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Abstract. The current knowledge regarding ADP‑ribosylation 
modifications of histones, particularly mono‑ADP‑ribosylation 
modifications, is limited. However, recent studies have identified 
an increasing number of mono‑ADP‑ribosyltransferases and 
the role of mono‑ADP‑ribosylation has become a hot research 
topic. In particular, histones that are substrates of several 
mono‑ADP‑ribosyltransferases and mono‑ADP‑ribosylated 
histones were indicated to be involved in numerous physiological 
or pathological processes. Compared to poly‑ADP‑ribosylation 
histone modification, the use of mono‑ADP‑ribosylation 
histone modification is restricted by the limited methods for 
research into its function in physiological or pathological 
processes. The aim of the present review was to discuss the 
details regarding mono‑ADP‑ribosylation modification of 
histones and the currently known functions thereof, such 
as cell physiological and pathological processes, including 
tumorigenesis.
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1. Introduction

The occurrence and development of cancer may involve genetic 
as well as epigenetic changes (1). The complex processes of 
carcinogenesis cannot be fully explained by genetic mutations 
alone, as they also involve epigenetic alterations. Epigenetics, 
including DNA methylation, RNA editing, genomic imprinting 
and post‑translational histone modifications, is a branch of 
genetics that investigates changes in gene expression without 
alterations in the primary DNA sequence. Abnormal epigenetic 
processes regulate gene expression, alter gene function and 
promote tumorigenesis. Epigenetics is also widely reported 
to have an important role in the early stages of neoplastic 
development and cancer progression (2). While the early focus 
was on the DNA sequence as a critical epigenetic marker in 
the progression of cancer, an increasing number of subsequent 
studies have been focusing on the function of histone 
modifications in tumorigenesis (3,4). Histone modifications 
include acetylation, phosphorylation, methylation, 
ADP‑ribosylation, ubiquitylation and sumoylation, among 
which acetylation of histones has already been confirmed to be 
involved in the regulation of various types of cancer. As more 
mono‑ADP‑ribosyltransferases have been identified in recent 
years, the functions of mono‑ADP‑ribosylation of histones 
in human disease development, including cancer, have been 
further elucidated.

Mono‑ADP‑ribosyltransferase has been indicated to 
transfer one ADP‑ribose from the co‑factor NAD+ to target 
proteins (Fig. 1), and it has been hypothesized that there are 
~1,000 mono‑ADP‑ribosylated proteins in cells (5). Several 
mono‑ADP‑ribosylated proteins, such as NF‑κB essen‑
tial modulator  (6), inositol‑requiring enzyme 1α, proline 
extensin‑like receptor kinase1  (7), histones, RhoA and 
human α‑defensin 1 (8) have been identified to be involved 
in regulating immunity, inflammation and the stress response. 
However, there is still a lack of understanding of the functions 
of most of these mono‑ADP‑ribosylated proteins due to limita‑
tions in the methods or the tools used.

Histones, a type of basic proteins that combine with DNA 
in the chromosome, include five types in eukaryotes, namely 
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histone (H)1, H2A, H2B, H3 and H4 (4 types of core histones). 
A number of studies have indicated that poly‑ADP‑ribosylation 
of histones have important roles in DNA repair, replication, 
transcription (9,10), cell proliferation (11) and cancer, and may 
be associated with histone acetylation (12), methylation (13) 
and phosphorylation (14). However, there is a lack of research 
into the function of mono‑ADP‑ribosylation in physiological 
or pathological processes. The number of mono‑ADP‑ribos‑
yltransferase types that have been detected in mammals has 
increased and these enzymes have been indicated to catalyze 
mono‑ADP‑ribosylation of histones. Mono‑ADP‑ribosylation 
of histones has also been associated with other modifications. 
The functions of mono‑ADP‑ribosylation of histones may 
comprise roles in important physiological pathways, which 
may include the development of malignant tumors (15).

