Cost-effectiveness of antenatal corticosteroids and tocolytic agents in the management of preterm birth: A systematic review

Elizabeth Sebastian,^{a,b} Chloe Bykersma,^{a,b} Alexander Eggleston,^{a,b} Katherine E. Eddy,^a Sher Ting Chim,^{a,b} Rana Islamiah Zahroh,^c Nick Scott,^a Doris Chou,^d Olufemi T. Oladapo,^d and Joshua P. Vogel^{a,e}*

^aMaternal, Child and Adolescent Health Program, Burnet Institute, Melbourne, Australia ^bFaculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia ^cGender and Women's Health Unit, Centre for Health Equity, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia

^dUNDP/UNFPA/UNICEF/WHO/World Bank Special Programme of Research, Development and Research Training in Human Reproduction (HRP), Department of Sexual and Reproductive Health and Research, World Health Organization, Geneva, Switzerland

^eSchool of Public Health and Preventive Medicine, Monash University, Melbourne, Australia

Summary

Background Preterm birth is a leading cause of neonatal mortality and morbidity, and imposes high health and societal costs. Antenatal corticosteroids (ACS) to accelerate fetal lung maturation are commonly used in conjunction with tocolytics for arresting preterm labour in women at risk of imminent preterm birth.

Methods We conducted a systematic review on the cost-effectiveness of ACS and/or tocolytics as part of preterm birth management. We systematically searched MEDLINE and Embase (December 2021), as well as a maternal health economic evidence repository collated from NHS Economic Evaluation Database, EconLit, PubMed, Embase, CINAHL and PsycInfo, with no date cutoff. Eligible studies were economic evaluations of ACS and/or tocolytics for preterm birth. Two reviewers independently screened citations, extracted data on cost-effectiveness and assessed study quality using the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement.

Findings 35 studies were included: 11 studies on ACS, eight on tocolytics to facilitate ACS administration, 12 on acute and maintenance tocolysis, and four studies on a combination of ACS and tocolytics. ACS was cost-effective prior to 34 weeks' gestation, but economic evidence on ACS use at 34-<37 weeks was conflicting. No single tocolytic was identified as the most cost-effective. Studies disagreed on whether ACS and tocolytic in combination were cost-saving when compared to no intervention.

Interpretation ACS use prior to 34 weeks' gestation appears cost-effective. Further studies are required to identify what (if any) tocolytic option is most cost-effective for facilitating ACS administration, and the economic consequences of ACS use in the late preterm period.

Funding UNFPA/UNICEF/WHO/World Bank Special Programme of Research, Development and Research Training in Human Reproduction (HRP), a cosponsored programme executed by WHO.

Copyright © 2022 World Health Organization. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Keywords: Cost-effectiveness; Economic evaluation; Preterm birth; Antenatal corticosteroids; Tocolysis; Tocolytic

Introduction

An estimated 14.84 million infants are born preterm worldwide every year.¹ Complications relating to

preterm birth are the leading cause of mortality in children under 5 worldwide.² Neonatal complications of preterm birth can include respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), necrotising enterocolitis (NEC), intraventricular haemorrhage (IVH), and several other serious morbidities.³ Over the longer term, babies born preterm have higher rates of eClinicalMedicine 2022;49: 101496 Published online xxx https://doi.org/10.1016/j. eclinm.2022.101496

^{*}Corresponding author at: Burnet Institute, Melbourne, Australia.

E-mail address: joshua.vogel@burnet.edu.au (J.P. Vogel).

Research in context

Evidence before this study

Efficacy evidence indicates that antenatal corticosteroids (ACS) prior to 34 weeks' gestation for women at risk of imminent preterm birth significantly reduces neonatal morbidity and mortality. Though there is relatively less evidence on effects of ACS in the late preterm period (34 to <37 weeks' gestation), they might reduce neonatal respiratory morbidity but could also increase neonatal hypoglycaemia. Multiple drug classes have been evaluated for tocolysis in women with spontaneous preterm labour. Some tocolytic drugs can effectively prolong pregnancy - providing time for ACS administration and/or transfer to higher level care but tocolytic drugs have not yet been shown to independently improve substantive perinatal health outcomes. We identified a 2009 health technology assessment that broadly evaluated the economic effects of test-treatment interventions in preterm labour, however the cost-effectiveness of ACS and/or tocolytics only were not specifically reported.

Added value of this study

We searched MEDLINE, Embase and a repository of maternal health economic evaluations derived from six economic and health databases. Available economic studies of ACS and/or tocolytics were largely conducted in high-income countries. ACS prior to 34 weeks' gestation appears cost-effective, though economic evidence from the USA on ACS use in late preterm birth indicates that its cost-effectiveness varies depending on which health outcomes are considered. Some studies suggest that tocolysis to facilitate ACS administration was not cost-saving, but may be cost-effective. No single tocolytic option was identified as dominant in the management of spontaneous preterm labour.

Implications of all the available evidence

ACS prior to 34 weeks' gestation is cost-effective in high-income countries. There is limited economic evidence from low-to-middle-income countries, though modelling suggests ACS implementation and scale up would likely be cost-effective in these contexts. In light of the limited and conflicting evidence on tocolytics for spontaneous preterm labour, it is not possible to conclude what (if any) tocolytic option is the most costeffective. Further, robust economic evaluations on ACS at 34-<37 weeks' gestation, tocolytics alone, and ACS and tocolytics in combination are required, particularly those that explore cost-effectiveness in resource-limited settings.

neurodevelopmental disabilities, as well as more frequent hospitalisations, incurring large societal costs.³ In Australia, an estimated A\$1.4 billion is spent annually on healthcare and educational costs associated with preterm children until 18 years of age.⁴

In 2015 WHO released evidence-based guidelines on the use of interventions to improve preterm birth outcomes.5 These interventions include the use of antenatal corticosteroids (ACS) and tocolytics, as well as several interventions used in the care of preterm infants. ACS (typically intramuscular dexamethasone or betamethasone) can cross the placenta and accelerate fetal lung maturation.⁶ When administered to women at risk of imminent preterm birth prior to 34 weeks' gestation, ACS can prevent perinatal and neonatal death, RDS and IVH, without causing maternal or newborn harms.⁷ WHO thus recommended that ACS can be used for this indication, provided that a minimum standard of maternal and preterm newborn care is available.⁵ While WHO does not recommend the routine use of tocolytics for women in preterm labour (in light of the lack of substantive effects on perinatal health outcomes), the guideline panel acknowledged that some tocolytic options prolong pregnancy by 2-7 days, providing a window for ACS administration or in-utero transfer to a higher-level care facility.⁸ In such instances, nifedipine is the preferred tocolytic drug.⁵ Acute tocolysis is recommended in several high-income countries,9 and observational evidence indicates that some tocolytics (such as betamimetics and calcium channel blockers) are used for preterm labour management in lowand middle-income countries (LMICs).¹⁰

Evaluating healthcare interventions from both health and economic perspectives allows policymakers, clinicians and other stakeholders to identify the most efficient (or cost-effective) healthcare strategies to maximise health benefits at a population level.^{II} In resource-limited settings, cost is often a key consideration in the decision to implement interventions at scale. While several economic evaluations have been conducted on ACS and tocolytics in preterm birth, to date no review has synthesized all available economic evidence. Cochrane systematic reviews on the effectiveness of ACS and different tocolytic options for preterm birth did not pre-specify outcomes related to cost or cost-effectiveness.^{7,12-19} In this study, we aimed to synthesize all available evidence on the cost-effectiveness of ACS and tocolytics as individual or co-interventions for improving preterm birth outcomes.

Methods

This review is reported according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 checklist.²⁰ As a systematic review of published studies, ethical approval was not required nor sought. The scoping review protocol is registered at DOI: 10.17605/OSF.IO/JWTGE.

Eligibility criteria

Eligible studies were those that assessed the cost-effectiveness of ACS and/or tocolytic therapy for preterm birth. The primary outcome of interest was the incremental cost effectiveness ratio (ICER) (i.e., the change in cost and effectiveness when an intervention is compared to alternative intervention) of these two interventions, whether compared to no treatment or alternative treatment. We also extracted any available data on other relevant health economic measures, such as estimates of quality-adjusted life-years (QALYs) (years of life lived with perfect health), cost, cost savings, or cost benefit.

Information sources, search strategy and selection process

Our research team has previously conducted a broad scoping review to identify economic evaluations of any maternal health intervention.²¹ In brief, eligible studies were sought from specialist health economic databases (NHS Economic Evaluation Database and EconLit) and medical databases (PubMed, Embase, CINAHL, and PsycInfo) using a structured search conducted on 20 November 2020. Eligible studies for that scoping review were full economic evaluations that assessed cost-benefit, cost-effectiveness, and/or cost-utility for women at any stage of pregnancy, childbirth, and up to six weeks postpartum. Studies of any intervention directed primarily towards improving maternal health outcomes were eligible, though interventions related to pre-conception care, ectopic pregnancy, early pregnancy loss, or management of abortion were not included. The scoping review had no restrictions in terms of comparator, publication date, country, or language. For the current review of cost-effectiveness studies of ACS or tocolytic therapy, we searched all 923 studies included in the scoping review database using synonyms of 'antenatal corticosteroid' and 'tocolytic', as well as reviewing any study conducted in women experiencing preterm birth (Appendix S1).

In order to update the search with more recent studies and capture studies not indexed by NHS EED, we searched MEDLINE and Embase for relevant studies with no setting or language restrictions on 14 December 2021. The search strategy was designed with assistance from an information specialist, using search terms related to 'antenatal corticosteroid', 'tocolytic', 'preterm birth' and 'economic evaluation' (Appendix S1).

For both searches at least two review authors independently screened all titles and abstracts, assessed full texts of potentially eligible studies, and extracted data (disagreements were resolved by discussion). Covidence software was used for title and abstract and full text screening. Studies were included if the intervention was directly related to use of an ACS and/or tocolytic, regardless of drug type. Studies related to progestational agents were not included as they pertained to prevention - rather than management - of preterm labour. In addition, reference lists of each of the included studies were reviewed to identify any additional eligible studies.

Data extraction, synthesis, and quality assessment

Data were extracted by two authors independently using a pre-designed Excel spreadsheet adapted from a 2021 systematic review of cost-effectiveness studies by Aziz et al.²² Extracted data were primarily descriptive, including: country, setting, funding, study design, economic evaluation type, analytic perspective, currency, year of costs, time horizon, and data sources used. Available cost data and incremental cost-effectiveness ratios (ICER) were extracted for each study. Any disagreements on data extraction were resolved through discussion or consultation with a third author. Costs were reported as described in an included study and were not converted to a single currency or year of costs. Results were summarised in tables and reported narratively. Methodological quality of included studies was assessed using the International Society of Pharmacoeconomics and Outcomes Research (ISPOR) Taskforce Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement,²³ as recommended by Wijnen et al.²⁴ Three quality categories were adopted for the CHEERS score (a maximum score of 24) - high (>75%), moderate (50-74%), and low (<50%) as used by Zakiyah et al.²⁵ Two authors independently assessed the quality of each study using this framework, with disagreements resolved through discussion or consulting a third author.

This work was financially supported by UNDP/ UNFPA/UNICEF/WHO/World Bank Special Programme of Research, Development and Research Training in Human Reproduction (HRP), a cosponsored programme of the World Health Organization.

Role of funding

The funder organization had no direct role in the study design, data collection, analysis, or interpretation. Two staff members of HRP/WHO were co-authors, and provided input to the study design, analysis and findings.

Results

Characteristics of included studies

The combined searches identified 1083 citations, of which 34 were eligible (Figure 1). Two further studies were identified from reference list review of the included studies. A total of 35 studies from 36 citations were included in this review. One study was an abstract only and the full text could not be recovered. Among included studies, 11 pertained only to use of ACS (Table 1), 20 to use of tocolytics (Table 2), and four involved a combination of ACS and tocolytics (Table 3).

