., 2006; Foxe and Snyder, 2011; 

Vissers et al., 2016; Xie et al., 2016; Feng et al., 2017). As noted above, a possible 

interpretation of these findings is that alpha suppression facilitates the allocation of attention 

to a new stimulus by interrupting the ongoing maintenance of some previous representation. 

Accordingly, early alpha suppression tends to support task performance, facilitating the 

allocation of attention to a new incoming stimulus (Feng et al., 2017; Thut et al., 

2006). Although less extensively researched than alpha suppression, some studies report 

alpha enhancement in a later time window, to maintain recently presented task-relevant 

information, such as during a working memory retention period (Jensen et al., 2002; Xie 

et al., 2016) or in a longer (~1000 ms) interstimulus interval after a cue (Banerjee et al., 

2011; Foxe et al., 1998). In other words, this later alpha enhancement may serve to protect 

the newly formed representations from interference and is related to improved performance 

in these studies. These findings are integrated in a model proposed by Gratton (2018) in 

which alpha is part of an active neural system supporting the processing, maintenance, and 

updating of representations. This model purports that a representation’s initial processing 

may be facilitated by alpha suppression, after which its maintenance is protected by alpha 

enhancement.

The processing of representations may be especially challenging when multiple competing 

stimulus streams are present. As described above, one such situation is when (at least) 

two sensory modalities provide unrelated information at the same time, such as vision 

and hearing. Here we investigated whether suppressing visual input by closing one’s eyes 

impacts the processing of auditory information, as indexed by alpha activity. Specifically, we 

considered the following hypotheses. First, with closed eyes it is less likely that multimodal 

areas would be occupied by current visual representations when an auditory stimulus is 

presented. Therefore, less alpha suppression should be needed in this condition than when 

the eyes are open. Nonetheless, some alpha suppression should still occur when a new 

sound is presented. Of note, this prediction regarding stimulus-related alpha suppression 

occurs on top of the well-known general alpha reduction when the eyes open after being 

closed (e.g., Adrian and Matthews, 1934; Barry et al., 2007; Berger, 1929; Polich, 1997; 

Clements et al., 2021a). Additionally, we hypothesize that it will be easier to generate and 

maintain new representations of auditory stimuli with closed than with open eyes because 

there will be little competition between vision and hearing, and that should be reflected in 

alpha dynamics. Specifically, if alpha activity represents a process by which representations 

are processed in multimodal cortex, one would be led to expect that auditory stimuli may 

in fact generate alpha enhancement following the initial suppression. Again, this would be 

particularly evident with eyes closed, because the higher-order cortical regions involved in 

cross-modal processing should be fully devoted to process the auditory representations under 
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these conditions. However, if alpha activity is instead solely related to the processing/gating 

of visual information, then this alpha rebound should not be observed.

1.3. The role of theta

Although the current study focuses on posterior alpha activity, it can be expected that 

frontocentral theta activity (4–8 Hz) may also be involved in stimulus processing, given 

that theta band activity is thought to facilitate the redirection of attention to a new stimulus 

as cognitive control processes are engaged (Gratton, 2018, Gratton et al.,Gratton et al., 

2017; Landau et al., 2015; Sauseng et al., 2007). In such instances, theta activity at anterior 

electrode sites can be thought to manifest a mechanism that interrupts ongoing processing 

and resets attentional weights to facilitate the processing of new representations (Cavanagh 

and Frank, 2014; Gratton, 2018; Voloh and Womelsdorf, 2016). Indeed, increased theta 

power has been reported in cognitive control and attention tasks, reflecting instances in 

which the attentional system encounters a change or an unexpected outcome (Cavanagh and 

Frank, 2014; Cavanagh and Shackman, 2015; Cavanagh et al., 2012; Cohen, 2014a) and 

visual attention sampling is reported to occur at the theta frequency (Fiebelkorn et al., 2018; 

Helfrich et al., 2018). Although often discussed in relation to conflict monitoring (Cohen 

and Donner, 2013), after commission of error responses (Valadez and Simons, 2018), and 

during task switching (Cooper et al., 2016; Sauseng et al., 2006) phasic theta band activity 

can more generally be considered a mechanism used to redirect attention to a behaviorally 

relevant stimulus.

As such, one would expect phasic theta band activity to occur in many – if not all – 

studies in which attention is engaged, and possibly interact with eye status. In most cases, 

researchers have studied theta during tasks requiring visual attention. If theta indexes 

primarily a visual attention control mechanism, there may not be much theta in auditory 

tasks. Alternatively, theta could be a general mechanism that engages regardless of modality, 

rather than a mechanism that only redirects attention between stimuli or tasks within a 

modality. Even in this case, one could hypothesize that in auditory tasks with closed eyes, 

less theta activity may be observed in response to auditory stimuli, because the visual system 

is already effectively disengaged and therefore less redirection is needed to engage with the 

auditory stimuli. As a result, with closed eyes, we can hypothesize that less theta power 

will be needed to facilitate the redirection of attention than with open eyes. Alternatively, a 

final possibility is that theta may operate as an all-or-none mechanism, whose purpose is to 

interrupt any ongoing oscillations (such as alpha) that help maintain current representations. 

In such cases theta band activity would not interact with eye status because these ongoing 

oscillations are always present (albeit to varying degrees with eyes open vs. eyes closed).

1.4. The current study

To test these hypotheses, we conducted two experiments that include an eye status 

manipulation to assess if modulations of oscillatory activities occur similarly in both eye 

conditions. Studies 1a and 1b investigate whether alpha suppression and theta band activity 

occurs when auditory stimuli are not task relevant but may capture attention, and whether 

they do so differentially, depending on whether the eyes are open or closed. Study 2 
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replicates Study 1 and also investigates whether and how directed attention influences the 

modulation of alpha and theta during an auditory oddball task.

2. Study 1

2.1. Study 1a

2.1.1. Method

Participants.: Participants were recruited from the Urbana-Champaign area and had no 

history of psychological or neurological conditions. Eleven younger (Mage = 22, SD age = 
3, 55% female) and 12 older adults (Mage = 72, SD age = 4, 50% female) comprised the 

sample. Older adults were included to assess a potential age effect in oscillatory engagement 

after stimulus processing. However, the results failed to show a significant age-related 

interaction (Supp. Figs. S1 and S2), which were therefore ignored henceforth, focusing on a 

total sample of 23 adults. The study received approval from the Institutional Review Board 

at the University of Illinois at Urbana-Champaign, and all participants signed informed 

consent.

