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We are living through an unprecedented accumulation of data on gene expression by

macrophages, reflecting their origin, distribution, and localization within all organs of

the body. While the extensive heterogeneity of the cells of the mononuclear phagocyte

system is evident, the functional significance of their diversity remains incomplete,

nor is the mechanism of diversification understood. In this essay we review some

of the implications of what we know, and draw attention to issues to be clarified

in further research, taking advantage of the powerful genetic, cellular, and molecular

tools now available. Our thesis is that macrophage specialization and functions go far

beyond immunobiology, while remaining an essential contributor to innate as well as

adaptive immunity.

Keywords: mononuclear phagocyte, macrophage, tissue-specific function, monocyte, plasticity, macrophage

heterogeneity, macrophage receptors

INTRODUCTION

Participation in several Ceppellini workshops by one of the authors (SG) provided an opportunity
to examine and present to young investigators some aspects of the unique features of the
macrophage, a cell type with an ancient origin in eukaryotic evolution. SG’s attachment to the
macrophage family has extended over 50 years, rejuvenated over every decade as methodological
advances brought new insights and information. However, their biological role in the multicellular
organism has remained incomplete, eclipsed as accessory to the specific recognition, and effector
functions of lymphoid cells.Metchnikoff already appreciated their professional phagocytic capacity,
their digestive proficiency, and potential role in antimicrobial defense (1), while Ehrlich and
Wright (2) drew attention to the role of antibodies and opsonins, which enhance phagocytic
uptake by monocytes, macrophages, and polymorphonuclear neutrophils (PMN). The discovery
of complement and, decades later, the plasma membrane receptors for the Fc domain of IgG
specific antibodies and for C3 activated by the classical and alternative pathways, initiated
pioneering studies by many investigators [reviewed by Taylor et al. (3)]. Hortega recognized
the special properties of microglia in the Central Nervous System (CNS) (4). The discovery of
Dendritic cells(DC) by Steinman and Cohn (5, 6), demonstrated their superior role in antigen
capture, processing, and presentation to naïve lymphocytes of peptides, in association with the
highly polymorphic Major Histocompatibility (MHC) antigens, thus inducing specific T and B
lymphocyte activation and expansion (7). DC-like cells can be readily produced in culture of
mouse bone marrow or human monocytes in Granulocyte Macrophage Colony-Stimulating Factor
(GM-CSF; CSF-2) and IL-4 (8). To some extent DC eclipsed the role of macrophages in adaptive
immunity, although their role in innate immunity was secured by the discovery of Toll-like
Receptors (TLR) (9). The discovery and characterization of cytokines produced by and acting
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on macrophages, such as Tumor necrosis factor(TNF) (10)
and IL-1 (11), prepared the way for anti-TNF therapy (12), to
ameliorate destructive immunopathologies such as rheumatoid
arthritis. Activation of macrophages by cellular immunity,
characterized by Mackaness (13), was shown to be antigen
dependent, but non-specific, and lead to the characterization of
Interferon (IFN) gamma (14) as the sole mediator of classical
activation produced by antigen-specific T lymphocytes and
Natural Killer (NK) cells. After setting the stage above, further
relevant milestones of macrophage history will be introduced in
subsequent sections. Selected historic figures important in the
present understanding of tissue macrophage diversity are shown
in Figure 1.

THE MONONUCLEAR PHAGOCYTE
SYSTEM, A DISPERSED ORGAN

Metchnikoff recognized migratory and sessile, fixed tissue
phagocytic cells in his early studies of invertebrate development,
by microscopy, and intravital labeling. Direct observation of
their recruitment to foreign particles injected in vivo lead to
further studies in many vertebrate species on their role in host
defense against bacteria. Tissue macrophages were subsequently
shown to be widely distributed as a system of related cells during
development, in the adult steady state, during inflammation,
and infection. Aschoff introduced the term Reticulo-Endothelial
System (RES), hallmarked by the efficient clearance of particles
from the circulation, and extravascular space (15). The imprecise
RES nomenclature was replaced by that of the Mononuclear
Phagocyte System (MPS) (16), to distinguish mononuclear
monocytes and macrophages from PMN, while sharing their
highly active capacity as phagocytes. Although widely used till
the present day, this terminology is not perfect, since other cell
types phagocytose dying cells, and somemacrophage-related cells
are poorly or even non-phagocytic (17). The diverse cells of the
MPS cannot all be characterized by single antigen markers or
unique functions expressed at all stages of cell differentiation
or activation. Nevertheless, their origin and diversification have
common features which point to the valid concept of a specific,
dispersed myeloid lineage.