Included studies were published between 1981 and 2019, and were conducted in high-income (31 studies), upper-middle income (3 studies), and low-income (1 study) countries. Five of the studies on ACS related to

Articles

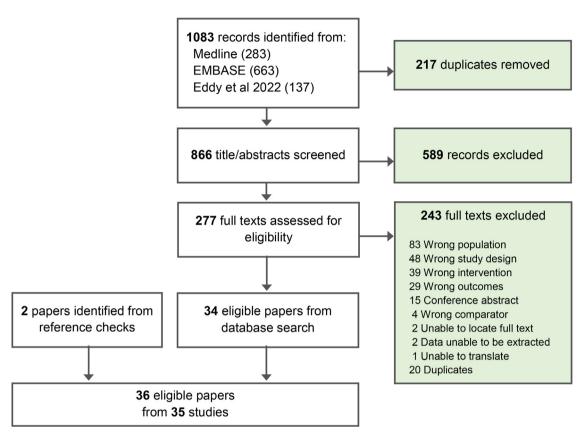


Figure 1. PRISMA flow diagram.

administration prior to 34 weeks' gestation,²⁶⁻³¹ three were on its use in the late preterm period (34 to <37 weeks' gestation),³²⁻³⁴ one studied both categories,³⁵ and two did not specify (Table 1).^{36,37} Eight of the studies on tocolytics for managing preterm labour examined the use of tocolytics for facilitating ACS administration,³⁸⁻⁴⁵ and twelve studies related to tocolytic use for acute and maintenance tocolysis without explicit consideration of ACS (Table 2).⁴⁶⁻⁵⁷ The aim of the studies considering the combination of ACS and tocolytics (Table 3) was to examine different test-treatment strategies in the setting of preterm birth; and data relevant to 'treatment only' options were extracted.⁵⁸⁻⁶¹ Results are presented for each of these sub-categories.

Antenatal corticosteroids

Preterm birth prior to 34 weeks' gestation. Five studies examined cost-effectiveness of ACS prior to 34 weeks' gestation, and were conducted in the United States of America (USA) (two studies), the United Kingdom (UK), the Netherlands and Brazil (Table 1).^{26,28-31} Morales et al (1986) considered dexamethasone only,³⁰ Ogata et al (2016) considered either betamethasone or dexamethasone,²⁶ and three studies did not specify.^{28,29,31} Three studies used decision modelling techniques^{26,28,31} while two studies considered costs alongside a retrospective cohort study²⁹ and a randomised controlled trial³⁰ respectively. Ogata et al (2016) specified a provider perspective²⁶ while the other four studies did not specify a perspective.²⁸⁻³¹ All five studies used a short-term time horizon for costs and outcomes (until neonatal discharge from hospital). Methodological quality was high for one study,²⁶ moderate for three studies,^{28,29,31} and low for one study.³⁰

The Ogata et al study in Brazil (2016) found that ACS significantly reduced most neonatal morbidity outcomes and hospitalisation costs in infants who survived hospitalisation, except for late-onset sepsis where the probability increased by $2 \cdot 5\%$ (Table 4).²⁶ Simpson et al (1995) found that in USA hospital settings ACS reduced hospital costs, deaths, and specific neonatal morbidities (index cases) in all infants born <2kg, as well as in premature infants at 28 to 31 weeks. In premature infants <28 weeks, the ACS treatment group had fewer deaths but a greater number of index cases; however, ACS was still cost-saving in terms of hospital costs.²⁸ In the Netherlands, Egberts et al (1992) found that ACS reduced deaths, cases of RDS, and costs per survivor, but more survivors meant total costs increased compared to no

Study	Country	Care setting	Intervention	Study population	Aim	Design / analytic approach	Year of cost estimates	Type of evaluations (main outcomes)	Analytic viewpoint (perspective)	Time horizon (for effects)	CHEERS overall quality assessment
Antenatal cortico Egberts 1992 ²⁹	steroids prior to 3 Netherlands	Antenatal controsteroids prior to 34 weeks' gestation Egberts 1992 ³⁹ Netherlands Inpatient facility	ACS (not specified)	< 30 weeks	Calculate the costs of various types of treatment to pre- vent or alleviate RBS in preterm neo- nates using data from a well-defined population of pre- term infrates	Costs alongside retrospective cohort study	1990	Costs; cases of respiratory dis- tress syn- drome, mortal- ity, cost per extra survivor	Not specified	Period of hospi- talization until neonatal discharge	Moderate (16/22)
Morales 1986 ³⁰	nsa	Tertiary hospital	ACS (dexamethasone)	28 to 33 weeks	To establish whether the antenatal administration of corticosteroids results in improved menatal outcome in gestations with premature tupture of membranes and to determine whether there is in- natal and maternal	Costs alongside randomised control trial	Not specified	Costs: neonatal morbidity", morbidity", preonation prialization (days), mater- nal infection	Not specified	Period of hospi- talisation until neonatal discharge	Low (10.5/23)
Mugford 1991 ³¹	ž	Tertiary hospital	ACS (not specified)	<35 weeks	To present estimates of the likely effects of giving controste- roids to women expected to deliver preterm, and giving surfactant to bables at high risk of devel- poing hyaline mem- bane disease, on health convice occe	Decision tree model	1989	Costs, respiratory distress syn- drome: sunvival	Health service	Period of hospi- talisation until neonatal discharge	Moderate (15 <i>5/</i> 22)
Ogata 2016 ²⁶	Brazil	University hospital	ACS (betametha- sone or dexamethasone)	26-27 weeks, 28-29 weeks, 30-31 weeks, and 32 weeks	reating service costs Fielduate costs effective- ness of ACS in decreasing in-hospi- tal morbidity of pre- term infants with different gestational	Decision tree model	2013	Cost per neonatal morbidity ^a	Hospital (provider)	Period of hospi- talization until neonatal discharge	High (18/23)
Simpson 1995. ²⁸	USA	National data- base from ter- tiary hospitals	ACS (not specified)	<28 weeks, 28-31 weeks. ^b	Estimate cost-effective- ness of ACS to improve health out- comes for prema- ture inflants, and to examine influence of birth weight and GA on cost-effec- tiveness estimates.	Decision tree model	1992	Costs; deaths averted, "Index Diseases" averted"	Not specified	Neonatal period until discharge from hospital	Moderate (16/23)
Antenatal cortiv Bastek 2012 ³³	.osteroids at 34 - USA	Antenatal corticosteroids at 34 - <37 weeks' gestation Bastek 2012 ³³ USA Tertiary hospital setting	ACS (not specified)	34, 35, 36 weeks reported separately	Determine whether ACS is cost-effective in late-preterm infants at risk of delivery.	Decision tree model	2011	Cost per QALY	Single payer	Lifetime effects	High (21/23)
Table 1 (Continued)	nued)										

Study	Country	Care setting	Intervention	Study population	Aim	Design / analytic approach	Year of cost estimates	Type of evaluations (main outcomes)	Analytic viewpoint (perspective)	Time horizon (for effects)	CHEERS overall quality assessment
Gyamfi-Ban- nerman 2019 ³⁴	USA	Multi-centre trial in tertiary hos- pital settings	ACS (betamethasone)	34 weeks 0 days to 36 weeks 6 days	To assess whether betamethasone compared with standard of care (without betame- thasone) was cost- effective.	Cost-effective- ness analysis based on a randomized trial	2015	Cost per respira- tory morbidity ^a	Third party funder	First 72 hours of neonatal period	High (20/22)
Rosenbloom 2020 ³²	USA	Multi-centre trial in tertiary hos- pital settings	ACS (betamethasone)	34 weeks 0 days to 36 weeks 6 days	Compare betametha- sone administration versus no betame- thasone administra- tion in patients at risk of delivery in the late-preterm period.	Cost-effective- ness analysis based on a randomized clinical trial	2017	Cost per QALY	Health sector	7.5 days (median duration of neonatal admission in the trial)	High (20.5/22)
		erm birth (broad or ur									
Johnson 1981 ³⁵	USA	Tertiary hospital	ACS (betamethasone)	26-35 weeks	Determine whether prenatal glucocorti- coid administration decreased the cost of newborn inten- sive care as well as mortality in infants born prematurely.	Hospital charges alongside a retrospective cohort study	1979	Charges; survival, total length of hospitalisation	Not specified	Period of hospi- talization until neonatal discharge	Moderate (13/22)
Memirie 2019 ³⁶	Ethiopia	Inpatient facility	ACS (betamethasone)	Preterm birth (not otherwise specified)	Examine cost-effective- ness of selected interventions (including ACS) in Ethiopian setting.	Cost-effective- ness analysis	2018	Cost per DALY averted	Provider	Not specified	High (19/22)
Michalow 2015 ³⁷	South Africa	Multiple facility settings	Increased coverage of ACS (not specified)	Preterm birth (not otherwise specified)	Evaluate the impact and cost-effective- ness of selected interventions (including ACS) acknowledged to prevent stillbirths and maternal and newborn mortality, in South African setting.	Cost-effective- ness analysis	2014	Cost per LY gained	Not specified	Not specified	Moderate (14.5/ 22)

^a health outcome details specified in Appendix S2.
 ^b Also considered birthweight groups <2kg, <1.5kg.

6

Study	Country	Care setting	Intervention	Study population	Aim	Design / analytic approach	Year of cost estimates	Type of evaluations (main outcomes)	Analytic viewpoint (perspective)	Time horizon (for effects)	CHEERS overall quality assessment
Tocolytic only - 4	48-hour endpoint to	Tocolytic only – 48-hour endpoint to fadilitate ACS administration	ration		To second rate of homes	and an and a	N	- ()	ti anti		2007E1
теггіов 2005 г	ban A	Inpatient setting	Protocal: Ritodarine as first-choice toco- lytic vs Protocal B: Atosiban as first- choice tocolytic	Women at 23-33 weeks with primary onset of preterm labour	Io conduct a phama- coeconomic asses- ment of two tocolysis protocols to delay birth for 48 hours in the acute manage- ment of premature birth risk in gravid women.	Decision tree model	Not specified	Costs: success (i.e. delivery delayed for 48 hours), therapeutic fail- ruption of treatment due to adverse effects or pro- gression of labor)	Health System perspective	48 hours from intervention	Hgh (17/22)
Guo 2011 ⁴³	Canada	14 tertiary hospitals	Transdermal nitroglyc- erin (GTN) patch vs placebo	Women at 24 weeks 0 days to 32 weeks 0 days with pri- mary onset of pre- term labour	Determine cost-effective- ness of GTN for pre- term labor	Cost-effectiveness analysis based on a rando- mised clinical trial	2003-04	Cost per case admitted to the NICU	Hospital (provider)	Period of hospitali- zation until neo- natal discharge from NICU	High (18/22)
Hayes 2007 ³⁸	USA	Not specified	Indomethacin vs Nifedipine vs Mag- nesium sulphate vs subcutaneous terbutaline	Women with primary onset of preterm labour (not other- wise specified)	To determine which of four tocolytics should be considered the agent of totice, based on the risk and costs of adverse events.	Decision tree model; cost- benefit analysis	2005	Costs, Adverse events were converted into costs and total costs compared.	Hospital (provider)	48 hours after diag- nosis of labour	High (18.5/22)
Heinen-Kam- memer 2003 ³⁹	Germany	Inpatient setting	Atosiban vs Continu- ous fenoterol vs Bolus fenoterol vs Fenoterol with magnesium sulphate	Women with primary onset of preterm labour (not other- wise specified)	Determine which of four treatment alternatives is the most cost-effec- tive form the perspec- tive of statutory health insurance and nursing insurance.	Decision tree model	Not specified	Costs; the delay in giving birth at least 48 hours after the start of treatment, occurrence of adverse drug reactions	Payer perspec- tive: staturory health insur- ance and statutory long-term care insurance	Observation period of 48 hours, extended to 10 days in the event of therapt failure, length of inpatient stay for unwanted for unwanted for hearing for hearing for hearing for hearing	Moderate (15 <i>5/22</i>)
Hruby 2004 ⁴⁰	Czech Republic	Hospital pharmacy	Atosiban vs Fenoterol vs Hexoprenalin	Not specified	Evaluate cost of treating premature delivery with atosiban or beta- sympatomimetic drugs	"Pharmaco-eco- nomic model" based on a ran- domized, con- touled clinical study. Apparent cost-benefit analysis.	Not specified	Costs; treatments for advesse effects for the next 25 h after next 26 h administra- tion of the durgs were converted into costs, and total costs combared	Health care payer per- spective (medical insurance company).	Period of 18 and 48 h, reasting adverse effects for 72 h after administering tocolytics.	Unable to assess
Nijman 2019 ⁴²	Netherlands, Belgium	19 facilities (seven secondary care and twelve ter- tiary care)	Nifedi pine vs Atosiban	Women at 25 weeks 0 days to 33 weeks 0 days gestation in preterm labour	Compare the costs and effects of nifedipine and atosiban in women with a threat- ened preterm birth.	Cost-effectiveness analysis along- side randomised clinical trial	2013	Costs: a composite of adverse peri- natal outcomes ^b	Societal	Neonatal period up to 6 weeks postpartum	High (22.5/23)
Table 2 (Continued)	nued)										