Procedures and stimuli.: Participants completed six experimental blocks during one EEG 

recording session. Three blocks were resting-state: one with eyes open, one with eyes 

closed, and one with eyes open but wearing an eye-mask to block visual input. The resting 

state data were used for other purposes and are reported elsewhere (Clements et al., 2021a; 

Gyurkovics et al., 2021). The masked data were inconclusive1 and 2 and are not described 

further. The other three blocks included the same eye conditions (open, closed, masked) 

but in each block 25 tone pips were randomly presented to participants with a 5–10 s 

interstimulus interval jittered to avoid possible entrainment. These extended interstimulus 

intervals were used to ensure that the pips were unexpected and to allow participants to 

return to a baseline level of processing. During these blocks, no response was required from 

participants, who were instructed to sit quietly and simply “take in” or “enjoy” the pips. 

Each block was 2–3 min long, depending on the random selection of interstimulus intervals, 

and block types were counterbalanced across participants.

During the eyes-open blocks, participants fixated on a white fixation cross on a light 

gray background. The pips were a 500 Hz sinusoidal tone of 75 ms duration. Pips were 

presented binaurally at 75% of maximum volume from two speakers that were positioned 

symmetrically behind the CRT monitor and out of the participants’ sight.2

EEG recording and preprocessing.: The recording session took place in an electrically 

and acoustically shielded room. EEG and EOG were recorded continuously from 64 

active electrodes mounted in an elastic cap (ActiCap) using a BrainAmp recording system 

(BrainVision Products GmbH). EEG was recorded from the scalp electrodes and the right 

mastoid, referenced to the left mastoid, with off-line re-referencing to the average of the 

1We could not definitively determine whether participants indeed had their eyes open during the recording. Several participants 
told the experimenter that they could not tell if their eyes were open or closed because the mask blocked out all light from the 
surroundings, as the recording occurred in a dimly lit room.
2After assessing scalp topographies, it became clear that one of the speakers was not turned on for all sessions, resulting in a unilateral 
pip-presentation in some participants. This is one reason we chose to conduct a replication study (Study 1b).
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left and right mastoids. Two electrodes placed above and below the left eye were used to 

compute a bipolar vertical EOG derivation to monitor blinks and vertical eye movements, 

whereas two electrodes placed ~1 cm away from the outer canthi of each eye were used 

to compute a bipolar horizontal EOG derivation to monitor saccades. Impedance was kept 

below 10 kΩ. The EEG was filtered online using a 0.5 – 250 Hz bandpass and was sampled 

at 500 Hz.

Offline processing of EEG was performed using the EEGLAB Toolbox (version: 13.6.5, 

(Delorme and Makeig, 2004) and custom Matlab 2019b scripts (The MathWorks Inc., 

Natick, MA, USA). A 30-Hz low pass filter was applied. The pip blocks were epoched into 

3000 ms segments centered around the pip (including 1500 ms of EEG recording before 

and 1500 ms after pip’s onset). Epochs with amplifier saturation were discarded (less than 

0.01% of all trials). Ocular artifacts were corrected using the procedure described in Gratton 

et al. (1983), based on the bipolar EOG recordings. After eye movement correction, epochs 

with voltage fluctuations exceeding 200 μV were excluded from further analysis to minimize 

the influence of any remaining artifactual activity. If more than 20% a participant’s epochs 

were marked for rejection, they were visually inspected to determine if one or two faulty 

electrodes were the cause. If so, their traces were replaced with the interpolated traces of the 

neighboring electrodes and reprocessed to regain the lost epochs.

Time frequency representations of the data were then derived using Morlet wavelet 

convolution with Matlab scripts modified from Cohen (2014b). Epoched data were fast 

Fourier transformed and multiplied by the fast Fourier transform of Morlet wavelets of 

different frequencies. Morlet wavelets are complex sine waves tapered by a Gaussian curve. 

Thirty logarithmically spaced wavelets between 3 and 30 Hz were used. The number of 

cycles of the Gaussian taper ranged between 3 and 10 and logarithmically increased as 

a function of frequency in order to balance the tradeoff between temporal and frequency 

precision.

An inverse Fourier transform was applied to the product of the FFT’d wavelets and the 

FFT’d data and power values were computed by calculating the modulus of the complex 

values from the iFFT (i.e., by squaring the length of this complex vector at each time point.) 

To reduce edge artifacts during convolution, each epoch was tripled in length by using 

reflections on either side of the original epoch, such that the original epoch was sandwiched 

between two reflected versions of itself. Following time-frequency derivation, the reflected 

epochs were trimmed back down to their original length of 3000 ms.

Power values were baseline corrected using condition-specific subtractive baselining. 

We have previously shown that, compared to divisive baselining, subtractive baselining 

minimizes the potential of Type I errors that might occur due to the effect of the aperiodic, 

1/f component of power spectra (Clements et al., 2021a, 2021b; Gyurkovics et al., 2021). 

Baseline activity differs for the eyes open and eyes closed conditions, especially in the 

aperiodic 1/f activity (as well as oscillatory activity), such that the eyes-closed condition 

has a greater 1/f offset than the eyes-open condition (Supp. Fig. S3). This difference could 

induce spurious effects (Type I errors), particularly at low frequencies. Given our interest 

in the difference between these two conditions, a subtractive baseline would mitigate errors 
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induced by having differential baseline activities. The power in the baseline period (−1250 

to −500 ms, chosen to minimize the influence of edge effects) was thus subtracted from the 

total power in each epoch.

Statistical approach.: We were interested in investigating whether there was differential 

alpha and theta engagement after hearing a passive pip with open eyes compared to closed 

eyes. Before assessing the difference between eye conditions, we tested whether alpha and 

theta differed from their baseline power levels. We chose to analyze the time-frequency 

space over a frontocentral subset of electrodes (Fz, FCz, Cz, CPz FC1, FC2, C1, C2) where 

theta is typically observed and a posterior subset of electrodes where alpha is typically the 

largest (Pz, POz, Oz, PO3, PO4, PO7, PO8, O1, and O2). These locations were informed 

by assessing the scalp topographies of activity compared to baseline and matched those used 

in a previous publication (Clements, et al., 2021a). We used a permutation testing-based 

approach to assess the difference between baseline and post-stimulus activity as well as 

the difference between the eyes closed and eyes open time-frequency “maps” (i.e., a time 

x frequency heat plot representing, for each frequency [row] the power at each time point 

[column] relative to the average baseline value). In order to reduce computation time, we 

temporally down-sampled the time-frequency decomposed data to 40 Hz, such that we 

included power estimates every 20 ms, instead of every millisecond.