During mammalian development, macrophages derive from
haematopoietic precursors in para-aortic regions of the embryo,
the yolk sac and fetal liver, seeding organs such as the brain
and other tissues before birth (18, 19). A paradigm shift over

Abbreviations: ADGR, adhesion 7-transmembrane G-protein coupled receptor;

BAI-1, brain-specific angiogenesis inhibitor-1; CSF1-R, macrophage colony

stimulating factor receptor; DC, Dendritic cells; EMR, epidermal growth

factor-like module-containing, mucin-like hormone receptor-like receptor;

ITAM, immunoreceptor tyrosine-based activation motif; GM-CSF, granulocyte

macrophage colony stimulating factor; GPCR, G-protein coupled receptor;

IL, Interleukin; iPSC, induced pluripotent stem cell; MARCO, macrophage

receptor with collagenous domain; MHC, major histocompatibility complex; MPS,

Mononuclear phagocyte system; NK, natural killer cell; PD-1, Programmed cell

death-1; PMN, polymorphonuclear leukocyte; RES, reticulendothelial system;

scRNA seq, single cell ribonucleic acid sequencing; Sirp, signal regulatory protein

alpha; SR-A, scavenger receptor A; Tie2, Tyrosine-protein kinase receptor for

angiopoietins-2; TLR, toll-like receptor; TNF, tumor necrosis factor; TREM-2,

Triggering receptor expressed on myeloid cells-2.

recent decades has shown that after birth, in the absence of
inflammation, resident macrophages in adult tissues derive from
embryonic macrophages which can persist, and gradually turn
over locally throughout adult life (20–22). This is especially
the case for microglia in the (CNS) and Langerhans cells in
the epidermis. The bone marrow, which develops as the main
haematopoietic organ perinatally, and fumctions throughout
adult life (23), serves to replenish resident tissue macrophages,
for example in the gut (24), where macrophages turn over
more actively, and provides blood monocytes (25) in response
to increased demand, for example during inflammation and
infection (26). The chemokines and receptors which mediate
distribution ofmonocytes andmacrophages in the fetus and adult
are not completely defined, nor the adhesion molecules which
determine organ-specific localization. Chemokines of resident
macrophages include fractalkine and its receptor, CX3CR1 (27),
and inflammatory, and immune monocyte recruitment mediated
by CCL2 and its receptor, CCR2 [Figure 2; (29, 30)]. Apart from
these and related chemokines, recent studies have uncovered
macrophage axonal guidance by semaphorins, and plexinA (31,
32). While resident macrophage populations, for example in
the peritoneal cavity, persist locally, they can be induced by
inflammation, to enter lymphatic vessels for delivery to lymph
nodes (33), or to enter neighboring organs such as liver, by
sterile local injury (34). Blood monocytes of bone marrow origin
may remain inside the circulation and interact with the luminal
surface of vascular endothelium (35), become part of sinus-lining
endothelium, as Kupffer cells, or diapedese into tissues. Such
recruited monocytes are transient in blood (24–48 h) and shorter
lived (4–7 days) after migration into tissues, compared with
resident macrophages of yolk sac origin e.g., microglia, which
can be extremely long-lived. Other reservoirs of precursors and
mature macrophages are found in splenic red pulp (36) or in
secondary haematopoietic organs, such as liver.