Time indicationdelying pre- sectionssections inside and testsections inside and testsectionssections inside and testsectionssectionsDetermine the cast of the sectionsanalysis inside2010costs effects in the test and testsectionslog and testlog and testl
Cost-minimisation 2010 Costs efficacy in analysis based Multiple per- geoivers Out spectives: material and review of trails. 2010 Costs efficacy in delaying pre- material and spectives Out hubble per- pectives Out spectives Total antepartum hospital, nurs- review of trails. Not specified, nursey days Per- pectives Not specified, nursey days Not specified, nursey days Not specified, nursey days Not specified, nursey days Not specified Not specified, nursey days Not specified Not specified Not specified, nursey days Not specified Not specifi
Total antepartum Not specified Mathematum set expands total age at total adurps hot specified Mathematum set explored total ages delivery Pre- delivery total ages set total adurps considered in a terrospective considered in a set considered in a vertor prective Mathematics Medical costs con- sidered in a ret- cohort study 1999 Estimated costs: Not specified Mathematics Medical costs con- sidered in a ret- cohort study 1999 Estimated costs: Not specified Mathematics Medical costs con- sidered in a ret- cohort study 1999 Estimated costs: Not specified Mathematics Medical costs con- sidered in a ret- cohort study 1999 Estimated costs: Not specified Mathematics Medical costs con- sidered in a ret- cohort study 1999 Estimated costs: Not specified Mathematics Medical costs con- sidered in a ret- cohort study 1999 Estimated costs: Not specified Mathematics Medical costs con- sidered in a ret- cohort study 1000 Not specified Mathematics Mathematics Medical costs con- sidered in a ret- cont study 1999 Estimated costs: States States States
Madral costs con- 1999 Estimated costs: Not specified Ma sidered in a ret. Days gate of rol- rospective lowing recurrent cohort study delivery -3.5 weeks, meon atal outcomes (NCU, stillbirth, birthweight, others*)

To examine pregnancy in a retrospec- toromes of women in a retrospec- receiving oral rifed- ing hospitalization for receiving on rifed- ing hospitalization for retrem to preem above symptoms ver- sus outcomes of women having an alteration inteat- ment from nifedipine. Investigate cost-effect - continuous subcu- taneous techutaline. Investigate cost-effect - annous subcu- taneous techutaline. Inversity at cost-effect iterness manysis based mimetic agents on a cohort tridine and feno- teriol for treatment of preterm labor compare the inpatient cost-effect iterness analysis based mimetic agents on a cohort tridine and feno- teriol for treatment of preterm labor troind have been incurred if trey had not been treated and cutation fess, trans vould have been troin difficial metes. To a subcutaneous techu- torina di firtay had not been treated and cost-effectiveness and cutation dess, trans vould have been troin difficial metes and cutation dess, troin or a trospec- tive cohort subcutaneous techu- tional desp. To avaluate the clinical hoop hal anrepartum hoop halon in vini- gestations.	approach estim	estimates evaluations (main outcomes)	viewpoint (perspective)	effects)	quality assessment
Setial Snept entity Rodine vs Fancterol Norma x 3.6.4.6.7 mestigate correffee. Correffer towers. Monte hospial Rodine vs Fancterol Norma x 3.6.4.6.7 mestigate correffee. Correffectivenes. Monte hospial Received for treatment of the process of the other indice. analysis based analysis based analysis based USA Tertary hospial Retavatenergic tool. Women at 20.0.37 Compare the inpatient (not reatment of the provence) analysis based Visit Rethubling. visit Rethubling. Women at 20.0.37 Compare the inpatient (not visit on a provence) on antoroper Visit Rethubling. Visit Rethubling. Women with toors and production (not visit on a not visit on a not visit on a not visit based on a tercoper Visit Rethubling. Visit Rethubling. Women with toors and production (not visit on a not visit based USA Intervisit on a not visit on	Charges considered in a retrospec- tree cohort study e e e e	Not specified Chargese: pro- longed preg- nancy days, gestational age at delivery, birgh weight, NICU days, nursery days	Not specified	Maternal an tepar- tum and neona- tal period until discharge from hospital post- delivery	Low (11/23)
Ush Tertiary hooptal Beta-adrenergic tocol Vomen at 20 to 37 Compare the inpartent Cost-effectiveness isosynthesis in weeks gestation of perfactiveness isosynthesis is weeks gestation of and pediatrician frees, on a retrospection coopsis is about and outpatient high-to-to-to-to-to-to-to-to-to-to-to-to-to-	م _ م	Costs; length of pregnancy (in weeks), pro- longaton of the pregnancy (in weeks), and score on modi- fied Flanagan's quality-of-fife scale for chronic disease, mea streed after dis- charge from the hospital	Third party funder	Maternal period of treatment and hospitalisation	Moderate (14.5/23)
USA Outpatient setting Maintenance subcuta All women with twin To evaluate the clinical Total antepartum for the intervens neous terbutaline gestations who and cost-effectiveness possibili, nurs- tion after stabili voltantistic experimented an in an iterbutaline, and the pisode of pre- station in an iterbutaline, mag- inpatient terbutaline, mag- ting intervense on a cost-effectiveness in possibili, nurs- inpatient terbutaline, mag- setting, indentiacion was trated with tocolysis to treat retrospective combination) oral tocolysis, and recurrent preterm cohort study. public of neuron- posted of neuro- patient preterm control or subsequently hos- posted of neuro- patient preterm control or study.		6	Not specified	Length of preg- narty until neo- natal discharge	Low (10.5/22)
labor symptoms at <35 weeks estation.	Total antepartum ss hospital, nurs- ey, and outpa- tient charges considered in a retrospective cohort study.	Not specified Chargees: Gesta- tional days gained, gesta- tional days age at delivery, perina- tal losses, nurs- ery days admissions to NICU and length of stay in NICU, birth weight, caesarean delivery	Not specified	Maternal an tepar- tum and neona- tal period until discharge from hospital post- delivery	(£2/01) wol

Study	Country	Care setting	Intervention	Study population	Aim	Design / analytic approach	Year of cost estimates	Type of evaluations (main outcomes)	Analytic viewpoint (perspective)	Time horizon (for effects)	CHEERS overall quality assessment
Lam 2003*7	r sa	United States; out- patient setting for the interven- tion after stabil- sation in an inpatient setting.	Maintenance subcuta- neosis techutaline vs oral tocolytics (terbutaline mesturn, nifedipine, indomethacin or combination)	Women meeting the following criteria: (1) singleton gesta- tion, 2) initial epi- sode of preterm labors at greater than 20 weeks, 33 tabloequent hospi- talization for recur- rent preterm labor who were stabi- lized and later dis- chalowing recurrent preterm labor were chalowing recurrent preterm labor were to study inclusion.	To compare the clinical and cost-effectiveness of utilizing continuous subcutaneous tebu- taline versus oral to colysis following recurrent preterm labor in women with singleton gestations.	Total antepartum hospital, runs- ery, and outpa- tient charges considered in a retrospective cohort study.	Not specified	chargese; Gesta- tional days gained, gesta- tional age at delivery, perina- tellorses, nurs- ery days, NICU and length of stay in NICU, birth weight, cæsarean delivery.	Not specified	Maternal antepar- tum and neona- tal period until discharge from hospital post- delivery	Low (105/23)
Morales 1989 ⁵⁵	LSA	Tertiary hospital	Indomethacin vs Ritodrine	Pregnant women <32 weeks gestation	To compare, using a pro- spective andomised design, the relative efficacy of matemal/ neonate fretect of indomethacin vs rito- drine hydrochloride.	Costs alongside randomised clinical trial	Not specified	Costs; effectiveness of recorpsis agent (time gained, time to storp, contrac- tion frequency, covical dila- tion, maternal side effects, and side effects, and outcomest	Not specified	Period of hospital- lisaton until neonatal discharge	Low (9.5/22)
Morrison 2003 ⁴⁸	USA	Outpatient setting for the interven- tion after stabili- sation in an inpatient setting.	Maintenance subcuta- neous terbutaline vs no intervention	Women <32 weeks' gestation during recurrent preterm labour	Assess the effectiveness of anilatory admin- istration of continuous parenteal techniques to women at very high risk for early delivery (-43 verels) compared with women who did not receive any therapy, in the home on an	Newborn costs included in a retrospective cohort study	Not specified	Costs; adverse effects of terbu- raincy prolonga- nancy prolonga- and neonatal morbidityd	Not specified	Maternal antepar- tum and neona- tal period until discharged from hospital	Low (9.5/22)
Tomczyk 2015 ⁶⁴	Poland	Tertiary hospital	IV followed by contin- uous oral fenoterol vs IV for 48- 72 hours only	Women at risk of labour at 24-34 weeks gestation	To compare cost and effectiveness of feno- teriol threep- nant women at risk of preterm labour in the hospital for two con- secutive years: 2012 when fenoterol was widely used, and 2013, when restric- tions were introduced.	Cost analysis along- side a retrospec- tive cohort study	Not specified	Cost of hos pitalisa- tion; mean week of delivery, mode of deliv- ery, neonatal ery, neonatal at term, APGARs, Hb and GR after delivery, betamethasone and antibiotic administration	Notspedfied	Period of hospitalisation	Low (10/22)
Table 2 (Continued)	(pənt										

Study Cou	untry	Care setting	Intervention	Study population	Aim	Design / analytic approach	Year of cost estimates	Type of evaluations (main outcomes)	Analytic viewpoint (perspective)	Time horizon (for effects)	CHEERS overall quality assessment
Valdés 2012 ⁵³ Chil Weiner 1988 ⁵⁷ USA		3 Maternal-fetal units at tertiary hospitals	Nifedipine (oral) vs Fenoterol (intravenous) Tocolysis (Ritodrine, terbutaline, or magnesium sul- fate) vs bed rest	Women at 22 to 34 weeks' gestation in preterm labour Women <34 weeks gestation with pre- mature rupture of membranes	Compare efficacy of nifedipine and feno- terol as a first-line tocolytic agent in the management of threatened preterm labor.	Cost-effectiveness analysis along- side randomised clinical trial	2007-08	Total costs; Out- comes from the RCT included: Clinical, meta- bolic, hemody- namic end- points, the gestational age upon recruit- ment, effective- ness of the assigned toco- lytic, latency period, advese effects, the inci- dence of pre- term delivery and perinatal outcomes. Costs; gestational age at delivery, birth weight, maternal or fetal infectious mor- bidity, respira- tory distress syndrome, nec- rotizing entero- colitis, perinatal	Not specified	Period of hospitali- zation until neo- natal discharge Period of hospital- isation until neonatal discharge.	Low (10.5/22) Moderate (14/22)

 a
 Unable to fully assess study quality as only abstract was available.

 b
 health outcome details specified in Appendix S2.

^c Charges refer to patient costs (cost price of treatment with any additional charges to the patient).

Study	Country	Care setting	Intervention	Study population	Aim ^a	Design/analytic approach	Year of cost estimates	Type of evaluations (main outcomes)	Analytic viewpoint (perspective)	Time horizon (for effects)	CHEERS overall quality assessment
Mozurkewich 2000 ⁶⁰	Canada	Outpatient setting for universal administration of corticoste- roids without tocolytics, inpatient setting for testing strategies and tocolysis.	ACS (unspecified) + Tocolytic (unspecified) vs ACS only vs no intervention	Women in preterm labour at 24 to 34 weeks' gestation	To compare the cost-effective- ness of nine strategies for the management of threat- ened preterm labour	Decision tree model	1999	Costs; number of RDS cases (with survival) per strategy, and number of neo- natal deaths per strategy.	Third-party payer perspective	Period of hospital- isation until neonatal dis- charge or death of the newborn.	High (18/22)
Myers 1997 ⁶¹	USA	Tertiary hospital	ACS (unspecified) + Tocolytic (beta- mimetic) vs no intervention	Women in preterm labour at <37 weeks' gestation	To determine the most cost- effective strategy for pre- venting RDS in the infants of women with preterm labour, comparing tocolysis and corticosteroids; amnio- centesis and testing for fetal lung maturity, with treat- ment based on test results; and no treatment.	Decision analysis, Markov model	1996	Costs, cost per case of RDS averted	Hospital (provider)	7-day time frame (initial hospitalisation)	High (18.5/22)
van Baaren 2013 ⁵⁸	Netherlands	Tertiary hospital	ACS (unspecified) + Tocolytic (nifedi- pine) vs no intervention	Women in preterm labour at 24 to 34 weeks' gestation	To evaluate the cost- effective- ness of risk stratification with cervical length mea- surement and/or fetal fibro- nectin tests in women with threatened preterm labour between 24 and 34 weeks' gestation.	Decision tree model	2011	Costs; Proportion of patients treated, perinatal death, a composite of adverse neona- tal outcomes ^b	Health sector	Period of hospital- isation until neonatal discharge.	High (20.5/22)
van Baaren 2018 ⁵⁹	Netherlands	Tertiary hospital	ACS (unspecified) + Tocolytic (nifedi- pine) vs no intervention	Women in preterm labour at 24 to 34 weeks' gestation	To evaluate the cost-effective- ness of combining cervical- length measurement and fetal fibronectin testing in women with symptoms of preterm labor between 24 and 34 weeks' gestation.	Decision tree model	2011	Costs; Proportion of patients treated, perinatal death, a composite of adverse neona- tal outcomesg	Societal	Period of hospital- isation until neonatal discharge.	High (20.5/22)

Table 3: Characteristics of included studies assessing cost-effectiveness of antenatal corticosteroids and tocolytic therapy in combination.