Simple effects.: To appropriately use permutation testing, the user must define what the data 

would look like under the null hypothesis. If there was no difference from baseline after the 

pip, then the pre-stimulus and post-stimulus activity would be similar, and the distribution 

of difference scores should be statistically unchanged when the sign of those differences 

are randomly permuted. To create such a situation, a null distribution of 10,000 possible 

across-subjects average maps was created. The sign of the difference map was changed 

for half of the subjects chosen at random before computing the average. For each of these 

permutated maps, the maximum and minimum values across the entire map were saved, thus 

generating a distribution of possible minima and maxima obtained under the null hypothesis. 

Both maxima and minima were saved because we were conducting a two-tailed test, to 

encompass both power suppression and enhancement after the pip.

We then compared the values at each pixel of the actual observed map (averaged across 

individuals) to the distributions of maxima and minima expected under the null hypothesis. 

Pixels greater than the 97.5th percentile in the maximum pixel distribution and pixels 

smaller than the 2.5th percentile in the minimum pixel distribution at a particular time 

and frequency were considered as showing significant power enhancement and suppression, 

respectively. Note that this procedure effectively protects from map-wise alpha errors at 

a α = .05 level, accounting for multiple comparisons, although it is likely to be overly 

conservative for frequencies and time points with reduced variance in power.

This procedure was conducted separately at the posterior and frontocentral locations. This 

was deemed appropriate since it was anchored to specific hypotheses on the effects for 

alpha and theta. Significant regions on the average time-frequency heat maps are denoted 

by a contour line on the original data indicating pixels with corrected p-values < .05. All 

time-frequency heat maps presented in this article use this convention.
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Main effect of eye condition.: A similar procedure was applied to the analysis of eye 

condition. However, before the permutation procedure was applied, difference maps between 

eyes open and closed were computed for each subject. Then the same procedure described 

above was conducted, again separately for the two electrode sets.

2.1.2. Results—As mentioned, older and younger participants in Study 1a did not differ 

significantly in time-frequency maps at posterior or frontocentral electrodes (Supp. Figs. S2 

and S3) and were thus combined for all subsequent analyses (n = 23). We first assessed 

the simple main effects at the posterior and frontocentral electrode sites, separately for eyes 

open and eyes closed. The resulting time-frequency maps indicate the effect of the pip 

on theta and alpha. Interestingly, at posterior sites there was significant alpha suppression 

following the pip when the eyes were open but not when they were closed (Fig. 1C). 

Instead, with eyes closed, a brief period of small and not significant alpha suppression was 

quickly followed by a period of significant alpha enhancement. Both alpha suppression and 

enhancement had a posterior scalp distribution, consistent with previous work on alpha (Fig. 

1B).3 As expected, at frontocentral electrodes there was pronounced, significant theta band 

activity following the pip with both eyes open and closed (Fig. 1A). Scalp topographies 

show that both conditions produced a mid-frontal distribution, as expected (Fig. 1B). At 

posterior sites, this theta activity was smaller, but still significant with both eyes open and 

closed (Fig. 1C).

These data indicate that the pip elicited changes in both alpha and theta. Moreover, the 

pattern of activity appeared to be different for the two eye positions, at least at the posterior 

locations. We tested whether the open-eyes condition differed significantly from the closed-

eyes condition at both frontocentral and posterior locations.

As mentioned earlier, at posterior electrodes, alpha suppression occurred after the pip when 

eyes were open (Fig. 2A), but was much reduced when they were closed, being rapidly 

overtaken by a subsequent alpha enhancement (Fig. 2B). Permutation testing confirmed this 

difference, showing greater alpha activity in the eyes closed condition that persisted from 

500 to 1200 ms after pip onset (Fig. 2C). Note that the significant region of the interaction 

observed in the heat maps presented in Fig. 2C overlaps with both the late part of alpha 

suppression observed with open eyes and the period of alpha enhancement observed with 

closed eyes. This late alpha enhancement with closed eyes in response to pips has not 

been previously described. Therefore, to establish the replicability of this phenomenon, we 

conducted an exact replication of Study 1a with an independent sample of young adults, 

described next.

The analysis at frontocentral locations did not show significant differences in the theta band 

activity elicited by the pips presented with eyes open or eyes closed (Supp. Fig. S4). In 

combination with the simple effects, these data support the idea that theta band activity 

reflects a general process that does not vary with eye status.

3As mentioned above, the alpha effects had a left lateralized scalp topography because for some participants one speaker used to 
present the pips was not turned on. This was addressed in the replication (Study 1b).
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2.2. Study 1b

2.2.1. Method—Study 1b was a direct replication of Study 1a, with two exceptions. 

Because the results for the masked condition were inconclusive, this condition was not 

included in Study 1b. Similarly, as no differences had emerged between younger and 

older adults in Study 1a, for simplicity only younger adults were included in Study 1b. 

Participants were recruited from the Urbana-Champaign area and underwent the same EEG 

recording procedures as for Study 1a. Twenty-four younger adults comprised the sample, 

but one participant was excluded for not completing the task. The final sample consisted of 

23 participants (M age = 22, SD age = 2.5, 61% female). EEG recording, preprocessing, and 

statistical approach were identical to Study 1a.

2.2.2. Results—As in Study 1a, we replicated the finding of alpha suppression at 

posterior sites with eyes open and late alpha enhancement with eyes closed (Fig. 3C). The 

alpha scalp distribution for both eye conditions was posterior and not lateralized, indicating 

that the left lateralized scalp distribution seen in Study 1a was likely a result of experimenter 

error with the speakers. There was also a significant theta effect after the pip for both 

eyes open and eyes closed at frontocentral locations (Fig. 3A) and theta had a mid-frontal 

distribution in both conditions (Fig. 3B). These results directly replicated the simple effects 

found in Study 1a.

As in Study 1a, we assessed the difference between eyes closed and eyes open using a 

permutation-based testing approach at posterior and frontocentral electrode sites. Again, the 

late alpha enhancement at posterior electrodes was greater with eyes closed relative to eyes 

open (Fig. 4A–B). The difference between open and closed eyes was significant between 

500 – 1200 ms after the pip (Fig. 4C). It encompasses both the alpha suppression with eyes 

open and the enhancement with eyes closed. There was no reliable difference in theta band 

activity at frontocentral sites in this replication (Supp. Fig. S5), providing further support 

that theta reflects a general process that is not modulated by eye status. The difference 

between closed and open eyes in Study 1b is nearly an identical replication of the effects in 

Study 1a, suggesting that alpha activity following a passive pip differs with eye status, but 

theta activity does not.