While the dual origin of tissue resident macrophages is now
widely accepted, there is still uncertainty about the relative
contribution of the bone marrow in the adult steady state. In
mouse liver, for example, early studies by van Furth and Cohn
(37), before their embryonic origin was appreciated, argued
for a major contribution of recently dividing bone marrow-
derived blood monocytes to resident Kupffer cell populations.
The pendulum has swung to yolk sac origin, perhaps too far,
as acknowledged by more recent studies (38). The Geissmann
group, investigating the origin of murine osteoclasts, showed that
after initial perinatal formation of multinucleated cells in bone,
monocytes of bone marrow origin are recruited and continue to
fuse with osteoclasts throughout adult life (39).

GROWTH AND DIFFERENTIATION

Studies by Metcalf (Figure 1) on colony forming cells and
lineage-specific growth factors contributed greatly to our
understanding of haematopoietic stem cell growth and
differentiation in vitro (40). Lineage tracing by several groups
(41–43) built on studies by Stanley on CSF-1 [reviewed by
Chitu and Stanley (44)] and on GM-CSF (45), the major
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FIGURE 1 | Historic figures associated with macrophages, related cells and their specialized functions.

growth/differentiation factors for monocytes, macrophages,
and DC. After initial description by von Kolliker in 1873
(Figure 1) (46), Loutit (47) produced proof of the bone
marrow origin of osteoclasts; CSF-1 –deficient osteopetrotic
op/op mice (48) lacked many, but not all tissue macrophage
populations (49). Residual tissue macrophage populations
such as microglia, for example, may depend on IL-34, a
second ligand for the CSF-1 Receptor, since patients with
profound human CSF-1 R deficiency have grossly abnormal
CNS development attributed to the absence of microglia (50).
Collin et al. have identified mutations which affect monocyte
and DC growth and differentiation in humans; bone marrow
transplantation and adoptive transfer of haematopoietic
stem cells provide clinical and experimental models of
monocytopoietic differentiation in vivo (51). Recent studies
by Olsson et al. (52) and Yanez et al. (53) have demonstrated
a binary origin of monocytes in the mouse, exploiting
single cell and population RNA seq analysis and adoptive
cell transfer.

In spite of these basic discoveries, we need more quantitative
information on the number of monocytes, macrophages, and DC
in human tissues, and their life span in vivo. Yona et al. traced
the relationship of human monocytes in the steady state and
the kinetic response of monocyte subpopulations to endotoxin
administration in vivo (54). The subset of monocytic precursors
which gives rise to osteoclasts remains to be determined;

osteoclasts can be readily produced in vitro by culture of
monocytes in CSF-1, and Rank Ligand (46), which should
facilitate such studies.

TISSUE DISTRIBUTION AND
ORGAN-SPECIFIC PROPERTIES

In the mouse, we have benefited from the availability of
monoclonal antibody markers such as F4/80 to detect
macrophages in the developing embryo, in the adult
steady state and following a wide range of models of
inflammation, infection, malignancy, and atherosclerosis.
In addition, we used a panel of mab to identify tissue-specific
heterogeneity of marker expression (3). Figure 2 provides
a schematic cartoon of these and additional macrophage
plasma membrane receptors (55). With the aid of these
reagents we identified substantial morphologic and antigenic
heterogeneity of resident murine macrophages in different
tissue environments such as CNS, spleen and bone marrow
(28). Further studies demonstrated heterogeneous antigen
expression of monocyte-derived macrophages in BCG-
induced granulomata (56), as well as in multinucleated
macrophage giant cells (57) and osteoclasts (58). Knowledge
of the in situ phenotypes of human tissue macrophages is
still limited.
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FIGURE 2 | Plasma membrane antigens and receptors expressed by macrophages. Macrophages are able to express a large repertoire of membrane receptors

implicated in the recognition and uptake of foreign and modified self-ligands, some of which are illustrated here. These receptors incorporate a range of structural

domains, illustrated schematically; they serve as useful marker antigens for immunocytochemistry and FACS analysis (e.g., F4/80, CD68, CSF-1 receptor, Mer-TK,

CD64). They function as opsonic (antibody and or complement coated particles to enhance uptake via Fc and complement receptors) or non-opsonic,

carbohydrate-binding lectins, and scavenger receptors. The phagocytic receptors mediate clearance of microbes (e.g., MARCO), apoptotic cells (for example CD36,