^a For this systematic review, only those arms (or comparisons) pertaining to ACS and tocolytic use were considered.
 ^b health outcome details specified in Appendix S2.

Morales 1986 ³⁰ ACS (dexame Comparator: 1 Mugford 1991 ³¹ ACS (not spec population (<35 weeks weeks GA) Comparator: 1 Dgata 2016 ²⁶ ACS (betamet dexametha	ified) : no treatment ethasone) : no treatment ecified) in two n subgroups	ACS reduces RDS (OR 0.38 (0.24-0.60)) and mortality (OR 0.59 (0.47-0.75)) and costs 24300 Dfl per extra survivor compared to no treatment. Reduced incidence of RDS (51% vs 25%) and intraventricular haemorrhage (27% vs 11%), reduced hospitalisation length (38 vs 22 days per infant). Reduced average cost per patient from \$27,600 versus \$10,300.	Cost-effective vs comparator Dominant vs comparator	ACS reduces neonatal mortality and RDS, but increases total hospital time and costs Statistically significant reduction in the incidence of respiratory distress syndrome and intraventricular haemorrhage, time of hospitalisation, and average cost per patient. No difference the rate of chorioamnionitis and neonatal sepsis, and no sta- tistically significant difference in the incidence of severe
Comparator: 1 Morales 1986 ³⁰ ACS (dexame Comparator: 1 Mugford 1991 ³¹ ACS (not spec population (<35 weeks weeks GA) Comparator: 1 Dgata 2016 ²⁶ ACS (betamet dexametha	: no treatment ethasone) : no treatment ecified) in two n subgroups	(0.47-0.75)) and costs 24300 Dfl per extra survivor compared to no treatment. Reduced incidence of RDS (51% vs 25%) and intraventricular haemorrhage (27% vs 11%), reduced hospitalisation length (38 vs 22 days per infant). Reduced average cost per patient from \$27,600 versus \$10,300.	comparator Dominant vs	hospital time and costs Statistically significant reduction in the incidence of respiratory distress syndrome and intraventricular haemorrhage, time of hospitalisation, and average cost per patient. No difference the rate of chorioamnionitis and neonatal sepsis, and no sta-
Comparator: 1 Mugford 1991 ³¹ ACS (not spec population (<35 weeks weeks GA) Comparator: 1 Ogata 2016 ²⁶ ACS (betamet dexametha	: no treatment ecified) in two n subgroups	haemorrhage (27% vs 11%), reduced hospitalisation length (38 vs 22 days per infant). Reduced average cost per patient from \$27,600 versus \$10,300.		distress syndrome and intraventricular haemorrhage, time of hospitalisation, and average cost per patient. No difference the rate of chorioamnionitis and neonatal sepsis, and no sta-
population (<35 weeks weeks GA) Comparator: I Ogata 2016 ²⁶ ACS (betamet dexametha	n subgroups			tistically significant difference in the incidence of severe intraventricular haemorrhage, necrotizing enterocolitis, or mortality.
dexametha		<35 weeks GA: 2.5 deaths and 6.2 RDS cases averted per 70 infants. £394 saved per infant, and £634 saved per survivor. <31 weeks GA: 2.6 deaths averted, 0.4 additional RDS cases per 70 infants. £422 additional costs per infant, and £880 saved per survivor.	Dominant vs comparator	Use of ACS for women with gestations up to 35 weeks would have reduced the number of cases of RDS and the number of deaths, and reduced the costs of care. Use of ACS for the <31 weeks GA subgroup only would have increased total costs because of the greater cost of caring for babies who would have survived, but total cost per survivor would reduce.
		US\$3413 cost savings in hospital costs per patient and reduced newborn morbidity or no significant difference against 16 outcome measures.	Dominant vs comparator	ACS was dominant compared to no treatment. Morbidity out- comes significantly decreased with ACS included advanced resuscitation in delivery room, use of surfactant, mechanical ventilation, blood transfusion, PIVH grades III and IV. The model was stable to sensitivity analysis. ACS was associated with a non-significant increased incidence of late-onset sep- sis in the study population.
	ecified) in 3 n subgroups : no treatment	<i>Birth weight <2kg</i> : 4.4 deaths and 12-1 index disease cases averted, and U\$\$326,200 combined hospital and physician costs saved per 100 infants <i><28 weeks GA</i> : 16-8 deaths averted, 9-1 additional index disease cases, and U\$\$467,700 USD saved per 100 infants <i>28-31 week GA</i> : 2-9 deaths and 16-6 index disease cases averted, and U\$\$317,200 saved per 100 infants	Dominant vs comparator	ACS both improves health outcomes and yields cost savings. Sensitivity analysis in the birth weight <2kg population tested hospital only costs, or hospital plus 15% of physician charges, and still found cost savings.
Antenatal corticosteroids at 34 -	- <37 weeks' ge			
	ecified) in 3 n subgroups : no treatment	34 weeks: US\$62,888-25 per QALY 35 weeks: US\$64,425-67 per QALY 36 weeks: US\$64,793-71 per QALY	Cost effective at threshold of US \$100,000/QALY	Administration of ACS to women at risk of imminent delivery at 34-36 weeks' gestation could significantly reduce the cost and acute morbidity associated with late preterm birth. While ACS was the consistently dominant strategy for acute respiratory outcomes, all models were sensitive to changes in probabilities and utilities associated with chronic respiratory disease.
subgroups	3 population	34 weeks: US\$131,233·39 per QALY 35 weeks: US\$133,117·42 per QALY 36 weeks: US\$133,654·76 per QALY	Not cost effective at threshold of US \$100,000/QALY	
		US\$23,986 cost saving per case of respiratory morbidity averted	Dominant	
able 4 (Continued)		· · · · · · · · · · · · · · · · · · ·		

Study	Treatment options	Cost-effectiveness result(s)	Dominance / Cost-effectiveness	Summary of study conclusions
Gyamfi-Banner- man 2019 ³⁴	Betamethasone Comparator: no treatment			Antenatal betamethasone treatment associated with a statisti- cally significant decrease in health care costs and with improved outcomes; thus, this treatment may be an econom- ically desirable strategy.
Rosenbloom 2020 ³²	Betamethasone Comparator: no treatment	US\$88m cost increase (US\$1,780m vs US\$1,692m) and decrease of 11 QALYs (5,405 vs 5,416) per 270,000 live births	Dominated by with- holding treatment	Withholding betamethasone dominated betamethasone administration and was cost-saving, i.e. less costly and more effective. If betamethasone were provided free-of-charge (i.e., \$0 cost for administration), withholding administration was still more effective and less costly.
Antenatal cortico	steroids in preterm birth (bro	oad or unspecified gestation)		
Johnson 1981 ³⁵	ACS (betamethasone) Comparator: No treatment	Birth weight 750-999g ACS 89% survival, comparator 64% survival ^a Birth weight 1000-1249g: ACS 88% survival, comparator 40% survival ^a Birth weight 1250-1499g: ACS \$17069±2442 vs comparator \$24553±2379 in hospital charges ^a Birth weight 1500-1749g: ACS \$12012±1338 vs comparator \$18207 ±3021 in hospital charges ^a	May be cost-effective; dominant over mul- tiple birthweight categories combined	Infants whose mothers received two doses of betamethasone had a significantly lower mortality in the two smallest birth- weight categories (750-999g, 1000-1249g). Infants in both treated and untreated groups with birth weights between 1250 and 1999g (30-33w gestation) had similar survival. Beta- methasone treatment did not cause a statistically significant difference in hospital charges between 750-1249g (27-29 weeks gestation). However, infants with birth weights between 1250 and 1749g (30-32 weeks gestation) whose mothers received betamethasone had significantly lower total hospital charges.
Memirie 2019 ³⁶	Betamethasone (20% increase in coverage) Comparator: no treatment (0% ACS coverage)	US\$98 per DALY averted	Cost-effective	ACS is highly cost effective compared to no treatment.
Michalow 2015 ³⁷	100% coverage of ACS (unspecified) Comparator: 20% cover- age of ACS (unspecified)	\$37 per LY saved	Cost-effective	Antenatal corticosteroids are highly cost-effective.

 Table 4: Summary of findings from cost-effectiveness studies of antenatal corticosteroids for preterm birth.

 ^a Only results with p-value <0.05 reported.</td>

treatment (24300 DFL per extra survivor).²⁹ In the USA in 1986, Morales et al reported ACS reduced costs, hospitalisation time, RDS cases, and IVH cases compared to no treatment.³⁰ Mugford et al (1991) found that in the UK ACS reduced deaths, RDS cases, and costs compared to no treatment.³¹

Preterm birth at 34 to <37 weeks' gestation. All three studies on ACS cost-effectiveness at 34 to <37 weeks' gestation were undertaken in the USA (Table 1).³²⁻³⁴ Bastek et al (2012) used a literature review to construct a decision model considering ACS use from a single payer perspective.³³ The other two studies used outcomes related to betamethasone use from the Antenatal Late Preterm Steroids (ALPS) trial.⁶² Gyamfi-Bannerman et al (2019) used a third-party funder perspective.³⁴ while Rosenbloom et al (2020) used a health sector perspective.³² Bastek et al examined a lifetime horizon for costs and effects,³³ while the other two studies used short time horizons – the first 72 hours³⁴ or first 7.5 days of the neonatal period,³² respectively. All three studies were assessed as high methodological quality.

Bastek et al reported that the ICER for a full course of ACS (compared to no ACS) favoured the full course of ACS at 34, 35, and 36 weeks using a threshold of \$100,000/QALY; a partial course of ACS was not costeffective (Table 4).33 When comparing ACS to no ACS at 34 weeks alone, the ICER was \$62,888.25/QALY, compared to \$64,425.67/QALY at 35 weeks, and \$64,793.71/QALY at 36 weeks in the base case - however, these were not robust across all variations of acute and chronic disease distribution. Sensitivity analyses restricted to distributions associated with acute respiratory disease demonstrated 95% confidence in ACS willingness-to-pay thresholds of >\$64,677 at 34 weeks, > \$65,700 at 35 weeks, and >\$65,819 at 36 weeks. Gyamfi-Bannerman et al concluded that compared to placebo, betamethasone was more effective and decreased total mean costs for each woman-infant pair.³⁴ Rosenbloom et al used the same trial data as Gyamfi-Bannerman et al and reported that betamethasone was dominated by no ACS.³² This can be attributed to Gyamfi-Bannerman et al costing the primary trial outcome only (a composite of neonatal respiratory treatment or stillbirth or neonatal death in the first 72 hours after birth), while Rosenbloom et al considered costs of additional outcomes (neonatal hypoglycaemia, which increased with betamethasone) alongside RDS and transient tachypnoea of the newborn (TTN), and derived utilities for each outcome from the literature to calculate QALYs. They reported ACS as being slightly more expensive and generating less QALYs than placebo.

Preterm birth (broad or unspecified gestation). One study from the USA by Johnson et al (1981) examined ACS use (betamethasone) from 26 to 35 weeks'

gestation considering costs alongside a retrospective cohort study.³⁵ Newborn effects until discharge from hospital were considered, though the perspective was not specified. Methodological quality was assessed as moderate. The authors reported a significantly lower mortality in the two smallest birthweight categories (750-999g, 1000-1249g) without statistically significant difference in hospital charges. Conversely, infants with birth weights between 1250 and 1749g (30-32 weeks' gestation) incurred significantly lower hospital charges despite no difference in mortality, suggesting ACS is dominant when birth-weight categories are combined.