2. Enzymes of mono‑ADP‑ribosylation in mammals

Approximately 22 members of the ADP‑ribosyltransferase 
(ART) superfamily have been identified and have been indi‑
cated to have diverse roles. Certain ARTs modify proteins 
with chains of poly ADP‑ribose or with mono ADP‑ribose 
(mADPr) (Table  I). According to the different structures 
of the catalytic domains, ARTs are divided into bacterial 
diphtheria toxin‑like ARTs (ARTDs)  (16) and clostridial 
C2 and C3 toxin‑like ARTs (ARTCs) (17). ARTDs, which 
were previously termed the poly(ADP‑ribose) polymerase 
(PARP) family and include 17 members (18,19), are widely 
distributed in cells and are mostly concentrated in the 
nucleus. Compared with ARTD1‑6 possessing, ARTD7‑17 
(except ARTD13, which is catalytically inactive) only cata‑
lyzes mono‑ADP‑ribosylation (16,20), due to the absence of 
conserved glutamate. In addition, ARTD3 has been detected 
as a mono‑ADP‑ribosyltransferase in previous studies (21). 
ARTCs, as ectocellular ARTs, transfer mADPr from NAD+ 
to target proteins in the cytoplasm, cytomembrane and 
extracellular regions (22,23). Therefore, ARTCs are not able 
to mediate mono‑ADP‑ribosylation of histones, which are 
distributed in the nucleus. Apart from the aforementioned, 
members of the sirtuin (SIRT) family (SIRT1‑7 always act as 
histone deacetylases) possess mono‑ADP‑ribosylation prop‑
erties. SIRT4, as well as SIRT6 and ‑7, were indicated to have 
endogenous mono‑ADP‑ribosyltransferase activity in the 
mitochondria and the nucleus, respectively (24‑27). However, 
only a small number of these mono‑ADP‑ribosyltransferases, 
such as ARTD3, ‑10, and ‑14 and SIRT4 and ‑6, have been 
reported to mono‑ADP‑ribosylate histones in vertebrates to 
date (28‑32).

3. Histones are substrates of mono‑ADP‑ribosylation

All core histones and the linker histone H1 have been reported 
to undergo mono‑ADP‑ribosylated modification (Table II) (33). 
Histone H1 was indicated to be mono‑ADP‑ribosylated 
on glutamic acid E2, E14 and E116  (34), the arginine 
residue R34  (35) and at the COOH‑terminal lysine residue 
K213 (36). In the rat liver, histone H2B was indicated to be 
mono‑ADP‑ribosylated on glutamate residue 2 of the γ‑COOH 
group  (37). Both in the chromatin and in the reconstituted 
recombinant nucleosomes of chicken, histone H2B E2 was a 

specific target of PARP3 modification with mADPr (30). In 
histone H2B, the residues E18 and E19 were also indicated to 
be the principal sites modified by the ARTs in response to DNA 
double‑strand breaks (38). After hepatoma cells are alkylated, 
H1 and H2B may be mono‑ADP‑ribosylated at the N‑terminal 
fragment. Mono‑ADP‑ribosylation also modified the Arg 
residues of H2A, H3 and H4 and the glutamic residues of H2A 
and H2B (39). Previous studies identified K13 of H2A, K30 of 
H2B, K27 and K37 of H3 and K16 of H4 as ADP‑ribose acceptor 
sites in poly‑ADP‑ribosylation (40); however, whether these 
are also ADP‑ribose acceptor sites in mono‑ADP‑ribosylation 
requires further research. Therefore, the specific amino acid 
sites of mono‑ADP‑ribosylated modifications on H2A and 
H4 have remained elusive. It has remained to be determined 
which enzymes mediate mono‑ADP‑ribosylation of histones. 
With ongoing research, an increasing number of studies 
have identified specific enzymes involved in regulating the 
mono‑ADP‑ribosylation of histones. Human H2B was reported 
to be modified on E2 in vitro by using recombinant ARTD10 (41) 
and DNA damage was able to induce mono‑ADP‑ribosylation of 
H2B E18 and E19 in vivo by specific ARTs: Protein (ADP‑ribosyl) 
transferase (ADPRT)1a and ADPRT2 (38). In addition, a silent 
information regulator 2 of yeast (SIR2)‑related protein from 
the protozoan parasite Trypanosoma brucei (TBSIR2RP1), was 
indicated to catalyze mono‑ADP‑ribosylation of H2A, H2B and 
H4 in Trypanosoma brucei (42).