2.3. Interim Discussion - Studies 1a and 1b

During passive listening, the brain engages differently with open and closed eyes. Theta 

band activity immediately after the pip did not differ for eyes open and closed, indicating 

that redirection of attention to the sound occurs similarly for both eye states. Alpha 

suppression immediately followed phasic theta band activity, and was more evident with 

eyes open than closed, suggesting that more attention may be allocated to process the pip 

with eyes open than closed. These results suggest that the attention system is working harder 

when the eyes are open than when they are closed.

After the alpha suppression, we observed a late increase in alpha that was only evident with 

closed eyes. The replication study (1b) was conducted to provide more power and to further 

examine the alpha enhancement at long latency. Both studies 1a and 1b showed the same 

late alpha enhancement emerging around 500 ms in the closed-eyes condition. A possible 
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interpretation for this late alpha enhancement is that closing the eyes frees up resources for 

processing the sound, presumably in multi-sensory cortical regions. These resources would 

instead be tied up with processing competing visual stimuli when the eyes are open. Note 

that this interpretation requires assuming that alpha activity is indeed the expression of the 

engagement of multi-sensory cortical regions. In turn, this requires considering that posterior 

alpha is not exclusively a reflection of visual processing but may reflect multi-sensory 

processing when information is present in multiple modalities.

If alpha suppression reflects attentional engagement, then we would expect it to increase 

when attention is explicitly required in an auditory task. To determine whether these effects 

observed during passive listening are affected, and perhaps even enhanced, by overt attention 

and active engagement in stimulus processing, we conducted a second study that includes an 

active auditory oddball task, described next.

3. Study 2

3.1. Method

3.1.1. Participants, procedure, and stimuli—Participants in this study were the 

same as for Study 1b. After completing the conditions for Study 1b, participants completed 

an auditory 2-pip oddball task with eyes open and eyes closed. The two tone pips were a 

500 Hz sine tone of 75 ms duration (identical to that used in Studies 1a and 1b) and a 450 

Hz sine tone of 75 ms duration, and were randomly selected with an 80:20 (frequent:rare) 

probability and presented at 5–10 s interstimulus intervals. Participants were instructed to 

mentally count the rare tones (no movement or button press was required) and then report 

their total count to the experimenter at the end of each block. Given the long interstimulus 

intervals and to reduce fatigue, participants completed 12 blocks, each including 10 frequent 

pips and 2–3 rare pips. The blocks were approximately 3 min long, six with eyes open 

and six with eyes closed, for a total of 30 rare pips across the 12 blocks. Block order was 

counterbalanced based on eye status. For half of the participants, the rare pip was the same 

tone that they had heard in the passive pip blocks, for the other half, the frequent tone was 

the same as the passive pip. The same two tones were used for all participants.

3.1.2. EEG recording and analysis—The EEG recording set-up and pip delivery 

system was the same as in Study 1a & b. The initial preprocessing and time-frequency 

processing steps were also identical to those in Study 1.

To assess sequential effects, the data were binned into the following trial-types: rare pips 

preceded by a frequent pip (“frequent-rare”, accounting for approximately 16% of the trials), 

frequent pips preceded by a rare pip (“rare-frequent”, also accounting for approximately 

16% of the trials), and frequent pips preceded by a frequent pip (“frequent-frequent”, 

accounting for approximately 64% of the trials). Rare pips could also occasionally be 

followed by another rare pip (accounting for 4% of the trials), but these types of trials were 

not analyzed because these cases were extremely infrequent (and therefore yielded very 

noisy signals) and did not provide critical theoretical insights. The first pip in the block was 

also not used for the analyses because it was not yet in a sequence.
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The frequent-frequent bin had more trials than the other two bins of interest (frequent-rare, 

rare-frequent). Therefore, to take into account the different number of trials for rare and 

frequent pips when assessing sequential effects, we randomly subsampled trials within each 

condition so that within each participant, the number of trials in each bin was equal to the 

minimum across the three trial-types. This procedure resulted in an average of 19 (SD = 
4.86) trials per condition of interest.

In this study we derived and measured ERP waveforms in addition to time-frequency maps. 

The P300 obtained in an active oddball task is a well-documented index of task-relevant 

resource allocation and subjective stimulus probability (Donchin, 1981; Pritchard, 1981). 

There is an extensive and highly replicated literature linking the P300 elicited by oddball 

conditions to the allocation of attentional resources in counting tasks, and the reliability of 

these finding is sufficient to allow using this phenomenon as a method to assess the extent 

to which rare pips are processed (Donchin and Isreal, 1980; Fabiani et al., 1987; Squires et 

al., 1977). We calculated the mean P300 amplitude in the interval between 380 and 600 ms 

after the pip at the same posterior electrode set used in Study 1 (baselined to the average 

of the entire pre-stimulus period). Mean amplitudes for each participant, trial type and both 

eye conditions were calculated and submitted to a 2-factor repeated measures ANOVA in R 

(version 4.0.2; R Core Team, 2020). Normality was checked using the Shapiro-Wilk test and 

confirmed by examining the Q-Q plot. Follow-up paired t-tests of the simple effects were 

calculated, and p-values were Bonferroni corrected for multiple comparisons.

Similarly to Study 1, a permutation testing approach was used to analyze both the time-

frequency simple effects between pre- and post-stimulus activity and the difference between 

eyes open and eyes closed for each of the three trial types at both posterior and frontocentral 

locations. The method of temporally down-sampling the data, generating the null map via 

10,000 iterations and then pixel-based correction for multiple comparisons was identical, 

except that the three conditions were analyzed separately. The resultant time-frequency 

maps thus include pixels showing significant effects for each trial-type (frequent-frequent, 

frequent-rare, rare-frequent). Again, significant pixels with corrected p-values < .05 are 

denoted by a contour line on the time-frequency maps.