Two other studies conducted in Ethiopia and South Africa examined ACS use in preterm birth without specifying the gestational age range, using the Lives Saved tool (LiST) for cost-effectiveness analysis.^{36,37} The study in Ethiopia (high methodological quality) considered betamethasone and used a provider perspective, while the South Africa study (moderate methodological quality) did not specify either of these. Neither study reported the time horizon. Memirie et al (2019) found that increasing coverage of ACS in preterm labour by 20% in Ethiopia was highly cost-effective at \$98 per DALY averted.³⁶ Michalow et al (2015) found that increasing coverage of ACS from 20% to 100% in South Africa was highly cost-effective at \$37 per life-year saved.³⁷

Tocolytics

Tocolytics to facilitate ACS administration. Eight studies assessed cost-effectiveness for tocolytics when used to prolong pregnancy for at least 48 hours, of which seven explicitly stated this was to facilitate ACS administration^{38,39,41-45} – the remaining study (abstract only) did not specify the reason (Table 2).^{4°} All were conducted in high-income countries (Belgium, Canada, Czech Republic, Germany, Italy, Netherlands, Spain, and USA). Three studies conducted a cost-effectiveness analysis alongside a randomised trial,^{40,42,43} three studies constructed decision tree models using cost and outcome estimates from the literature, $^{3^{8}\!,39\!,4^{\mathrm{I}}}$ and two studies by the same group conducted cost-minimisation analyses alongside a systematic review.44,45 Analytical perspective varied between studies, including societal,42 hospital,^{38,43} health system,⁴¹ health insurance company,^{39,40} and multiple perspectives (hospital, payer and combined hospital and payer).44,45 Time horizons were generally short-term for both costs and outcomes - most studies focused on the 48 hours from time of hospitalisation or commencement of tocolysis.³⁸⁻⁴⁵ One study examined outcomes until neonatal discharge from neonatal intensive care unit (NICU),⁴³ one study was until six weeks postpartum,42 and one study considered hearing loss up to five years of age.39

Methodological quality was generally high (six studies) with one study of moderate quality; one study could not be fully assessed (abstract only).⁴⁰

Most studies compared types of tocolytic agents and administration methods; only one study compared tocolysis with placebo, suggesting that transdermal GTN patches may be dominant with lower NICU admissions and associated costs (Table 5).43 Of the five studies comparing atosiban to different betamimetics (ritodrine, fenoterol, fenoterol with magnesium sulphate, hexoprenaline, isoxuprine), findings were mixed - two studies found atosiban to be equivalent to the comparator,^{39,40} two studies by the same lead author in different country settings (Italy and Germany) found that atosiban achieved equal effectiveness but at less cost than a betamimetic due to its superior safety profile,44.45 and one study concluded that ritodrine was more cost-effective as a first-line tocolytic than atosiban.⁴¹ One study comparing nifedipine and atosiban concluded that, in singleton pregnancies, nifedipine generated lower costs due to fewer NICU admissions; in multiple pregnancies, nifedipine was more effective and less costly.42 One study compared four agents (indomethacin, nifedipine, subcutaneous terbutaline, magnesium sulphate) and found indomethacin to be dominant in the base case, with nifedipine dominant in sensitivity analyses.38

Acute and maintenance tocolysis. Twelve studies examined tocolytic use for acute and maintenance tocolvsis (Table 2). Most studies compared types of tocolytic agents and administration methods, though two studies from the USA in the 1980's compared tocolysis with no tocolysis.56,57 Five studies - all conducted in the USA between 2001 and 2009 - considered acute and maintenance tocolysis in women with recurrent preterm labour,⁴⁶⁻⁵⁰ three studies from the USA, and Serbia and Montenegro, considered acute and maintenance tocolysis in preterm labour,^{52,56,57} two studies from Chile and the USA examined acute tocolysis with subsequent surveillance,53,55 one study compared intravenous followed by continuous oral fenoterol with intravenous fenoterol for 48-72 hours only,54 and one study examined maintenance with subcutaneous terbutaline in an inpatient versus outpatient setting.51 Five studies used patient data from the same Matria Healthcare database^{46,47,49-51} and seven studies conducted costeffectiveness analyses based on prospective cohort studies or trials.^{48,52-57} One study took a third party funder perspective,52; no other study described the perspective.46-51,53-57 Time horizons were short-term, with all studies examining an endpoint of initial discharge from hospital. Methodological quality was generally low (10 studies) with two studies of moderate quality - most provided no perspective or decision model, and few reported assumptions or performed uncertainty analyses.

Of the five studies examining tocolysis for recurrent preterm labour, subcutaneous terbutaline was found to be the dominant intervention in significantly increasing gestational age at birth, decreasing neonatal morbidity and decreasing overall costs when compared to oral tocolytics,^{46,47} oral nifedipine,^{49,50} or no outpatient therapy following stabilisation (Table 5).⁴⁸

Ambrose et al (2004) found that outpatient subcutaneous terbutaline was dominant compared to inpatient administration, with later gestation ages at birth, lower preterm birth rates, and lower overall costs.⁵¹ Valdés et al (2012) found that while nifedipine and fenoterol achieved similar tocolytic effects, nifedipine was more likely to fail as a first-line agent, though fenoterol had more adverse reactions; costs were equivalent for both drugs.⁵³ Jakovljevic et al (2008) found that when comparing acute and maintenance regimens using ritodrine and fenoterol (both betamimetics), the difference in tocolysis time and costs were not different (generating similar incremental cost-effectiveness ratios), although they suggested these findings might be specific to the Serbian healthcare context.52 Tomczyk et al (2015) found no significant differences in costs or effects between continuous fenoterol and fenoterol for 48-72 hours only.54 Morales et al (1989) found that indomethacin and ritodrine were equivalent in efficacy, but ritodrine was significantly more expensive than indomethacin (\$33 per patient vs \$560 per patient in drug and monitoring costs alone).55 Of the two studies comparing tocolysis with no tocolysis, Korenbrot et al (1984) found that acute and maintenance betamimetic tocolysis was dominant between 26-33 weeks compared to no tocolysis, with better outcomes and lower costs;56 Weiner et al (1988) did not find any significant difference in costs or outcomes between aggressive tocolysis (ritodrine, terbutaline, or magnesium sulphate) and oral maintenance therapy compared to bed rest.57

Cost-effectiveness studies of ACS and tocolytics in combination

Four studies were identified which compared different test-treatment combination strategies for preterm labour; data were extracted and compared for strategies that combined ACS and tocolytics without testing ("treat all"), and no treatment or testing ("treat none");5 ^I one study also compared these options to ACS only.⁶⁰ Two studies performed decision modelling and cost-effectiveness analysis based on the APOSTEL-I and APOS-TEL-II trials which compared nifedipine to placebo. One study specified use of effectiveness data for betamimetics, and one study based their analysis on a systematic review of multiple tocolytics. No study specified which type of ACS was used. All four studies were conducted in high-income countries (Netherlands, 58,59 United States,⁶¹ Canada⁶⁰) and constructed decision models from published data. All studies used short time

Study	Treatment options	Cost-effectiveness result(s)	Dominance / Cost effectiveness	Summary of study conclusions
Tocolytic only – 48	hour endpoint to facilitate ACS administration			
Ferriols 2005 ⁴¹	Protocol A: Ritodrine as first-choice tocolytic agent to delay birth for 48 hours	€194 per effectiveness unita	Most cost-effective	Ritodrine as first-choice tocolytic agent (Protocol A) is more cost effective than Atosiban.
	Protocol B: Atosiban as first-choice tocolytic agent to delay birth for 48 hours	€632 per effectiveness unita	-	
Guo 2011 ⁴³	Transdermal GTN patch	67-6% NICU admission avoided rate; Average cost per infant: CAN\$13,397	Dominant	GTN arm was the dominant strategy, with both lower cost and higher NICU admission avoided rate compared to the placebo arm.
	Placebo patch	60.8% NICU admission avoided rate; Average cost per infant: CAN\$18,427	-	
Hayes 2007 ³⁸	Indomethacin for 48 hours	US\$15-40 per patient	Dominant	Based on existing evidence of equal efficacy, indomethacin was found to be the dominant strategy for risk of adverse events and costs. Sensitivity analysis testing lowest and highest reported rates of adverse events indicated that nifedipine may be dominant over indomethacin which could indicate equivalence; however, each was superior to terbutaline.
	Subcutaneous terbutaline for 48 hours with monitoring	US\$399.02 per patient	-	
	Nifedipine for 48 hours	US\$16-75 per patient	Dominant in sensitivity analysis	
	Magnesium sulphate for 48 hours with monitoring	US\$197.90 per patient	-	
Heinen-Kam- memer 2003 ³⁹	Atosiban up to 48 hours	€9,890 per successfully treated patient	-	By converting efficacy and adverse events into costs, therapy with fenoterol as a bolus dose was the most cost effective of the 4 options. However, sensitivity analysis indicated no robustness in the model.
	Fenoterol up to 48 hours	€1,1397 per successfully treated patient	Most cost-effective option	
	Bolus fenoterol up to 48 hours	€7,013 per successfully treated patient	-	
	Fenoterol with magnesium sulphate up to 48 hours	€8,972 per successfully treated patient	-	
Table 5 (Continued)				

Study	Treatment options	Cost-effectiveness result(s)	Dominance / Cost effectiveness	Summary of study conclusions
Hruby 2004 ⁴⁰	Atosiban treatment for up to 18 or 48 hours	 ≤ 18 hours: 21,914-5-21,974-4 CZK ≤ 48 hours: 43,082-5-43,142-4 CZK 	Dominated by alterna- tive treatments	By presuming efficacy in delaying labour, in case of a shorter administration period (up to 18 hours): overall hospitalisa- tion costs are comparable for administration of atosiban and beta-sympatomimetic drugs (fenoterol or hexoprena- lin) when adverse events are converted into costs. In case of longer administration periods (more than 18 hours): overall hospitalisation costs are higher for administration of atosiban than beta-sympatomimetic drugs when adverse events are converted into costs. Overall costs increase as the duration of atosiban administration increase.
	Fenoterol treatment for up to 18 or 48 hours	≤ 18 hours: 19,878·7-22,661·4 CZK ≤ 48 hours: 19,960·3-23,150·7 CZK	-	
	Hexoprenalin treatment for up to 18 or 48 hours	≤ 18 hours: 19,942·9-21,974·4 CZK ≤ 48 hours: 20,131·3-23,574·0 CZK	-	
Nijman 2019 ⁴²	Nifedipine for up to 48 hours in 2 population sub- groups <i>Comparator:</i> intravenous atosiban for up to 48 hours of uterine quiescence	Singleton pregnancies: mean cost difference -€8479 (95% Cl: -€14,327 to -€2016) Multiple pregnancies: mean cost difference -€12,044 (95% Cl: -€21,607 to -€1671)	Dominant vs comparator	The trial found a non-significant difference in effectiveness for the composite primary outcome (singleton and multiple pregnancies). Mean costs per patient were significantly lower in the nifedi- pine group compared to the atosiban group for both sin- gleton and multiple pregnancies. The main reason costs of atosiban were higher was that more neonates were admit- ted to the NICU.
Wex 2009 ⁴⁴	Atosiban for 18 or 48 hours using 3 cost perspectives Comparator: continuous intravenous fenoterol for 18 or 48 hours	Combined perspective: cost savings of €226 for 18 hours of tocolysis; €71 for 48 hours Payer perspective: cost savings of €423 per patient. Hospital perspective: cost savings of €259 for 18 hours, €105 for 48 hours of tocolysis.	Dominant vs comparator	 Atosiban is cost saving versus betamimetics in the treatment of preterm labour from the payer, hospital, and combined perspectives. Effectiveness estimates were based on three double-blinded, placebo-controlled trials which found identical efficacy in delaying preterm birth by at least 48 hours between atosi- ban and betamimetics. Cost savings stem from the superior safety profile of atosiban. Sensitivity analysis including all six identified RCTs likewise found no significant difference in effectiveness and that atosiban was cost-saving compared to fenoterol.
	Atosiban for 18 or 48 hours using 3 cost perspectives Comparator: bolus intravenous fenoterol for 18 or 48 hours	Combined perspective: cost savings of €211 for 18 hours of tocolysis; €21 for 48 hours Payer perspective: cost savings of €423 per patient. Hospital perspective: found cost savings of €244 for 18 hours, €55 for 48 hours of tocolysis.	Dominant vs comparator	