4. Methods for detecting mono‑ADP‑ribosylated histones

The detection of the enzymes and specific substrates of 
ADP ribosylation is an important step for identifying 
mono‑ADP‑ribosylated histones. Radiolabeled or chemically 
modified NAD+ has been widely used for detecting 
mono‑ADP‑ribosylated proteins in vitro. In the process of ADP 
ribosylation, radioactive‑labeled ADP ribose of NAD+ combines 
with the target proteins and SDS‑PAGE autoradiography may 
detect these radiolabeled molecules (43). Certain studies have 
used self‑made ADP‑ribosylated antibodies, as commercially 
available specific antibodies are limited; however, the sensitivity 
of the antibodies has not been satisfactory and they are not 
generally applicable for wider use (44,45). Osago et al (46) 
have already investigated more efficient antibodies, which were 
able to even detect specific arginine mono‑ADP‑ribosylated 
peptides. Apart from the methods mentioned above, certain 
other chemical tools may be used to detect ADP‑ribosylated 
proteins, even mono‑ADP‑ribosylated histones, such as the use 
of ADPr (ADP‑ribose)‑peptides, analogues (ADPr‑synthon) 
and ADPr‑chains (47). There are several chemical synthesis 
peptides carrying mADPr, which may be used to detect the 
affinity between ADP‑ribose and substrates (48). In addition, 
the incorporation of benzophenone photo‑cross‑linkers into 
synthetic peptides has been demonstrated to provide a way to 
probe for and enrich ADP‑ribose binding proteins (49,50). As the 
methods for ADP‑ribose peptide synthesis have improved, the 
development of corresponding antibodies may be possible (51). 
Thus, the specific antibody for histone mono‑ADP‑ribosylation 
may be improved to further investigate the function of histones 
in different fields.

Mass spectrometry (MS) and selective reader domains 
have also been used for detecting mono‑ADP‑ribosylated 
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proteins by identifying macrodomains, which may 
selectively bind ADP‑ribose. H2A, one of a number of types 
of macrodomain‑containing proteins, contains macro H2A, 
which is subdivided into macro H2A1.1, macro H2A1.2 and 
macro H2A2 (52,53). Only H2A1.1 has been indicated not 
to bind mono‑ADP‑ribose (54), while it has remained to be 
determined whether mono‑ADP‑ribose has connections with 
macro H2A1.2 and macro H2A2 (52). Therefore, MS may be 
an important method for identifying mono‑ADP‑ribosylated 
histones. For detecting the specific ADP‑ribosylated 
residues, quadruple tandem MS was indicated to detect 
ADP‑ribosyl‑Arg and Arg‑ADP‑ribosylated peptides to 
identify the specific arginine site of mono‑ADP‑ribosylation 
in the target protein  (55,56). In recent years, numerous 
MS‑based proteomics have been developed, such as 
macrodomain‑linked immunosorbent assay to identify 
mono‑ARTs (57) and liquid chromatography‑high‑resolution 
tandem MS to identify mono‑ADP‑ribose acceptor 
sites (58,59). Furthermore, there are other methods allowing 
for the identification of mono‑ADP‑ribosylation, such as a 
phosphoproteomics approach via the enzymatic product of 
phosphodiesterase‑treated ADP‑ribose (60) or an aminooxy 
alkyne probe for detecting mono‑ADP‑r ibosylated 
proteins (61). A mutagenesis approach has also been employed 
to detect the ADP‑ribose acceptor site (5), which may be a 
novel way to study mono‑ADP‑ribosylation of histones.

5. Function of mono‑ADP‑ribosylated histones in DNA 
damage and repair

Mono‑ADP‑ribosylation of histones may be involved in DNA 
damage and repair (62) and the nucleosomal surface is the 

main target (63). In the 1980s, Adamietz and Rudolph (64) 
reported that, when AH7974 hepatoma cells were damaged by 
the alkylating agent dimethyl sulfate, mono‑ADP‑ribosylation 
of histones increased by a factor of 12. Under the same condi‑
tions, the mono‑ADP‑ribosylated C‑terminal extension of 
histone H1 and the N‑terminal fragment of histone H2B was 
increased compared with that in untreated cells (65,66), which 
may modify DNA‑histone association by adding two negative 
charges. TbSIR2RP1, catalyze the mono‑ADP‑modification 
of H2A and H2B, which may occur in response to DNA 
damage and be involved in DNA repair. Rulten et al  (67) 
suggested that mono‑ADP‑ribosylated H1, catalyzed by 
PARP3, may accelerate DNA double‑strand break repair by 
binding to aprataxin and polynucleotide kinase‑like factor. 
Changes in the types of ADP‑ribosylated histones may occur 
in DNA strand breaks, as in the P815 mouse mastocytoma 
and K562 human chronic myelogenous leukemia cell lines, 
mono‑ADP‑ribosylated histones appeared in the absence of 
DNA strand breaks due to the decrease of poly‑ADP‑ribose 
synthetase activity, whereas poly‑ADP‑ribosylated histones 
increased following DNA stand breaks (68). 