3.2. Results

3.2.1. Behavior—Behavioral performance was assessed by calculating counting 

accuracy for the rare pips in the tone sequence. Accuracy was calculated for each block as 

1 - abs(reported number of target/actual number of targets), and then averaged across blocks 

for each participant. Total accuracy for each participant (except for one who was missing 

accuracy data) was calculated across blocks and then averaged by eyes-open and eyes-closed 

conditions. Accuracy was similar with eyes open (M = 0.90, SD = 0.11) and closed (M = 

0.89, SD = 0.10). Although neural engagement may vary between these conditions, closing 

the eyes did not affect simple counting performance. This may reflect the low level of task 

difficulty.

3.2.2. ERPs—To assess sequential effects resulting from pip order, we measured the 

P300 at the posterior electrodes (Fig. 5). Trial binning allowed us to examine whether simple 
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changes in pip type across adjacent trials (occurring on both frequent-rare and rare-frequent 

trials, but not on frequent-frequent trials) or being a rare target (i.e., the difference between 

frequent-rare and rare-frequent trials) are relevant to the processing system. A 2 (eyes) 

× 3 (trial-type) ANOVA revealed a main effect of trial-type, F(2, 44) = 53.32, p < .001, 

generalized η2 = 0.362, but no effect of or interaction with eye status (p = .301, p = 
.907). Pairwise comparisons show that the P300 to frequent-rare pips was greater than 

rare-frequent pips t(45) = 8.68, p < .001, the P300 to rare-frequent pips was greater than 

frequent-frequent pips, t(45) = 3.59, p = .002, and that P300 to frequent-rare pips was also 

greater than frequent-frequent pips, t(45) = 10.5, p < .001 (Bonferroni adjusted p-values 

reported). These data indicate that when a change from frequent pip to rare pip occurs, 

which is the most relevant task change, more attentional resources are allocated to process 

the change than are required to process a change back from rare to frequent and even fewer 

resources are engaged when task-irrelevant frequent pips are presented consecutively.

3.2.3. Oscillatory simple effects—As in Study 1, simple effects were assessed 

based on eye status at posterior and frontocentral sites using a permutationtesting-based 

approach. Here, we assessed the effects of each condition in the oddball task. Once more, 

significant pixels with corrected p-values < .05 are denoted by contour lines on the time-

frequency maps. With eyes open for all trial types, alpha suppression at posterior sites 

started at about 350 ms after the pip onset (Fig. 6A). This effect appears strongest and 

longest in the frequent-rare condition, where it also had the broadest scalp topography, 

extending anteriorly. Pairwise comparisons between trial-types showed that frequent-rare 

pips had greater alpha enhancement than frequent-frequent pips but did not reveal significant 

differences between the other trial-types. (Supp. Fig. 6A). These were calculated using the 

same permutation testing procedure described above and corrected for multiple comparisons 

with p < .05.

With eyes closed, significant alpha suppression occurred in the frequent-rare and rare-

frequent conditions (Fig. 6B). In all three conditions, this was followed by a significant 

alpha enhancement. This pattern is consistent with the depth of suppression increasing with 

the level of engagement, as indicated by the P300 analysis. However, pairwise comparisons 

only detected reliable differences between frequent-rare and frequent-frequent trials with 

open eyes and frequent-rare and rare-frequent trials with closed eyes. (Supp. Fig. 6B). A 

small difference, reliable only at 9 Hz for 20 ms was detected, between frequent-rare and 

frequent-frequent trials with closed eyes. With the current sample size and the criterion used, 

we are unable to see the full gradation of effects across trial-types (Supp. Fig. 6C). However, 

pairwise comparisons under both eye states indicate that trials in which a change occurred 

(frequent-rare; rare-frequent) have greater activity than no-change trials (frequent-frequent).

At frontocentral sites with eyes open for each of the three conditions, there was initial 

theta band activity (Fig. 7A). This was followed by alpha suppression in the two change 

conditions, which appears longest in duration and largest in power on frequent-rare trials, 

slightly smaller, but still reliable on rare-frequent trials, and not significant on frequent-

frequent trials. Pairwise comparisons support these assertions and indicate that alpha 

suppression was greater on both change trials compared to no-change trials (Supp. Fig. 

7A).
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With eyes closed, theta band activity occurred in all three trial-types following the pips (Fig. 

7B). These bursts were followed by small, non-significant alpha suppression on frequent-

rare trials, which was barely present in the other two conditions. All three trial-types showed 

reliable late alpha enhancement. Pairwise comparisons again detected differences between 

change and no-change trials (Supp. Fig. 7B). Although the effects appear to be in decreasing 

order in Fig. 7, the current study was not powered to detect the full gradation.

Taken together, these data show that alpha suppression occurred at frontal sites with open 

eyes, but not with closed eyes, and at posterior sites with both eyes open and closed. Alpha 

enhancement was most evident at posterior sites with eyes closed, occurring in all three 

trial types. Theta occurred at frontocentral sites with both eyes open and closed, but not 

posteriorly. As in Study 1, differential oscillatory engagement followed a pip, but in this 

case, this engagement resulted from processing task-relevant information. The differential 

engagement was distinct between change trials (frequent-rare; rare-frequent) and no-change 

trials (frequent-frequent).

3.2.4. Oscillatory differences in eyes open vs. closed—Time-frequency maps 

were subjected to permutation testing to assess the difference between eyes open and closed 

for each of the trial-types. As a reminder, we hypothesized that alpha suppression would 

occur following the pip with both eyes open and eyes closed, particularly at posterior sites. 

However, in Study 1, posterior alpha suppression was smaller with closed than open eyes. 

The oddball paradigm allowed us to determine if alpha suppression is smaller with closed 

eyes than open eyes in a task-relevant paradigm. We additionally hypothesized that theta 

may be reduced with closed compared to open eyes, particularly at frontocentral sites, 

indicating that with closed eyes less redirection of attention to the pip may be required 

than when the eyes are open. We will now discuss the effects at posterior and frontocentral 

locations in turn.

At posterior sites, alpha suppression was strongest with open compared to closed eyes (Fig. 

8A) and also for frequent-rare trials compared to frequent-frequent pips (Supp. Fig. 6 for 

pairwise comparisons). This suggests that after attention has been captured by the change to 

a rare pip, increased stimulus processing occurs. With closed eyes, some alpha suppression 

did occur at a similar latency, but it was shorter in duration compared to open eyes (Fig. 

8B). To directly test the hypothesis that alpha suppression is greater when participants are 

actively engaged in stimulus processing, we compared time-frequency maps in the three 

oddball conditions (Study 2) to their respective passive listening conditions, eyes open or 

closed (Study 1b). This is a within-subject analysis because the participants in Study 1b 

and 2 are the same. As expected, with eyes open, alpha suppression to the frequent-rare 

and rare-frequent pips are greater than alpha suppression during passive listening (Supp. 