Study	Treatment options	Cost-effectiveness result(s)	Dominance / Cost effectiveness	Summary of study conclusions
Wex 2011 ⁴⁵	Intravenous atosiban up to 48 hours Comparator: Intravenous betamimetics up to 48 hours (Ritodrine, Isoxuprine)	Atosiban had similar efficacy and fewer adverse events than betamimetics. Cost savings per patient were €425 for 18 hours and €316 for 48 hours vs ritodrine; €429 for 18 hours and €326 for 48 hours versus isoxuprine from the combined (payer and hospital) perspective.	Dominant vs comparator	Owing to its superior safety profile, atosiban is cost-saving versus betamimetics in the treatment of preterm labour in Italy from the payer's, hospital's and combined perspectives.
Tocolytic only – ac	ute and maintenance tocolysis			
Ambrose 2004 ⁵¹	Inpatient continuous subcutaneous terbutaline (SQT) to maintain tocolysis after an acute episode of pre- term labour Comparator: Outpatient continuous SQT with nursing surveillance	Earlier gestational age at delivery (34·1±2·9 vs 35·8±1·9 weeks, p<0·001) Higher preterm birth rate (86·7% vs 74·4%, p=0.043) Higher overall costs (US\$56,089± 47,944 vs US \$25,540±25,847, p<0·001)	Dominated by comparator	Outpatient management of SQT was associated with better pregnancy outcomes and cost less than inpatient manage ment. Outpatient SQT is dominant compared to inpatient management.
Fleming 2004 ⁴⁹	Outpatient nursing services with nifedipine for recur- rent preterm labour Comparator: Continuous outpatient subcutaneous ter- butaline (SQT) with nursing services	Earlier GA at delivery (35·7±3·1 weeks versus 36·6±2·1 weeks, p=0·004) Higher healthcare utilization costs (US\$37,040± 47,518 versus US\$26,546±25,386, p=0·014)	Dominated by comparator	Treating recurrent preterm labour with SQT versus oral nifed pine resulted in a later gestational age at delivery, improved neonatal outcomes, and increased cost-effective ness. SQT is dominant compared to oral nifedipine.
Flick 2010 ⁵⁰	Outpatient surveillance with nifedipine for recurrent preterm labour Comparator: Continuous outpatient subcutaneous ter- butaline (SQT) with surveillance	More likely to deliver at <35 weeks (28-0% versus 13-8%), weigh <2500 g (32-9% versus 20-3%), and require a stay in the neonatal intensive care unit (34-0% versus 23-1%), all p<0-001. Higher costs (US\$32,857±48,568 versus US \$18,113±25,408, p<0-001)	Dominated by comparator	SQT delayed delivery further compared to oral nifedipine an increased gestational age at delivery, decreased number o NICU admissions, low birth weights, and overall costs.
Jakovljevic 2008 ⁵²	Ritodrine (with verapamil and diazepam)	11.6±7-1 weeks prolongation of pregnancy; cost of 4,181.96 ±12,069.83 CSD per week of preg- nancy prolongation gained		Prolongation of pregnancy was significantly longer in the fenoterol group than in the ritodrine group, and the mean duration of hospitalization was shorter. Treatment with fenoterol was less costly and more cost-effective than the treatment with ritodrine, but the difference in cost- effec- tiveness was not statistically significant due to low costs o hospitalisation and human labour in Serbian health systen
	Fenoterol (with verapamil and diazepam)	12.7±8.4 weeks prolongation of pregnancy; cost of 3,345.51±7,668.04 CSD per week of preg- nancy prolongation gained	Dominant (non- significant)	

Study	Treatment options	Cost-effectiveness result(s)	Dominance / Cost effectiveness	Summary of study conclusions
Korenbrot 1984 ⁵⁶	Beta-adrenergic tocolysis (terbutaline, isoxsuprine) Comparator: No tocolysis	 20-25 weeks: gestation extension of 14±1.1 weeks; improved survival rate from 20% to 80%. Costs approximately \$5000 lower in treatment group (not statistically significant). 26-33 weeks: gestation extension from 6.6±1.5 to 4.3±0.5; improved survival rates from 75-95% to 89-97%. Costs between \$3730-23850 lower. Both effect and cost differences reduced over these ranges as gestational age increased. 34-37 weeks: gestation extension from 3.9±0.5 (34-35 weeks) to 2.3±0.7 (36-37 weeks); survival and costs did not differ significantly. 	Dominant (may not be statistically significant)	Treatment between 26 and 33 weeks was cost-effective. Aft 33 weeks there was no significant difference in survival or costs with or without treatment. The number of mothers not treated between 20-25 weeks was too small to permit statistical significance of results.
Lam 2001 ⁴⁶	Continuous outpatient subcutaneous terbutaline (SQT) for recurrent preterm labour in twin gestations Comparator: Oral tocolytics (terbutaline, magnesium, nifedipine, indomethacin or combination)	Increase of 4.5 gestational days ($35 \cdot 2\pm 2 \cdot 0$ versus $34 \cdot 5\pm 2 \cdot 3$, p<0.001), higher birth weight ($2343\pm$ 493g versus 2207 $\pm 523g$, p<0.001), and fewer NICU days ($17 \cdot 3\pm 16 \cdot 1$ versus 20.8 $\pm 17 \cdot 4$, p=0.009) US\$17,109 total average cost saving (US\$38,152 \pm 50,822 versus 55,261 \pm 60,932, p<0.001) per infant	Dominant	Infants of the SQT group had greater gestational age at delivery, higher birth weights, and less frequent neonatal intersive care unit admission. Charges for antepartum hospitalization and nursery were significantly less in the SQT group, while charges for outpatient services were less for the oral group. Mean total charges showed a cost saving for SQT.
Lam 2003 ⁴⁷	Continuous outpatient subcutaneous terbutaline (SQT) for recurrent preterm labour Comparator: Oral tocolytics (terbutaline, magnesium, nifedipine, indomethacin or combination)	Higher gestational gain (33-9±19-0 days vs 28-4± 19-8 days, p<0-001) per patient US\$5,286 average cost saving (US\$16,649± 21,701 vs US\$21,935±33,107, p<0-017) per patient	Dominant	The SQT group had more gestational gain following recurre preterm labor than the oral tocolytics group and had low average charges for antepartum hospitalisation and nurs- ery. However, average outpatient charges were lower for the oral tocolytics group. SQT appears to be a dominant strategy compared with oral tocolytics.
Morales 1989 ⁵⁵	Indomethacin (suppository, oral) \pm magnesium sulphate Comparator: Ritodrine (IV) \pm magnesium sulphate	Equally successful in stopping uterine contractions and delaying delivery for at least 48 hours in 94% and 83% of their respective uses. Cost sav- ings of \$33 per patient compared to \$560 per patient (drug and monitoring costs only)	Dominant	Both tocolytics were equal in effect. Indomethacin preferabl in side effect profile, driving lower cost of drug administration.

Table 5 (Continued)

Study	Treatment options	Cost-effectiveness result(s)	Dominance / Cost effectiveness	Summary of study conclusions
Morrison 2003 ⁴⁸	Continuous outpatient subcutaneous terbutaline (SQT) after recurrent preterm labour Comparator: No outpatient tocolytic therapy after sta- bilisation in hospital	Better neonatal outcomes: gestational age at delivery more than 37 weeks (53% vs 4%), per- centage delivered at less than 32 weeks (0% vs 47%), pregnancy prolongation (49.8 \pm 19.2 days vs 24.5 \pm 12.8 days); all p<0.001. Lower total cost for newborn care (\$6,995 \pm 14,822 vs \$62,033 \pm 89,978, p<0.002)	Dominant	Gestational age at delivery >37 weeks delivery <32 weeks and pregnancy prolongation were all significantly better in the SQT group. Cost savings in the SQT group arise from lower total number of maternal hospital days and shorter duration of NICU stay. SQT appears to be a dominant strat- egy compared with no outpatient tocolytic therapy follow- ing stabilisation.
Tomczyk 2015 ⁵⁴	IV followed by continuous oral fenoterol Comparator: IV fenoterol for 48-72 hours only	Perinatal outcomes (AGPAR score and neonatal weight) were comparable. Cost savings were not significant (4334,700PLN vs. 5232,470PLN, p= 0.533)	No statistically signifi- cant result	No significant differences in success of tocolysis, maternal or neonatal outcomes, costs.
Valdés 2012 ⁵³	Nifedipine for management of threatened preterm labour Comparator: Intravenous fenoterol	Lower success rate to obtain tocolysis when used as a first-line agent (80·3% vs. 90·9%, p=0·0001). Smaller proportion of adverse drug reactions (19% vs 57·8%, p=0·0001). No significant difference in costs (US\$588±47·0 vs 951±277·6, not significant).	No statistically signifi- cant result	The study did not demonstrate either clinical or economic superiority of any of the two options. Nifedipine failed more frequently to obtain tocolysis when used as a first-line agent, while women treated with fenoterol had more drug adverse events. While the total healthcare cost with feno- terol was higher than with nifedipine, it was not statistically significant. However, the use of fenoterol was more bur- densome in terms of bed-days, supplies, medications and specialist consultations.
Weiner 1988 57	Intravenous tocolysis (ritodrine, terbutaline, magne- sium sulfate) Comparator: bed rest	<28 weeks: significant increase in intrauterine time (232.8 ± 312 vs 53.4 ± 87) but no identifi- able perinatal benefit in the tocolysis arm. Costs per survivor were higher in the tocolysis arm (\$118206±42172 vs \$82871±30650)>28 weeks: No significant increase in intrauterine time and no identifiable perinatal benefit. Differ- ences in cost per survivor were not significant (\$22670±15195 vs \$23302±22770)	Unclear	Because tocolysis does not improve perinatal outcome and can itself be associated with major maternal morbidity, it should be avoided after 28 weeks' gestation. Before 28 weeks' gestation tocolysis may increase intrauterine time, but the benefit of this is not clear.

Table 5: Summary of findings from cost-effectiveness studies of tocolytics for preterm labour.

horizons, such as hospitalisation until discharge ⁵⁸⁻⁶⁰ or up to 7 days.⁶¹ Analytical perspectives were third-party payer,⁶⁰ provider,⁶¹ health sector,⁵⁸ and societal.⁵⁹ Methodological quality was high for all four studies.

Mozurkewich et al (2000) found that "treat none" was both more expensive and had higher rates of morbidity and mortality compared to "treat all" (ACS and tocolytics) or universal administration of ACS without tocolysis. Universal ACS only was the least expensive option, but resulted in more deaths and cases of RDS than universal ACS with tocolysis.⁶⁰ Myers et al (1997) also found that "treat all" was dominant compared to "treat none" at probabilities of RDS > 2%, with lower costs and better outcomes.⁶¹ Van Baaren et al (2013 and 2018) found that "treat all" had increased costs but fewer deaths and adverse outcomes compared to "treat none" in two studies using different cost perspectives.^{58,59} Table 6 shows cost per patient treated, perinatal mortalities and adverse outcomes reported separately for each intervention in three studies,⁵⁴ and cost-effectiveness ratios in one study.⁶

Discussion

This is the first systematic review examining the costeffectiveness of ACS and tocolytics in the context of preterm birth management, either alone or in combination. We identified 35 studies, mostly conducted in high-income countries. Studies were of varying methodological quality, and used diverse study designs and methodological approaches. Those pertaining to tocolytics considered a variety of agents, some of which are not in widespread use in contemporary obstetric practice. Studies generally used short-term time horizons, and thus may not accurately reflect longer term health effects or consider all aspects of cost-effectiveness.

Available evidence suggests that ACS is probably cost-saving or cost-effective when administered to women at imminent risk of preterm birth prior to 34 weeks' gestation, though the magnitude of its economic effects probably varies between settings. The 2015 WHO recommends ACS (dexamethasone or betamethasone) for women at risk of imminent preterm birth between 24 to 34 weeks' gestation, provided that certain treatment criteria are met.5 The current review corroborates this recommendation, as the intervention is likely to be cost-effective in this gestational age range. While Simpson and Lynch initially hypothesised that ACS may increase hospitalisation costs by increasing newborn survival, their own study refuted this.²⁸ Conversely, WHO does not recommend ACS for late preterm birth as there is still uncertainties about the balance between risks and benefits,5 though some highresource countries have moved in favour of its use on the basis of the 2016 ALPS trial.⁶³⁻⁶⁵ We found conflicting evidence from the USA as to whether this practice is likely to be cost-effective. Conclusions varied from ACS being dominant, cost-effective or dominated compared to no ACS, depending whether a full course was administered, and which newborn health outcomes were evaluated.^{32,34,66} The conflicting results reported by two studies using the same trial data illustrates the impact of study design and scope on cost-effectiveness outcomes.^{32,34}

Given the methodological diversity of cost-effectiveness studies involving tocolytics, it was not possible to identify the best option(s) from an economic perspective. There was no clear consensus as to which tocolytic is economically superior when used to delay birth by at least 48 hours to facilitate ACS administration. Notably, older studies considered tocolytic options such as injectable terbutaline and magnesium sulfate; terbutaline has since been given a black box warning by the Food and Drug Administration,⁶⁷ and a 2014 Cochrane review suggests magnesium sulfate is not an effective tocolytic agent.¹⁵ Studies in the current review suggest that when subcutaneous terbutaline is used for maintenance tocolysis, it not only prolongs pregnancy but decreases neonatal morbidity and costs when compared to oral tocolytics or placebo; however, these studies were of low methodological quality, several used the same data source, and maternal side effects were not considered.⁴⁶⁻⁵⁰ In addition, the efficacy of maintenance tocolysis in terms of health benefits to the neonate is itself uncertain.5,68

ACS and tocolytics are often used in combination in clinical care, and several studies considered the costeffectiveness of this combination. While available studies indicated that women treated with both interventions generally had better health outcomes than no treatment, studies disagreed as to whether the combination of the two treatments saved or added costs; ACS and tocolytics in combination may nevertheless be costeffective depending on decision-makers' willingness-topay.