6. Mono‑ADP‑ribosylation of histones in replication and 
transcription

ADP ribosylation of histone is also involved in DNA repair and 
replication. It has been indicated that histones are predomi‑
nantly mono‑ADP‑ribosylated in lysates of non‑dividing cells, 
while being poly‑ADP‑ribosylated in rapidly proliferating 
cells (62,69). However, evidence for the connection between 
mono‑ADP‑ribosylation of histones and replication is limited. 
Mono‑ADP‑ribosylated histones present in the nuclei under 

Figure 1. Schematic representation of the histone mono‑ADP‑ribosylation reaction. 
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physiological conditions are considered to function in supporting 
the conversion of the chromatin loop into its transcriptional active 
structure (70). ARTD14, as a mono‑ADP‑ribosyltransferase of 
histones, was indicated to interact with aryl hydrocarbon receptor 
(AHR) leading to decreased AHR transcriptional activity (28).

7. Mono‑ADP‑ribosylation of histones in cell proliferation 
and differentiation

Mono‑ADP‑ribosylation of histones may promote or 
inhibit cell proliferation. It has been indicated that the 

Table Ⅰ. Enzymes of ADP‑ribosylation.

A, ARTDs			 

Enzymes	 Subcellular localization	 Enzymatic activities	 (Refs.)

ARTD1	 Nucleus	 Poly‑ADP‑ribosyltransferase	 (16‑19)
ARTD2	 Nucleus	 Poly‑ADP‑ribosyltransferase	 (16‑19)
ARTD3	 Nucleus	 Mono/Poly‑ADP‑ribosyltransferase	 (22,31)
ARTD4	 Nucleus/cytoplasm	 Poly‑ADP‑ribosyltransferase	 (16‑19)
ARTD5	 Nucleus/cytoplasm	 Poly‑ADP‑ribosyltransferase	 (16‑19)
ARTD6	 Nucleus/cytoplasm	 Poly‑ADP‑ribosyltransferase	 (16‑19)
ARTD7	 Nucleus	 Mono/Poly‑ADP‑ribosyltransferase	 (20,21)
ARTD8	 Nucleus/cytoplasm	 Mono/Poly‑ADP‑ribosyltransferase	 (20,21)
ARTD9	 Nucleus/cytoplasm	 Mono/Poly‑ADP‑ribosyltransferase	 (19)
ARTD10	 Nucleus/cytoplasm	 Mono/Poly‑ADP‑ribosyltransferase	 (20,21,30,42)
ARTD11	 ‑	 Mono/Poly‑ADP‑ribosyltransferase	 (20,21)
ARTD12	 Nucleus	 Mono/Poly‑ADP‑ribosyltransferase	 (19‑21)
ARTD13	 Nucleus	 Catalytically inactive	 (20)
ARTD14	 Nucleus	 Mono/Poly‑ADP‑ribosyltransferase	 (19,29)
ARTD15	 Nucleus/cytoplasm	 Mono/Poly‑ADP‑ribosyltransferase	 (20,21)
ARTD16	 ‑	 Mono/Poly‑ADP‑ribosyltransferase	 (20,21)
ARTD17	 ‑	 Mono/Poly‑ADP‑ribosyltransferase	 (20,21)

B, ARTCs			 

Enzymes	 Subcellular localization	 Enzymatic activities	 (Refs.)

ARTC1‑5 	 Ecto‑cellular	 ‑	 (23,24)

C, special ARTs			 

Enzymes	 Subcellular localization	 Enzymatic activities	 (Refs.)

ADPRT1a	 ‑	 Mono‑ADP‑ribosyltransferase 	 (38)
ADPRT2	 ‑	 Mono‑ADP‑ribosyltransferase	 (38)

D, Sirtuins			 

Enzymes	 Subcellular localization	 Enzymatic activities	 (Refs.)