SR-A, TIM4), and circulating ligands; CCR2, and CX3CR1 are examples of GPCR receptors for the monocyte/macrophage chemokines MCP-1 and fractalkine,

respectively; other receptors bind growth promoting and regulatory cytokines, for example, CSF-1, and angiopoietins (Tie-2), and CD163 for clearance of injurious

haptoglobin–hemoglobin complexes. Toll-like receptor-4 and CD14 react with bacterial membrane components such as lipopolysaccharide (LPS) to induce

pro-inflammatory signaling; Dectin-1 recognizes fungi through beta glucan in their wall, activating a range of innate immunological responses. Siglec-1 (CD169), a

receptor for sialic acid terminal glycoconjugates, mediates adhesion of host cells and microbes, whereas CD206, a receptor for clearance of Mannosyl-, fucose-,

GlcNAc-terminal glycoproteins, is a prototypical marker of M2-type activation. The scavenger receptor SR-A internalizes polyanionic ligands such as modified

lipoproteins, as well as selected microbes, whereas CD36 mediates adhesion and M2-induced macrophage fusion and giant cell formation. TREM-2 mutations have

been implicated in neurodegeneration and osteoclast function. For further details, see BMC, with permission (28).

HETEROGENEITY OF TISSUE
MACROPHAGES: ANTIGEN MARKERS

The F4/80 antigen(EMR1/ADGRE1), discovered by Austyn
and Gordon (59), was used by Hume and others (60) to define
monocytes, and macrophages in the mouse. F4/80 is mainly
expressed on the plasma membrane, with minimal endocytosis,
and is stable to aldehyde fixation; immunocytochemistry
therefore can provide exquisite detail of plasma membrane
processes in tissue macrophages, suggestive of potential
interactions with neighboring cells. Regional variation in
morphology and dendritic processes is particularly notable in the
brain (61). F4/80, a member of a leukocyte 7-transmembrane,
adhesion G protein-coupled receptor family, has been implicated
in peripheral tolerance (62), but natural ligands have not

been identified. It is also expressed by eosinophils in mouse
and human; EMR1 has been identified in other species (63),
but expression is transient in human monocyte-derived
macrophages. A related molecule, EMR2 (CD312), discovered
by Lin and Stacey (64), is expressed by human myeloid cells in
blood and tissues, binds chondroitin sulfate B/dermatan sulfate
and has been implicated in a human genetic syndrome, vibratory
urticaria (65), associated with mast cell degranulation. EMR2
undergoes autoproteolytic cleavage of its extracellular domain to
generate an N-terminal polypeptide agonist of GPCR activation.

The F4/80 antigen is expressed during mouse development
from midgestation (19) and has been particularly useful in
studies of microglia (61). It is also well-expressed in the adult
mouse on resident tissue macrophages in the peritoneal cavity,
red pulp of spleen, epidermal Langerhans cells, lamina propria
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of the gut, and Kupffer cells; expression is low on alveolar
macrophages in lung, and absent or minimal in white pulp and
T-cell rich areas. F4/80 is absent on osteoclasts, metallophilic
macrophages in the splenic marginal zone and on subcapsular
sinus macrophages in lymph nodes, which express the pan-
macrophage endo/lysosomal marker, CD68. Bone marrow-
derived monocytes and tissue macrophages recruited to sites of
inflammation, infection and malignancy in the mouse express
F4/80 strongly.

SIGLEC-1(CD169, sialoadhesin)is a macrophage-specific
sialic acid-recognition lectin discovered by Crocker on bone
marrow stromal macrophages, at the center of haematopoietic
islands (66). It is strongly expressed by marginal metallophils
in mouse spleen and by subcapsular sinusoidal macrophages in
lymph nodes. It has been implicated in retention and release
of monocytes from bone marrow into the circulation. Other
lectins widely expressed by macrophages, especially after
alternative activation by IL-4/-13, include the macrophage
mannose receptor (CD206) (67), and Dectin-1 (CLEC7A),
identified as a receptor for fungal beta –glucan by Brown and
Gordon (68) and Taylor et al. (3). Scavenger receptors implicated
in clearance of apoptotic cells (69), non-opsonic microbial
phagocytosis and lipoprotein endocytosis (70), include SRA-I/II,
constitutively present on many tissue macrophages (71) and
the structurally related collagenous receptor, MARCO (72),
which is constitutively expressed by macrophages in the outer
marginal zone of rodent spleen (73), but is induced on many
tissue macrophages by microbial Toll-like receptor stimulation.