Strengths of this systematic review include the use of a broad search strategy across multiple databases, augmented by additional reference checks. We adhered to PRISMA guidance in terms of duplicate screening, data extraction and quality assessment - the latter conducted using the CHEERS checklist recommended bv Cochrane.²³ A limitation of this review is the inherent difficulty of comparing cost-effectiveness studies which differ greatly in terms of model composition, data sources, time horizons, outcomes examined, currency, and year of costs, as well as reflecting a diversity of health systems and payment arrangements.⁶⁹ Notably, studies used different definitions of preterm labour and newborn health outcomes, limiting the opportunity to synthesise findings. We could not calculate a statistical measure of this heterogeneity as we did not produce pooled estimates, however we assume that heterogeneity is high given the differences between included studies in participants, interventions, outcomes and study design.

Study	Treatment options	Cost-effectiveness result(s)	Dominant strategy ^a	Summary of study conclusions
Mozurkewich 2000 ⁶⁰	Tocolytics and corticosteroids ("treat all")	50 RDS cases and 38 deaths per 1000 patients US\$14,900 per patient,	More costly, more effective	Universal administration of outpatient corticosteroids was the least expensive option, but resulted in more cases of respiratory distress syndrome (RDS)
	Not to treat any women ("treat none")	102 RDS cases and 55 deaths per 1000 patients US\$14,100 per patient,	Dominated by "ACS only"	and deaths than the "treat all" option. Treating all patients resulted in the fewest cases of RDS and deaths but the greatest costs. The "treat none"
	Treat all with outpatient corticosteroids, no tocolytics ("ACS only")	61 RDS cases and 40 deaths per 1000 patients US\$12,000 per patient	Less costly, more effective than "treat none"	strategy resulted in more RDS cases, more deaths, and higher costs, so was dominated by both the "treat all" and "ACS only" options.
Myers 1997 ⁶¹	Betamimetics and antenatal steroids ("treat all") assuming varying probabili- ties of respiratory distress syndrome (RDS) Comparator: No intervention ("treat none")	 Pr(RDS)=25%: 81 vs 129 RDS cases per 1000 patients; average cost \$14,493 vs \$20,485 per patient Pr(RDS)=12.5%: 40 vs 64 RDS cases per 1000 patients; average cost \$10,014 vs \$12,585 per patient Pr(RDS)=1%: 3 vs 5 RDS cases per 1000 patients; average cost \$5894 vs \$5124 per patient. ICER of \$2,916,016 per RDS case prevented compared to "treat none" 	Dominant if probability of RDS is >2%	"Treat all" was cost saving and more effective com- pared with no treatment at probabilities of RDS above 2%. It may be cost-effective to use no treat- ment at probabilities of RDS less than 2%. Sensitiv- ity analysis indicated "Treat all" was more cost effective as the costs of RDS and preterm birth increased.
van Baaren 2013 ⁵⁸	Tocolysis and steroids with tertiary centre transfer ("treat all" reference strategy) Comparator: No treatment ("treat none")	Reduction in perinatal mortality of 0.6 (95%Cl: -1.7 to 2.9) per 1000 women. Reduction in number of poor outcomes of 9.5 (95%Cl: 4.1-14.7) per 1000 women. Increase in costs of €203 (95%Cl: -552 to 881) per woman. Total average costs were €15872 compared to €11840 per woman.	More effective and more costly than com- parator (may not be statistically significant)	"Treat all" (strategy 1) is more effective and more costly than no treatment (strategy 7). The differ- ence in perinatal mortality and costs between these two options may not be statistically significant.
van Baaren 2018 ⁵⁹	Tocolysis and steroids with tertiary centre transfer ("treat all" reference strategy) Comparator: No treatment ("treat none")	Reduction in perinatal mortality (16·9 vs 18·8 deaths per 1000 women) and poor out- comes (91·8 vs 120·3 per 1000 women). Increase in average costs (€30,187 vs €24,952 per woman)	More effective and more costly than comparator	"Treat all" (strategy 1) is more effective and more costly than no treatment (strategy 7). Confidence intervals are not reported for the comparison between these two studies, so statistical signifi- cance cannot be determined.

Table 6: Summary of findings from cost-effectiveness studies of antenatal corticosteroids and tocolytic therapy in combination.

^a This table presents treatment options in each study that are relevant to this review (e.g. "treat all", "treat none", and "ACS only"). Categorisation considers the options presented here, and does not compare with other treatment options analysed in primary studies that are not relevant to this review objective.

A number of included studies were quite old (9 studies were published prior to 2000), hence caution should be taken in generalizing these findings to contemporary health services, considering that treatment options, clinical decision-making, costs and payer arrangements can change over time. However, it was notable that studies that assessed ACS prior to 34 weeks' gestation both before and after 2000 concluded that it was dominant. For tocolytics, we identified no studies of nifedipine or atosiban prior to 2000. While studies may conclude an intervention is cost-effective or cost-saving, this may not generalise to other settings (especially limited-resource settings) with different payer arrangements, higher costs of labour, hospital admission, supplies or equipment, or settings with more contemporary healthcare services. Some ACS and tocolytic options - such as betamethasone and atosiban - are not routinely available or used in many countries.

Further, robust cost-effectiveness studies are needed for these critical interventions in the context of preterm birth management. This review indicates ACS prior to 34 weeks' gestation appears to be cost-effective, which can inform the decision-making of policymakers and maternal health program administrators on resource allocation, particularly in high income countries. Additional confirmatory evidence - particularly for limitedresource settings, where the burden of preterm-associated newborn mortality is often greater - would be useful to support ACS implementation and scale-up activities. Regarding ACS use between 34 and <37 weeks' gestation, the conflicting economic evidence reflects the underlying uncertainty regarding health benefit (reduced respiratory morbidity) and harm (neonatal hypoglycaemia) trade-offs. The ALPS trial was conducted in tertiary care hospitals in the USA and it is not yet clear if the findings are applicable to lower-resource settings.⁷⁰ If the health benefit-harm profile is more clearly established through additional trials, future costeffectiveness analyses will be better positioned to fully evaluate the economic implications. In addition, observational studies have recently reported longer-term harms associated with ACS use, particularly when ACSexposed babies are born at term or near-term,^{71,72} highlighting the importance of considering longer-term outcomes in future cost-benefit analyses. Such analyses would ideally explore how ACS cost-effectiveness might vary for different weeks of gestation.

The 2015 WHO guidelines indicate that if tocolytics are used, oral nifedipine is the preferred first-line option;⁵ however, on the basis of available evidence we were not able to determine if nifedipine was more costeffective than other tocolytics. Future economic evaluations should consider the cost-effectiveness of tocolytics that have been shown to have superior clinical effects (such as nifedipine or atosiban). Such analyses could also consider the cost-effectiveness of these specific tocolytics and ACS alone or in combination. This systematic review was conducted in the context of updating WHO's 2015 recommendations on ACS and tocolytics for preterm birth,⁷³ and will thus support WHO guideline developers and panels to make evidence-informed judgements on resource use and costeffectiveness.

Available cost-effectiveness studies suggest ACS prior to 34 weeks' gestation in women at risk of imminent preterm birth are probably cost-effective, while findings on the cost-effectiveness of ACS at 34 to <37 weeks' gestation are contradictory depending on which newborn health outcomes are considered. While there are diverse cost-effectiveness studies for different types and indications for tocolysis, the available evidence is insufficient to conclude which tocolytic is superior in terms of cost-effectiveness. Further studies are needed, particularly for tocolytics alone and ACS and tocolytics in combination.

Contributors

JPV, KEE and ES formulated the research question and developed the protocol, which was revised by NS, DC and OTO. ES, CB, STC, RIZ, JPV contributed to screening. ES, AE, CB and RIZ contributed to data extraction and quality assessment. NS and KE assisted with data analysis. ES, CB, AE, KEE, STC, RIZ, NS, DC, OTO, JPV all reviewed and commented on preliminary and final analysis findings. The manuscript was initially drafted by ES, KEE and JPV, and subsequently revised by CB, AE, KEE, STC, RIZ, NS, DC and OTO. All authors approved the final version of the manuscript.

Declaration of interests

This work was supported by a grant to the Burnet Institute (where ES, CB, AE, KEE, STC, NS, JPV are affiliated) from UNDP/UNFPA/UNICEF/WHO/World Bank Special Programme of Research, Development and Research Training in Human Reproduction (HRP), a co-sponsored program of the World Health Organization (where DC and FO are employees). The authors declare that they have no competing interests.

Data sharing statement

All data extracted from studies identified in this review are available in the Supplementary Appendix.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j. eclinm.2022.101496.

References

- I Chawanpaiboon S, Vogel JP, Moller A-B, et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. *Lancet Global Health*. 2019;7(1):e37–e46.
- 2 Liu L, Oza S, Hogan D, et al. Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the Sustainable Development Goals. *Lancet North Am Ed*, 2016;388(10063):3027–3035.
- 3 Institute of Medicine. Preterm Birth: Causes, Consequences, and Prevention. Washington, D.C: The National Academies Press; 2007.
- 4 Newnham JP, Schilling C, Petrou S, et al. The health and educational costs of preterm birth to 18 years of age in Australia. Aust N Z J Obstet Gynaecol. 2021.
- 5 World Health Organization. WHO recommendations on interventions to improve preterm birth outcomes. 2015.
- 6 Roberts D, Brown J, Medley N, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. CDSR. 2017;3(3):CD004454. https://doi.org/ 10.1002/14651858.CD004454.pub3.
- McGoldrick E, Stewart F, Parker R, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. CDSR. 2020;12(12):CD004454. https://doi.org/ 10.1002/14651858.CD004454.pub4.
 Vogel JP, Oladapo OT, Manu A, Gülmezoglu AM, Bahl R. New
- 8 Vogel JP, Oladapo OT, Manu A, Gülmezoglu AM, Bahl R. New WHO recommendations to improve the outcomes of preterm birth. *Lancet Global Health*. 2015;3(10):e589–ee90.
- 9 Medley N, Poljak B, Mammarella S, Alfirevic Z. Clinical guidelines for prevention and management of preterm birth: a systematic review. BJOG. 2018;125(11):1361–1369.
- 10 Vogel JP, Souza JP, Gülmezoglu AM, et al. Use of antenatal corticosteroids and tocolytic drugs in preterm births in 29 countries: an analysis of the WHO Multicountry Survey on Maternal and Newborn Health. *Lancet*. 2014;384(9957):1869–1877.
- II Detsky AS, Laupacis A. Relevance of cost-effectiveness analysis to clinicians and policy makers. JAMA. 2007;298(2):221–224.
- 12 Flenady V, Wojcieszek AM, Papatsonis DNM, et al. Calcium channel blockers for inhibiting preterm labour and birth. *Cochrane Database Syst Rev.* 2014;2014(6):CD002255. https://doi.org/ 10.1002/14651858.CD002255.pub2.
- 13 Neilson JP, West HM, Dowswell T. Betamimetics for inhibiting preterm labour. Cochrane Database Syst Rev. 2014;(2):CD004352. https://doi.org/10.1002/14651858.CD004352.pub3.
- 14 Reinebrant HE, Pileggi-Castro C, Romero CLT, et al. Cyclo-oxygenase (COX) inhibitors for treating preterm labour. *Cochrane Database Syst Rev.* 2015;2015(6):CD001992. https://doi.org/10.1002/ 14651858.CD001992.pub3.
- 15 Crowther CA, Brown J, McKinlay CJ, Middleton P. Magnesium sulphate for preventing preterm birth in threatened preterm labour. *Cochrane Database Syst Rev.* 2014:(8):CD001060. https://doi.org/ 10.1002/14651858.CD001060.pub2.
- 16 Flenady V, Reinebrant HE, Liley HG, Tambimuttu EG, Papatsonis DNM. Oxytocin receptor antagonists for inhibiting preterm labour. *Cochrane Database Syst Rev.* 2014:(6):CD004452. https://doi.org/ 10.1002/14651858.CD004452.pub3.
- 17 Duckitt K, Thornton S, O'Donovan OP, Dowswell T. Nitric oxide donors for treating preterm labour. Cochrane Database Syst Rev. 2014;2014(5): CD002860. https://doi.org/10.1002/14651858.CD002860.pub2.
- 18 Su LL, Samuel M, Chong YS. Progestational agents for treating threatened or established preterm labour. *Cochrane Database Syst Rev.* 2014:(1):CD006770. https://doi.org/10.1002/14651858. CD006770.pub3.
- 19 Bain E, Heatley E, Hsu K, Crowther CA. Relaxin for preventing preterm birth. Cochrane Database Syst Rev. 2013:(8):CD010073. https://doi.org/10.1002/14651858.CD010073.pub2.
- 20 Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med.* 2009;6(7):e1000097.
- 21 Eddy K, Eggleston A, Chim S, et al. Economic evaluations of maternal health interventions: a scoping review [version 1; peer review: awaiting peer review]. F1000Research. 2022;11(225).
- 22 Aziz S, Rossiter S, Homer CSE, et al. The cost-effectiveness of tranexamic acid for treatment of postpartum hemorrhage: a systematic review. Int J Gynecol Obstetrics. 2021;155(3):331-344. https://doi.org/10.1002/ijg0.13654. Epub 2021 Mar 24.
- 23 Husereau D, Drummond M, Petrou S, et al. Consolidated health economic evaluation reporting standards (CHEERS) statement. BMJ: British Medical Journal. 2013;346:f1049.