Fig. 8A). These data suggest that when attention is required to process the pip, there will 

be more alpha suppression compared to when no attention is required, but simply being 

in a task-setting does not itself cause more robust alpha suppression compared to passive 

listening (no frequent-frequent vs. passive listening difference). No significant differences 

were found in the eyes closed condition (Supp. Fig. 8B). The lack of differential alpha 

suppression with eyes closed is consistent with our interpretation that the attention system 

is less engaged with eyes closed due to less competition from vision, and thus less sensitive 
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to changing task demands. The lack of differential alpha enhancement may indicate that it is 

a more general phenomenon of processing an auditory stimulus with eyes closed. However, 

given that alpha enhancement varied as a function of predicted attentional engagement (i.e., 

it was greater for frequent-rare pips than frequent-frequent pips), it is possible that if the task 

was more challenging then we might see differences between passive listening and active 

attentional engagement, even when the eyes are closed.

Given the alpha enhancement found in Study 1 with eyes closed, Study 2 also sought to 

determine whether this effect could be modulated by attention using an oddball paradigm. 

As with the eyes closed passive pip blocks, alpha suppression was overtaken by alpha 

enhancement at posterior sites (Fig. 8B). Indeed, there was a significant alpha difference 

between closed and open eyes beginning around 500 ms in all three trial-types (Fig. 8C, with 

the significance contours denoting p < .05, corrected.) This difference encompasses both the 

alpha suppression occurring with open eyes (Fig. 8A) and the alpha enhancement occurring 

with closed eyes (Fig. 8B). This replicates the alpha enhancement found in Study 1 and 

extends it to conditions in which attention is actively engaged.

No theta differences were found at posterior sites between open and closed eyes, replicating 

the lack of an eye-status theta differences found in Study 1, suggesting that redirection of 

attention to the pip occurs similarly regardless of eye status (Fig. 8C). Scalp topographies of 

the differences can be seen in Fig. 8D.

A very similar pattern of effects was observed at frontocentral electrodes with one notable 

difference: the appearance of phasic theta band activity in all conditions. While the alpha 

dynamics varied between open and closed eyes the same way as they did at posterior sites 

(Fig. 9C), theta was not significantly different between open and closed eyes (Fig. 9A–B). 

Again, scalp topographies are shown in Fig. 9D.

4. General Discussion – Study 1 and 2

The two studies presented here indicate that auditory stimulus processing varies with eye 

status and with attentional engagement in response to pip frequency or by the amount 

of information provided by a stimulus. Alpha suppression occurred for both the passive 

(Study 1a, b) and the task-relevant tones (Study 2) but this suppression was more apparent 

in the eyes-open condition. Greater alpha suppression with eyes open may indicate that 

more allocation of attention to the auditory stream is necessary in this condition, along 

with greater suppression of the visual stream, because both streams are competing. The 

hypothesis that alpha suppression is indexing the degree of selection or level of attentional 

engagement is further corroborated by the larger alpha suppression following frequent-

rare than frequent-frequent pips when the eyes are open. It is also supported by the 

findings that, with eyes open, greater alpha suppression occurred during the two more 

attentionally involved task conditions (frequent-rare, rare-frequent, Study 2) compared to 

passive listening (Study 1b). According to Gratton (2018), alpha suppression may be 

required to free up cortical regions (i.e., processing resources) from pre-existing sustained 

representations and make them available for subsequent processing. The observation that 

alpha suppression was elicited by auditory stimuli (pips) and was larger in the open eyes 
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condition suggests that the cortical regions responsible for alpha might in fact include 

multimodal regions, which are sensitive to competition from other modalities beyond vision 

and may service at least auditory and visual stimuli.

Note that, in both studies, there was minimal alpha suppression when the eyes were closed. 

Instead, a later and broader alpha enhancement occurred in this condition. Again, this 

enhancement is suggestive of the idea that the alpha mechanism may be associated with 

multimodal cortical regions, in which competition may exist between processing streams 

from different modalities, and in which the ability to dedicate more cortical tissue to one 

modality (rather than sharing it across modalities) may result in enhanced processing (and 

the alpha enhancement we observed). Indeed, alpha enhancement to auditory stimuli has 

been observed between passive listening and task (Kolev et al., 1999) and with increasing 

task demands in an auditory oddball (Spencer and Polich, 1999). In other words, with the 

eyes closed, after a brief alpha suppression following the onset of a new pip to destabilize 

previous auditory representations, alpha was reengaged (enhanced) to protect the newly 

formed auditory representation from interference. It is possible that the enhancement signal 

might be a “different alpha” with different generators from the suppression given their 

slight scalp topography differences. This should be further investigated in future work with 

different tasks. With open eyes, instead, more alpha suppression was needed to allow for 

the processing of the incoming stimulus, so that old auditory and visual representations can 

cease to compete with the new incoming stimulus. No alpha enhancement was observed in 

this condition. However, it is possible that the extended alpha suppression with eyes open 

might have obscured any subsequent alpha enhancement, particularly if these responses have 

different generators. In this sense, the oscillatory variability between eyes closed and eyes 

open during auditory processing may be interpreted as competition inherent to selective 

attention. With the eyes open, multiple sensory modalities are active and visual input may be 

competing with auditory input to establish representations in the same, multimodal cortical 

region. Because of this, in order to process the pip, resources may be engaged to a greater 

extent with the eyes open than would be needed with the eyes closed.

The data are consistent with the proposal that theta band activity manifests the redirection 

of attention towards auditory stimuli (pips) even when they are passively listened to (Study 

1a, replicated in Study 1b) and this occurs at similar levels irrespective of whether the 

eyes are open or closed. In fact, we show robust theta band activity at frontocentral sites 

with open and closed eyes to both passive pips (Study 1a, b) and during the oddball task 

(Study 2). Based on the alternative hypotheses presented in the introduction, this suggests 

that (a), theta activity occurs in both passive and attentionally demanding tasks as a way to 

redirect attention to whatever stimulus is presented, and (b) theta represents a more general 

mechanism that not only is engaged when switching between tasks/trials during visual 

paradigms (to begin a cascade of cognitive control processes, as shown in previous work, 

e.g., Cavanagh and Frank, 2014; Gratton et al., 2017) but also is engaged even in simple, 

passive, auditory tasks and is independent of eye status.