In addition to the above antigens, macrophages express
plasmamembrane receptors (28) involved in opsonic recognition
of IgG antibodies (FcR), complement components (e.g., CD
11b/18), and other opsonins such as milk fat globulin. Other
adhesion molecules include various integrins and CD44; plasma
membrane receptors that mediate apoptotic cell clearance
include an adhesion GPCR BAI-1 (17) and immunoreceptor
tyrosine-based activation motif (ITAM) receptors, Tyro, Axl,
and MerTK (74). Immunoregulatory receptors include TREM 1
and 2, SIRP alpha, and PD-1. These and receptors for growth
factors, cytokines and chemokines have served as useful reagents
for FACS, lineage and functional analysis, contributing to our
knowledge of macrophage heterogeneity in mouse and human.
CD11b expression, for example, is well-expressed on microglia
and peritoneal macrophages whereas it is downregulated on
alveolar macrophages and Kupffer cells in situ.

GENE EXPRESSION

Advances in analysis of macrophage mRNA expression by bulk
and single cell sequencing have begun to provide a great deal of
new information which has not yet been fully validated by protein
expression in situ (75–77). However, important conclusions can
already be drawn. These studies confirm that macrophages from
different tissues are biosynthetically highly active, expressing
a large number of diverse, yet canonical macrophage genes.
However, tissue macrophages from different organs also express
distinctive antigen and mRNA signatures (77) (Figure 3).

Recent publications have reported scRNA-seq analysis of blood
mononuclear cells (80), embryonic and adult cell populations,
including human placenta (81, 82), which contains both fetal,
and maternal macrophages. Improved methods of in situ protein
expression (83, 84) are required to validate heterogeneity of
genomic and epigenomic expression by macrophages isolated
from different tissues. Spatial reconstruction of immune niches
has been proposed by combining photoactivatable reporters and
sc RNA-seq(NICHE-seq) (85). Consortia of investigators are
contributing to a human tissue atlas (86), which has already
lead to discovery of novel cell types and functions. Open
access to data will extend knowledge of variation in gene
expression by macrophages from different sources. This will
illustrate developmental, physiologic, and pathologic expression
and functions of resident and monocyte-derived macrophages,
as well as indicating the cells with which they interact locally.
Striking results have already been reported on the overriding
effect of phagocytosis of apoptotic cells on gene expression by
macrophages in different sites. These have used in vivo models
in gut (87), for example, and include parabiotic experiments (88).
The microbiome of the gut does not only affect the macrophage
phenotype in its local microenvironment, but also systemically
(89, 90), through release of microbial products.

POLARIZATION AND PLASTICITY OF
MACROPHAGES

We used selected membrane markers to examine the phenotype
of mouse peritoneal and human monocyte-derived macrophages
in culture, following exposure to Th1 and−2 associated
cytokines. In the mouse, IL-4, and subsequently IL-13, was
shown to enhance expression and function of mannose receptors
(CD206), whereas Interferon gamma selectively downregulated
this marker (91). Since MHC class II expression was upregulated
by both types of cytokine, we termed this process, alternative,
and classical activation, respectively. The terminology M2 and
M1 was introduced to include other prototypic stimuli such
as immune complexes and macrophage expressed-signatures of
selected marker genes (92, 93). We found, using a range of in
vitro and in vivo models, that transglutaminase 2 expression,
which is not specific for macrophages, was a consistent marker
of alternative macrophage activation in humans and mice
(94). Subsequent studies by many investigators showed that
macrophage polarization involved a spectrum of changes in
gene expression (95); to be a useful concept, we proposed
that the term alternative activation should be restricted to the
prototypical Th-2 cytokines, IL-4, and IL-13 and their common
and specific plasma membrane receptors (96). Microarray
analysis of macrophage populations using a range of activation
and regulatory stimuli, indicates that modules of genes can
be identified as signatures to distinguish among different
forms of activation. Further analyses of single cell RNA, and
protein expression of gene signatures by yolk sac- and bone
marrow-derived macrophages and their correlation with distinct
functions such as cytotoxicity, and tissue repair, are required to
refine polarization in individual organs.
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FIGURE 3 | Macrophages express canonical and tissue-specific mRNA