- 24 Wijnen BFM, Van Mastrigt G, Redekop WK, Majoie HJM, De Kinderen RJA, Evers S. How to prepare a systematic review of economic evaluations for informing evidence-based healthcare decisions: data extraction, risk of bias, and transferability (part 3/3). *Expert Rev Pharmacoecon Outcomes Res.* 2016;16(6):723–732.
- 25 Zakiyah N, van Asselt ADI, Roijmans F, Postma MJ. Economic evaluation of family planning interventions in low and middle income countries; a systematic review. PLoS One. 2016;11(12): e0168447-e.
- 26 Ogata JFM, Fonseca MCM, de Almeida MFB, Guinsburg R. Antenatal corticosteroids: analytical decision model and economic analysis in a Brazilian cohort of preterm infants. J Matern Fetal Neonatal Med. 2015;29(18):2973–2979.
- 27 Ogata JFM, Fonseca MCM, Miyoshi MH, MFBd Almeida, Guinsburg R. Costs of hospitalization in preterm infants: impact of antenatal steroid therapy. Jornal de Pediatria (Versão em Português). 2016;92(1):24-31.
- 28 Simpson KN, Lynch SR. Cost savings from the use of antenatal steroids to prevent respiratory distress syndrome and related conditions in premature infants. Am J Obstet Gynecol. 1995;173(I):316–321.
- 29 Egberts J. Estimated costs of different treatments of the respiratory distress syndrome in a large cohort of preterm infants of less than 30 weeks of gestation. *Neonatology*. 1992;61(Suppl. 1):59–65.
- 30 Morales WJ, Diebel ND, Lazar AJ, Zadrozny D. The effect of antenatal dexamethasone administration on the prevention of respiratory distress syndrome in preterm gestations with premature rupture of membranes. Am J Obstet Gynecol. 1986;154(3):591-595.
- Mugford M, Piercy J, Chalmers I. Cost implications of different approaches to the prevention of respiratory distress syndrome. *Arch Dis Child.* 1991;66 (7 Spec No):757.
 Rosenbloom JI, Lewkowitz AK, Sondgeroth KE, et al. Antenatal cor-
- 32 Rosenbloom JI, Lewkowitz AK, Sondgeroth KE, et al. Antenatal corticosteroid administration in late-preterm gestations: a cost-effectiveness analysis. J Matern Fetal Neona. 2020;33(12):2109–2115.
- 33 Bastek JA, Langmuir H, Kondapalli LA, Paré E, Adamczak JE, Srinivas SK. Antenatal corticosteroids for late-preterm infants: a decision-analytic and economic analysis. ISRN Obstetr Gynecol. 2012;2012:491595-.
- 34 Gyamfi-Bannerman C, Zupancic JAF, Sandoval G, et al. Cost-effectiveness of antenatal corticosteroid therapy vs no therapy in women at risk of late preterm delivery: a secondary analysis of a randomized clinical trial. JAMA Pediatr. 2019;173(5):462–468.
- Johnson DE, Munson DP, Thompson TR. Effect of antenatal administration of Betamethasone on hospital costs and survival of premature infants. *Pediatrics*. 1981;68(5):633–637.
 Memirie ST, Tolla MT, Desalegn D, et al. A cost-effectiveness anal-
- 36 Memirie ST, Tolla MT, Desalegn D, et al. A cost-effectiveness analysis of maternal and neonatal health interventions in Ethiopia. *Health Policy Plan.* 2019;34(4):289–297.
- 37 Michalow J, Chola L, McGee S, et al. Triple return on investment: the cost and impact of 13 interventions that could prevent stillbirths and save the lives of mothers and babies in South Africa. BMC Pregnancy Childbirth. 2015;15:39.
- 38 Hayes E, Moroz L, Pizzi L, Baxter J. A cost decision analysis of 4 tocolytic drugs. Am J Obstet Gynecol. 2007;197(4):383.e1-.e6.
- 39 Heinen-Kammerer T, Motzkat K, Rychlik R. Kosten-Effektivitäts-Analyse verschiedener Tokolyse-Schemata: Vergleich von Atosiban, Fenoterol, Fenoterol in Verbindung mit Magnesiumsulfat und Fenoterol als Bolusgabe. Krankenhauspharmazie. 2003;24(2):45–49.
- 40 Hrubý K. [Comparison of the cost of treatment of premature labor with atosiban or beta-sympathomimetics from the perspective of the health care payer—a pharmacoeconomic model]. *Ceska Gynekol.* 2004;69(2):96–105.
- 41 Rafael F-L, Picó J, Almiñana M. Pharmacoeconomic assessment of two tocolysis protocols for the inhibition of premature delivery. *Farmacia Hospitalaria*. 2005;29:18–25.
- 42 Nijman TAJ, Baaren GJ, Vliet EOG, et al. Cost effectiveness of nifedipine compared with atosiban in the treatment of threatened preterm birth (APOSTEL III trial). BJOG. 2019;126(7):875–883.
- 43 Guo Y, Longo CJ, Xie R, Wen SW, Walker MC, Smith GN. Cost-Effectiveness of Transdermal Nitroglycerin Use for Preterm Labor. *Value Health.* 2011;14(2):240–246.
 44 Wex J, Connolly M, Rath W. Atosiban versus betamimetics in the
- 44 Wex J, Connolly M, Rath W. Atosiban versus betamimetics in the treatment of preterm labour in Germany: an economic evaluation. BMC Pregnancy Childbirth. 2009;9:23-.
- 45 Wex J, Abou-Setta AM, Clerici G, Di Renzo GC. Atosiban versus betamimetics in the treatment of preterm labour in Italy: clinical and economic importance of side-effects. *Eur J Obstet Gynecol Reprod Biol.* 2011;157(2):128–135.
- 16 Lam F, Bergauer NK, Jacques D, Coleman SK, Stanziano GJ. Clinical and cost-effectiveness of continuous subcutaneous terbutaline

versus oral tocolytics for treatment of recurrent preterm labor in twin gestations. *J Perinatol.* 2001;21(7):444–450.

- 47 Lam F, Istwan NB, Jacques D, Coleman SK, Stanziano GJ. Managing perinatal outcomes: the clinical benefit and cost-effectiveness of pharmacologic treatment of recurrent preterm labor. *Manag Care.* 2003;12(7):39–46.
- 48 Morrison JC, Chauhan SP, Carroll CS, Bofill JA, Magann EF. Continuous subcutaneous terbutaline administration prolongs pregnancy after recurrent preterm labor. Am J Obstet Gynecol. 2003;188 (6):1460–1467.
- 49 Fleming A, Bonebrake R, Istwan N, Rhea D, Coleman S, Stanziano G. Pregnancy and economic outcomes in patients treated for recurrent preterm labor. J Perinatol. 2004;24(4):223–227.
- 50 Flick A, de la Torre L, Roca L, et al. An examination of the clinical benefits and cost-effectiveness of tocolytic replacement following recurrent preterm labor. Am J Perinatol. 2009;27(01):053-059.
- Ambrose S, Rhea DJ, Istwan NB, Collins A, Stanziano G. Clinical and economic outcomes of preterm labor management: inpatient vs outpatient. *J Perinatol.* 2004;24(8):515–519.
 Jakovljevic M, Varjacic M, Jankovic SM. Cost-effectiveness of rito-
- 52 Jakovljevic M, Varjacic M, Jankovic SM. Cost-effectiveness of ritodrine and fenoterol for treatment of preterm labor in a low-middleincome country: a case study. *Value Health*. 2008;11(2):149–153.
- 53 Valdés E, Salinas H, Toledo V, et al. Nifedipine versus fenoterol in the management of preterm labor: a randomized, multicenter clinical study. *Gynecol Obstet Invest*. 2012;74(2):109–115.
- 54 Tomczyk K, Rzymski P, Wilczak M, Have we achieved progress in tocolytic treatment?-results of a retrospective cohort study in a tertiary university hospital. *Ginekol Pol.* 2015;86(7):504–508.
- 55 Morales WJ, Smith SG, Angel JL, O'Brien WF, Knuppel RA. Efficacy and safety of indomethacin versus ritodrine in the management of preterm labor: a randomized study. *Obstet Gynecol.* 1989;74(4):567–572.
- 56 Korenbrot CC, Aalto LH, Laros RK, Jr. The cost effectiveness of stopping preterm labor with beta-adrenergic treatment. N Engl J Med. 1984;310(11):691–696.
- 57 Weiner CP, Renk K, Klugman M. The therapeutic efficacy and costeffectiveness of aggressive tocolysis for premature labor associated with premature rupture of the membranes. Am J Obstet Gynecol. 1988;159(1):216-222.
- van Baaren GJ, Vis JY, Grobman WA, Bossuyt PM, Opmeer BC, Mol BW. Cost-effectiveness analysis of cervical length measurement and fibronectin testing in women with threatened preterm labor. Am J Obstet Gynecol. 2013;209(5):436.et.8.
 van Baaren GJ, Vis JY, Wilms FF, et al. Cost-effectiveness of diag-
- 59 van Baaren GJ, Vis JY, Wilms FF, et al. Cost-effectiveness of diagnostic testing strategies including cervical-length measurement and fibronectin testing in women with symptoms of preterm labor. *Ultrasound Obstet Gynecol.* 2018;51(5):596–603.

- 60 Mozurkewich EL, Naglie G, Krahn MD, Hayashi RH. Predicting preterm birth: a cost-effectiveness analysis. Am J Obstet Gynecol. 2000;182(6):1589–1598.
- 61 Myers ER, Alvarez JG, Richardson DK, Ludmir J. Cost-effectiveness of fetal lung maturity testing in preterm labor. *Obstetr Gynecol.* 1997;90(5).
- 62 Gyamfi-Bannerman C. 1: Antenatal Late Preterm Steroids (ALPS): a randomized trial to reduce neonatal respiratory morbidity. Am J Obstet Gynecol. 2016;214(1):S2-S.
- 63 National Institute for Health and Care Excellence. Preterm labour and birth 2015. https://www.nice.org.uk/guidance/ng25/resour ces/preterm-labour-and-birth-pdf-1837333576645.
- 64 Committee Opinion No. 713. Summary: antenatal corticosteroid therapy for fetal maturation. Obstet Gynecol. 2017;130(2):493-494.
- 65 Skoll A, Boutin A, Bujold E, et al. No. 364-antenatal corticosteroid therapy for improving neonatal outcomes. J Obstet Gynaecol Can. 2018;40(9):1219–1239.
- 66 Bastek JA, Langmuir H, Kondapalli LA, Paré E, Adamczak JE, Srinivas SK. Antenatal corticosteroids for late-preterm infants: a decision-analytic and economic analysis. *ISRN Obstet Gynecol.* 2012;2012: 491595.
- 67 Elliott JP, Morrison JC. The evidence regarding maintenance tocolysis. Obstet Gynecol Int. 2013;2013: 708023-.
- 68 Roos C, Spaanderman MÉA, Schuit E, et al. Effect of maintenance tocolysis with nifedipine in threatened preterm labor on perinatal outcomes: a randomized controlled trial. JAMA. 2013;309(I).
- 69 Drummond M, Barbieri M, Cook J, et al. Transferability of economic evaluations across jurisdictions: ISPOR good research practices task force report. Value in Health. 2009;12(4):409– 418.
- 70 Vogel J, Oladapo O, Pileggi-Castro C, et al. Antenatal corticosteroids for women at risk of imminent preterm birth in low-resource countries: the case for equipoise and the need for efficacy trials. BMJ Glob Health. 2017;2(3):e000398.
- 71 Ninan K, Liyanage SK, Murphy KE, Asztalos EV, McDonald SD. Evaluation of long-term outcomes associated with preterm exposure to antenatal corticosteroids: a systematic review and metaanalysis. JAMA Pediatrics. 2022 e220483-e.
- 72 Räikkönen K, Gissler M, Kajantie E. Associations between maternal antenatal corticosteroid treatment and mental and behavioral disorders in children. JAMA. 2020;323(I9):I924–I933.
- 73 Vogel JP, Dowswell T, Lewin S, et al. Developing and applying a 'living guidelines' approach to WHO recommendations on maternal and perinatal health. BMJ Glob Health. 2019;4(4): e001683-e.