SIRT1	 Nucleus	 ‑	 (27,28)
SIRT2	 Nucleus/Cytoplasm	 ‑	 (27,28)
SIRT3	 Mitochondria	 ‑	 (27,28)
SIRT4	 Mitochondria	 Mono‑ADP‑ribosyltransferase	 (25,32)
SIRT5	 Mitochondria	 ‑	 (27)
SIRT6	 Nucleus	 Mono‑ADP‑ribosyltransferase	 (26,33)
SIRT7	 Nucleus (nucleoli)	 Mono‑ADP‑ribosyltransferase	 (25)

ARTDs, bacterial diphtheria toxin‑like ADP‑ribosyltransferases; ARTCs, clostridial C2 and C3 toxin‑like ARTs.
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mono‑ADP‑ribosylation of histone 3 at R117 may accelerate 
the proliferation of colon carcinoma cells by regulating P300 
to increase the expression level of cyclin D1 and c‑myc (11). 
By contrast, other studies have indicated that after P815 
mouse mastocytoma and K562 human chronic myelogenous 
leukemia cell lines were treated with 5 mM butyrate or with 
serum‑free media for blocking cell proliferation, the level 
of mono‑ADP‑ribosylated histones was higher compared 
with that in rapidly dividing cells. Of note, there were also 
no poly‑ADP‑ribosylated histones in the treated cells, while 

an increase in poly‑ADP‑ribosylated histones was observed 
in the rapidly dividing cells (69). The cycle of the conversion 
of poly‑ADP‑ribosylated histones to mono‑ADP‑ribosylated 
histones may be an important regulatory factor in cell prolifera‑
tion. In addition, a study by our group indicated that arginine 117 
of histone H3 in LoVo colon carcinoma cells with low differen‑
tiation were modified by mono‑ADP‑ribosylation, while SW480 
cells with high differentiation were not (71), which suggested 
that mono‑ADP‑ribosylated histones may vary across different 
colorectal cancer cell lines with different degrees of malignancy, 

Table Ⅱ. Mono‑ADP‑ ribosylation of histones.

A, H1 substrate			 

Modified amino acid	 Enzymes	 Effect of the reaction	 (Refs.)

E2, E14E116 and K213	 ‑	 Regulation of H1‑H1 interactions	 (35,37) 
R34	 ‑	 Blocks the cAMP‑dependent phosphorylation of histone H1	 (36)
Q/N	 ARTD3 	 DNA repair	 (22,63)

B, H2A substrate			 

Modified amino acid	 Enzymes	 Effect of the reaction	 (Refs.)

Unknown	 Sir2	 Response to oxidative stress/DNA damage	 (43)
Unknown	 Sir2	 Inhibition of histone acetylation/silencing	 (43,68)
		  chromatin domains
R/E	 ‑	 Unknown	 (40)

C, H2B substrate			 

Modified amino acid	 Enzymes	 Effect of the reaction	 (Refs.)

E2	 ARTD3/ARTD10	 Unknown	 (31,38,42) 
E18/E19	 ARTs, Adprt1a/Adprt2	 Response to oxidative stress/DNA damage	 (38,39)
Unknown 	 Sir2	 Inhibition of histone acetylation/silencing of 	 (43,68)
		  chromatin domains

D, H3 substrate			 

Modified amino acid	 Enzymes	 Effect of the reaction	 (Refs.)

Unknown	 SIRT6, Sir2	 Inhibition histone acetylation/silencing	 (33,43)
		  chromatin domains
R	 ‑	 Cell proliferation	 (11,40)

E, H4 substrate			 

Modified amino acid	 Enzymes	 Effect of the reaction	 (Refs.)

R	 Sir2	 Post‑synthetic modification with acetylation of	 (27,28,40)
		  core histones
Unknown	 Sir2	 Response to oxidative stress/DNA damage	 (43)
Unknown	 ARTD10	 Unknown	 (42,66)
Unknown	 Sir2‑relatedprotein 	 Inhibition histone acetylation	 (43)
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confirming the hypothesis that histone mono‑ADP‑ribosylation 
may have an important role in the development of tumors.