In Study 2, as expected, we found that attention modulates the P300 amplitude, such that 

the most attentionally relevant pip sequence – a change from frequent to rare – resulted in 

the largest P300. This effect was graded such that the least attentionally relevant change 
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(a frequent pip followed by another frequent pip) showed the smallest P300. The graded 

amplitudes indicate that resource allocation and context updating were occurring in response 

to the most attentionally relevant pips. However, P300 amplitude did not significantly differ 

with eye status. This has been reported before in a similar auditory oddball task (Spencer 

and Polich, 1999). Although the oscillatory effects suggest that the cross-modal nature of the 

study – the competition between vision and hearing occurring with eyes open – influences 

how the brain reacts to relevant sounds, whatever processes generate the oscillations may be 

distinct from those that generate the ERPs.

The extant literature provides several alternative interpretations of alpha enhancement, 

which only partially overlap with the one supported by the current studies, so we will 

discuss them in turn. Enhanced upper alpha power has been linked with better performance 

when a task requires tonic alertness or sustained attention, such as during monotonous 

breath-counting, auditory detection, or sustained attention response tasks (Braboszcz and 

Delorme, 2011; Dockree et al., 2007; Sadaghiani and Kleinschmidt, 2016). The current 

study could be viewed as a sustained attention task, given the 5–10 s interstimulus intervals 

– even in the passive pip condition – so alpha may come online to facilitate processing the 

pip. Within this framework, it could be that alpha enhancement occurs as vigilance wanes. 

When the eyes are closed, participants may be more likely to drift off as attention dwindles. 

At pip onset, attention is refocused, and alpha engages to try to establish a representation 

of the tone, whether relevant or not. As a result, alpha is enhanced to a greater extent with 

closed eyes than open. If it is assumed that vigilance and attention are more likely to wane 

with eyes closed, then this interpretation could explain our findings. We will explore this 

hypothesis in future work as well as assess whether other stimuli elicit alpha enhancement.

Alpha enhancement is also reported when participants are utilizing or creating internal 

representations, such as the retention period in working memory paradigms (Jensen et al., 

2002; Xie et al., 2016) or during mental imagery (Bartsch et al., 2015). In these situations, 

alpha enhancement is typically interpreted as the active suppression of competing, most 

often visual, stimuli to prevent interference. The results of the current study, in which alpha 

enhancement only occurred in the eyes closed condition, challenge this interpretation. Here 

there is no competition from the visual modality and no visual stimuli to suppress, yet alpha 

increases. Perhaps, the findings in the working memory and mental imagery literature reflect 

activity in multimodal cortical regions that are sustaining the current representation (Gratton, 

2018) in a complex, multimodal form, rather than suppressing competing (visual) stimuli.

Additionally, alpha enhancement has been related to motor response inhibition: perhaps with 

eyes closed there could be an impulse to open the eyes and orient to the pip (Mostofsky and 

Simmonds, 2008; Ohman, 1979). The enhancement would then be a result of inhibiting this 

impulse. However, given that alpha enhancement occurs late in the epoch (> 500 ms) this 

explanation is not likely because an orienting reflex would occur shortly after the tone.

Based on the current studies, we propose that alpha oscillations are related to managing 

representations in multimodal cortical regions (or minimally, visual and auditory regions) 

or involved in a system that manages multimodal representations, and how and when 

alpha is engaged or suppressed depends on the dynamic requirements of the paradigm. 
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Under this hypothesis alpha suppression interrupts the ongoing sensory stream to let new 

representations into multimodal regions for processing. Then, alpha enhancement occurs to 

form and maintain the new representation for processing. This is consistent with the idea 

of competition between processing streams (Kahneman, 1973; Treisman et al., 1973) and 

with the suggestion that alpha (and also beta) are generalized mechanisms used by the entire 

cortex (Gratton, 2018). In addition to the oft reported beta responses to movement (e.g., 

Little et al., 2019), beta enhancement has been observed in response to auditory stimuli 

in the absence of intended movement (Makeig, 1993; Fujioka and Ross, 2017; Fujioka et 

al., 2012) suggesting that its role may be similar to that of alpha within this framework. 

The alternative is that alpha oscillations are related to managing representations in visual 

cortical regions only and are therefore modality specific. In this case, the interaction with 

hearing emerges from another, connected, neural system. Future work will investigate these 

hypotheses to determine if alpha enhancement can be observed as a result of attention 

allocation to the visual or auditory modality during tasks with eyes open.

Some limitations should be pointed out. First, these studies used simple tasks in which 

behavioral performance, if any was required, was at ceiling. It is unclear, however, if these 

dynamic alpha effects would be similarly observed in more challenging tasks. However, 

the long ISIs that contributed to these tasks’ simplicity may be the reason we could 

observe the late alpha enhancement, because it came online 500 ms post-stimulus, which 

could be the beginning of the next trial in more fast-paced experiments. Second, in both 

studies there were relatively few trials per condition (25 in Study 1a and 1b and 19 on 

average in Study 2). Increasing the number of trials would decrease variability in our 

measurements and increase statistical power, at the expense of lengthening the experiment 

(this was a lengthy, slow-paced experiment due to the long ITIs.) Nonetheless, the effects 

we report are statistically reliable. Third, the current studies measured the impact of auditory 

processing with a visual manipulation, but ideally the converse of visual processing with 

an auditory manipulation would also be included. Some creativity is required to design 

an experiment that provides the same sensory experience with “ears closed” as with eyes 

closed. However, a visual task could be completed with varying levels of auditory stimuli 

using sound canceling headphones playing no audio vs. white noise. Future research should 

also investigate whether there are functional or behavioral consequences to the graded alpha 

enhancement following suppression.