signatures. From (77) for further details, with permission. See also (78),

ImmGen Consortium (79).

Both classical and alternative macrophage activation can
be divided into two distinct phases, an initial priming step
by the appropriate cytokine, and completion by a phagocytic
or microbial stimulus which induces further changes in gene
expression and serves to localize macrophage effector activity.
Microbial uptake enhances cytotoxic and pro-inflammatory
activity of interferon-primed, classically activated macrophages,
whereas uptake of apoptotic cells by IL-4 treated macrophages,
enhances anti-inflammatory gene expression by alternatively
primed macrophages (97). In experimental models, LPS can
induce paradoxical enhancement of JNK activation following
Scavenger receptor ligation of IL-4-primed macrophages,
suggesting that the outcome will depend on the nature of the
phagocytic receptor involved (98).

Priming of macrophages can also induce an adaptive
enhancement of microbial phagocytosis and innate immune
function. For example, LPS or microbial stimulation upregulates
MARCO expression enabling subsequent enhanced uptake
of Neisseria meningitidis via this receptor (99, 100). This
observation harks back to the earlier studies of Mackaness on

macrophage activation by BCG and Listeria monocytogenes,
shown to be antigen dependent, but non-specific for the inducing
organism (13). Netea et al. have extended this phenomenon, an
example of “trained immunity” (101, 102), and have implicated
epigenetic mechanisms in its imprinting.

These concepts are important in attempts to reverse
polarization, for example of tumor associated macrophages,
for potential immunotherapy. Evidence that the macrophage
phenotype in vivo is plastic and reversible by adoptive transfer
to different tissue microenvironments is sketchy. Van de Laar
et al. have shown that yolk sac macrophages, fetal liver
and adult monocytes efficiently colonize the empty alveolar
niche of Csf2rb−/− mice, unlike mature liver peritoneal
or colon macrophages (103). We have found that once
macrophages have differentiated terminally, for example to
a resident peritoneal phenotype, they cannot be induced to
express adhesion receptors characteristic of other terminally
differentiated macrophages such as those found in bone
marrow haemopoietic clusters. Furthermore, experiments need
to distinguish between changes in cell populations and individual
cells. However, the phenomenon of induced pluripotency (104)
indicates that transcription factors and chromatin conformation
can enable true plasticity and the ability to give rise to embryonic
stem cells, able to generate different somatic cell types, including
macrophages (105) and microglia (106) de novo.

GENERATION OF DIVERSITY IN TISSUE
MACROPHAGES

The evidence that resident embryo or bone marrow-derived
populations of tissue macrophages, distributed throughout
organs in the steady state, acquire distinct phenotypes as
well as expressing core macrophage properties, raises a
fascinating problem of origin of their diversity. The extent of
adaptation by monocytes recruited by infection to different
tissue environments, for example in granuloma formation,
requires further characterization. In order to establish a testable
hypothesis to account for the generation of diversity, we
have to keep in mind several properties which distinguish
macrophages from T and B lymphocytes, in which antigen
receptor gene rearrangement and clonal selection have provided
unexpected solutions to account for repertoire diversity and
antigen specificity. Macrophages express a broader range of
receptors than lymphocytes to distinguish foreign, modified-
self and self-ligands; these include proteins and peptides,
carbohydrates, nucleic acids, and lipids. Macrophage receptors
can be viewed as “hard wired,” unlike the more selective, antigen-
specific receptors of adaptive lymphocytes. Tissue macrophages
are terminally differentiated, capable of only a limited degree of
proliferative capacity once they enter tissues. Clonal selection
can therefore be ruled out. We do not know the size of
the macrophage repertoire, but it must be substantial to
accommodate interactions with other cell types within the body,
including macrophages themselves, as well as so-called “pattern
recognition receptors” for exogenous and endogenous ligands.
Many investigators acknowledge that the local tissue as well as
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exogenous micro-environment must play a specifying role in
inducing or selecting expression of a particular constellation
of surface receptors and gene products [for example (75,
107)]. In addition, macrophages can recognize a host of
intracellular ligands in their cytosolic, biosynthetic, secretory,
or endocytic compartments. However, chromatin conformation,
transcription factors and enhancers, in addition to epigenetic
mechanisms, must also determine the programme of differential
gene expression, and modulation of the macrophage phenotype
(108–112). T’Jonck et al. have discussed the role of niche signals
and transcription factors involved in tissue resident macrophage
development in detail (113).