8. Association between mono‑ADP‑ribosylation of histones 
and other histone modifications

A wide range of histone modifications has been identified, 
which regulate signaling pathways in cell physiology and 
pathology. These modifications do not exist independently and 
there are connections among them. H4 is more likely to be 
mono‑ADP‑ribosylated while it is hyper‑acetylated (40,72). 
Mono‑ADP‑ribosylation of H4 by ARTD10 may occur when 
K5, K8 and/or K16 are modified by acetylation; however, these 
interrelations were indicated to be relatively weak. In addition, 
mono‑ADP‑ribosylation of H3 R117 affected the transcription 
and expression level of demethylase ten‑eleven translocation 
1, thus regulating the methylation of tissue factor pathway 
inhibitor 2 in colorectal cancer (73). Furthermore, the decrease 
of mono‑ADP‑ribosylation of histones in colorectal carcinoma 
cells resulted in an increase of histone H3 trimethylated at 
lysine 4 and phosphatase and tensin homolog, thus reducing 
the phosphorylation of the PI3K/Akt signaling pathway. 
Mono‑ADP‑ribosylation of JHDM1A/KDM2A by SIRT6 led 
to an increase of histone H3 lysine 36 dimethylation levels 
to promote DNA repair (32). Methylation or acetylation of 
K20 in H4 may inhibit mono‑ADP‑ribosylation (29). When 
Arg34 of histone H1 is modified by mono‑ADP‑ribosylation, 
cyclic (c)AMP‑dependent phosphorylation of histone H1 on 
Ser 38 may be inhibited (35). Arginine, which is located in 
the NH2‑terminal of the phosphate‑accepting serine residue, 
was indicated to be important for phosphorylation by 
cAMP‑dependent protein kinase. Hence, the change in the 
function of the arginine residue by mono‑ADP‑ribosylation 
may affect the phosphorylation of histones. In yeast, histone 
acetylation may be inhibited by mono‑ADP‑ribosylation of 
histones, which is catalyzed by SIR2 and may be responsible for 
inhibiting growth or silencing genes (74). It was also reported 
that reducing the ability of the mono‑ADP‑ribosyltranferase of 
SIR2 with a G270A mutation may not control gene silencing 
and it was hypothesized that histone acetylation may serve 
a bigger role rather than just in histone mono‑ADP‑ribosyl‑
ation (75). Therefore, the efficiency of mono‑ADP‑ribosylation 
of histones by SIR2 requires further investigation.

9. Hydrolytic enzymes of histone mono‑ADP‑ribosylation

Mono‑ADP‑ribosylation is a reversible reaction, which 
may be hydrolyzed by Arg‑specific mono‑ADP‑hydrolase, 
macroD1, macroD2, C6ORF130/TARG1  (76‑78) and by 
serine mono ADP‑ribosylhydrolase‑3  (79). The content of 
macrodomain proteins primarily originates from viruses, such 
as α‑virus, hepatitis E virus, severe acute respiratory syndrome 
coronavirus (SARS‑CoV), feline infectious peritonitis virus 
and hCoV‑229E macrodomains (80‑82).

In a recent study, SARS‑CoV‑2 was reported to be 
able to remove mono‑ADP‑ribose (MAR) from a protein 
substrate (83). Whether the functions of histone modification 
were regulated by these hydrolytic enzymes requires further 
investigation. As the specific amino acid residues hydrolyzed 
by these hydrolases are different, the acceptor sites of histone 

mono‑ADP‑ribosylation may be confirmed by the type of 
hydrolases able to hydrolyze the mono‑ADP‑ribosylation. 

10. Conclusion

Mono‑ADP‑ribosylation has become a focus in the fields 
of immunity, inflammation, stress response, DNA damage 
response and cancer (5,84,85). Different target proteins and 
even different amino acid residues may determine the func‑
tions of mono‑ADP‑ribosylation. However, the number of 
identified target proteins of mono‑ADP‑ribosylation remains 
low at present, owing to the limited and simplistic methods, not 
to mention the exact number and location of the acceptor sites.

Histones are major target proteins; however, knowledge 
regarding their function in pathophysiological processes is 
currently limited. Histone modifications, similar to acetylation, 
methylation and phosphorylation, have already been reported 
to participate in multiple processes, particularly in tumori‑
genesis. Studies have indicated that mono‑ADP‑ribosylation 
of histones is able to regulate the DNA damage response, 
transcription and cell proliferation, which are also important 
factors in tumorigenesis. The connections between histone 
mono‑ADP‑ribosylation and other well‑known histone 
modifications indicate that the combined effects of these 
modifications may regulate pathophysiological processes.
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