In conclusion, across two studies, we showed that alpha activity varied dynamically in 

response to an auditory stimulus, changing with eye status and attention. Alpha suppression 

followed the typical pattern and occurred after both passive and relevant pips with both eyes 

open and closed, but it was greater when the eyes were open. With closed eyes, a later 

alpha enhancement occurred after alpha suppression in response to the passive pips. We 

replicated this effect in an independent sample (Study 1b) and then extended it in Study 2 

using an attentional manipulation. Theta band activity was elicited in both studies, primarily 

at frontocentral locations, but did not differ with eye status, suggesting that theta reflects a 

more general information processing mechanism. These results suggest that alpha activity 

may be endemic to, or may involve multimodal cortical areas as well as visual ones and 

future work should aim to further investigate this hypothesis.
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Fig. 1. 
Simple effects (changes from baseline) for frontocentral (A) and posterior (C) electrodes 

following the pip with eyes open and closed for Study 1a (passive pips). The dotted vertical 

line indicates the end of the baseline period, the solid vertical line indicates stimulus 

onset. Black or white contours on the time-frequency maps outline significant pixels at p < 

.05, corrected for multiple comparisons. Note that significant theta activity occurred in all 

time-frequency maps, but it was more evident at frontocentral sites. At posterior electrodes 

(C) with eyes open, alpha suppression occurred; with eyes closed, both alpha suppression 

and enhancement occurred. (B) Scalp distributions of alpha and theta with eyes open and 

closed. All subplots are on the same scale.
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Fig. 2. 
Comparison of the results obtained with eyes-open and closed from Study 1a at posterior 

electrodes. The dotted vertical line indicates the end of the baseline period, the solid vertical 

line indicates stimulus onset. Upper panels show the time-frequency responses after hearing 

a passive pip with eyes open (A) and eyes closed (B). Note that with eyes open (A) 

alpha suppression occurred and with eyes closed (B) alpha suppression was followed by 

alpha enhancement. (C) The difference between closed and open eyes was submitted to 

permutation testing and black contours outline pixels significant at p < .05, corrected for 

multiple comparisons. (D) Scalp distributions of the differences. All subplots are on the 

same scale.
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Fig. 3. 
Simple effects (changes from baseline) for frontocentral (A) and posterior (C) electrodes 

following the pip with eyes open and closed for Study 1b (passive pip, replication). The 

dotted vertical line indicates the end of the baseline period, the solid vertical line indicates 

stimulus onset. Black or white contours on the time-frequency maps outline significant 

pixels at p < .05, corrected for multiple comparisons. Note that significant theta activity 

occurred at frontocentral electrodes (A) with eyes open and closed. At posterior electrodes 

(C) with eyes open, alpha suppression occurred and with eyes closed alpha suppression and 

enhancement occurred. (B) Scalp distributions of alpha and theta with eyes open and closed. 

All subplots are on the same scale.
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Fig. 4. 
Comparison of the results obtained with eyes-open and closed from Study 1b at posterior 

electrodes. The dotted vertical line indicates the end of the baseline period, the solid vertical 

line indicates stimulus onset. Upper panels show the time-frequency responses after hearing 

a passive pip with the eyes open (A) and eyes closed (B). Note that with eyes open (A) 

alpha suppression occurred and with eyes closed (B) smaller alpha suppression was followed 

by alpha enhancement. (C) The difference between closed and open eyes was submitted to 

permutation testing and black contours outline pixels significant at p < .05, corrected for 

multiple comparisons. This difference is almost identical to that observed in Study 1a (Fig. 

2C). (D) Scalp distributions of the differences. All subplots are on the same scale.
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Fig. 5. 
Grand-average ERP waveforms at posterior electrodes elicited by each of the oddball pip 

conditions (Study 2) with eyes open (A) and eyes closed (B). The dotted rectangle indicates 

the area under which P300 amplitude was measured. Scalp topographies for each trial-type 

are inset.
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Fig. 6. 
Simple effects (changes from baseline) for posterior electrodes during Study 2 (oddball). 

The dotted vertical line indicates the end of the baseline period, the solid vertical line 

indicates stimulus onset. Black or white contours on the time-frequency maps outline 

significant pixels at p < .05, corrected for multiple comparisons. (A) Eyes open time-

frequency maps and scalp topographies ordered from the biggest effect (Frequent-Rare 

trials) to the smallest effect (Frequent-Frequent trials). Alpha scalp topographies are shown 

with two time-windows to illustrate the suppression (350–750 ms) and the enhancement 

(750–1000 ms). Note the robust alpha suppression with eyes open that diminishes in size 

across the trial-types. (B) Eyes closed time-frequency maps and scalp topographies. Note 

the alpha suppression followed by enhancement in the Frequent-Rare condition with eyes 

closed. All subplots are on the same scale.
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Fig. 7. 
Simple effects (changes from baseline) for frontocentral electrodes during Study 2 (oddball). 

The dotted vertical line indicates the end of the baseline period, the solid vertical line 

indicates stimulus onset. Black contours on the time-frequency maps outline significant 

pixels at p < .05, corrected for multiple comparisons. (A) Eyes open time-frequency 

maps and scalp topographies ordered from the biggest effect (Frequent-Rare trials) to the 

smallest effect (Frequent-Frequent trials). Alpha scalp topographies are shown with two 

time-windows to illustrate the suppression (350–750 ms) and the enhancement (750–1000 

ms). (B) Eyes closed time-frequency maps and scalp topographies. Note that significant 

theta band activity occurs in all conditions. All subplots are on the same scale.
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Fig. 8. 
Comparison of the results obtained with eyes-open and closed from Study 2 (oddball) at 

posterior electrodes. The dotted vertical line indicates the end of the baseline period, the 

solid vertical line indicates stimulus onset. (A) Eyes open time-frequency maps ordered 

from the biggest effect (Frequent-Rare trials) to the smallest effect (Frequent-Frequent trials) 

with the average ERP at the same electrodes overlaid. (B) Eyes closed time-frequency 

maps with the average ERP overlaid. (C) The difference between closed and open eyes was 

submitted to permutation testing and black contours outline pixels significant at p < .05, 

corrected for multiple comparisons. (D) Scalp distributions of the differences. Alpha scalp 

topographies are shown with two time-windows to illustrate the suppression (350–750 ms) 

and the enhancement (750–1000 ms). All subplots are on the same scale.
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Fig. 9. 
Comparison of the results obtained with eyes-open and closed from Study 2 (oddball) at 

frontocentral electrodes. The dotted vertical line indicates baseline onset, the solid vertical 

line indicates stimulus onset. (A) Eyes open time-frequency maps ordered from the biggest 

effect (Frequent-Rare trials) to the smallest effect (Frequent-Frequent trials) with the average 

ERP at the same electrodes overlaid. (B) Eyes closed time-frequency maps with the ERP 

overlaid. (C) The difference between closed and open eyes was submitted to permutation 

testing and black contours outline pixels significant at p < .05, corrected for multiple 

comparisons. (D) Scalp distributions of the differences. Alpha scalp topographies are shown 

with two time-windows to illustrate the suppression (350–750 ms) and the enhancement 

(750–1000 ms). All subplots are on the same scale.
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