These considerations leave many questions as to how,
when and where, and specifically by which intrinsic and
environmental mechanisms, diversity is achieved. Surprisingly
little consideration has been given to the nature of the
diverse ligands in the extracellular matrix of different
tissues (114); nor the role of various epithelia, endothelia,
mesenchymal, and neuro-endocrine cells, all of which interact
with macrophages as a result of their unique migration and
organ distribution (83, 84, 115, 116).

TISSUE-SPECIFIC FUNCTIONS OF
MACROPHAGES

Tissue macrophages express general, prototypic, functions
throughout the body which contribute to homeostasis,
recognition and responses to intrinsic and external perturbation,
restoring physiologic stability, and contributing to repair
after injury. In different organs they adapt to different micro-
environments with variations on the themes of clearance of
particles and soluble ligands, digestion or storage in lysosomes,
constitutive, and induced biosynthesis, and secretion. They
interact with living or dying cells and microbes, blood and
lymph, undergoing metabolic adaptation, and altering adhesion
to extracellular matrix as they migrate, through different
locations over time. In the process, they may respond to injurious
stimuli by autophagy, cell growth or death. Nevertheless, we
can already discern remarkable variations in organ-specific
functions to which they contribute; these include a central role
in haematopoietic turnover, and haem degradation (117, 118),
lymphoid trafficking of immune cells (33); mucosal physiology,
for instance in the gut (119, 120); remodeling in the CNS
(107, 121, 122); neural- adipose tissue metabolism (123), and
adipose- sympathetic nervous interactions (124); and electrical
activity in the heart (125). Current studies in single cell RNA

and protein expression by tissue macrophages will provide more
examples of trophic and defense functions, contributing to
embryonic development, anatomic, physiologic, and pathologic
processes. Returning to our earlier discussion of how such
diversity might be generated, it seems likely that encounters with
different ligands in their tissue microenvironment can exploit
pre-existing or induce novel sensors to activate adaptive changes
in transcription and epigenetic modification; this begs the
question of the extent and mechanisms of initial tissue-specific
receptor diversification. While differentiation can generate a core
panel of recognition molecules on and within the macrophage,
it may be necessary to postulate further induction, feedback
amplification, or selection by as yet unknown somatic gene
expression mechanisms. Investigating the details of osteoclast
and DC development in vivo and in vitro may provide further
clues to novel molecular mechanisms.

CONCLUSIONS

Recent progress in molecular and cellular biology have
brought exciting insights into view, enabling us to characterize
monocyte/macrophage heterogeneity in situ. Understanding the
themes of their functions within multicellular organisms across
a range of evolutionary stages will make it possible to discover
a unifying pattern extending far beyond innate or adaptive,
cellular and humoral immunity. The challenge will be to imagine
the properties underlying the genes and molecules which can
lead us to such knowledge. Finally, we need to consider the
implications of monocyte/macrophage heterogeneity for therapy.
Factors to be taken into account for macrophage-directed
immunotherapy include the expression of target antigens on
distinct subpopulations, the route of administration, risk of off-
target effects and species differences. Similarly, for potential
adoptive cell therapy, the origin, differentiation, proliferative
capacity and activation status have to be defined, as well as
genetic compatibility.
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